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Appendix B: Fenchel conjugation

Definition B.1: Let f : R" — (—o0,+00]. The
Fenchel conjugate of f is f* : R" — |—00,400],
given by

f1(€) = sup [{'x — f(x)].

zeR?

Define the Fenchel biconjugate of f by repetition:
f7(x) = sup €z — (&),

£eR™

so f** is the conjugate of f*.
Simple general properties (see Proposition B.1):

e f*and ™ are convex, even when f isn’t.
ef2g=f"<yg"
e J; f*(§) = —o00 & f = +ooonall of R".
° onfeRn
f1(§) > &wo — f(xg) (Young’s inequality).



® on,.feR”

F1(&) = &z — f(mg) & & € Of(x0).

Example B.2: a. Let f : R — (—o00,4o0] be
given by
xlogx it x>0,
flx) = 0 ifx=0,
+oo  ifx < 0.

For fixed & calculate f*(€):
Step 1. Can restrict maximization to dom f:

(&) = supléx — xlog z.

x>0
Here 0log 0 := 0 captures f(0) = 0.
Step 2: So now we maximize over R !

Step 2a: Search for interior maximum. Note: f is
convex, so Y(x) = £x — xlogx is concave. Hence
for xy > 0:

T gives interior maximum < ' (zq) = 0

by Prop. 2.6. So obtain & — logxy — 1 = 0, ie.,
xo = exp(€ —1) (note: z¢ > 0, so is indeed interior!).
Get (o) = exp(€ — 1)

Step 2b: Search for maximum on boundary. Only
point in boundary is x = 0, with ¥(0) = 0.
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0 < exp(£—1), so combining steps 2a-b gives f*(£) =

exp(§ — 1),
Next, fix  and calculate f**(x):

f7 (@) = sup ¢(§) = &x — exp(§ — 1)].

EER
Here ¢ is concave and differentiable on R. So for

S €R
&o gives maximum < ¢' (&) = 0
by Prop. 2.6. So
&o gives maximum < & = logz + 1

Note: log x makes only sense for x > 0. So distin-
guish

Case 1: © > 0. Then f*(x) = ¢(logz + 1) =
x log x.

Case 2: x < 0. Then f**(x) =400 (let & — —00).

Case 3: x = (0. Now

f(0) =sup —exp(§ — 1) =0
EeER

by lime_,_ o —exp(§ — 1) = 0.
Combining cases 1,2,3 gives f** = f.
b. Let f:R" — (—o0, +00] be given by
f(x) = { — 2 i log(z) itz eRY,,

B +00 otherwise.
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Can exclude dom f from sup:

f(&) = sup ¢Y(z) = Zé}xz + Zlog(azi).

SN
Here —1) is convex and differentiable. So for any
r e R,
T gives maximum in sup < Vi(z) =0,

by Prop. 2.6. Gives &, + :132-_1 = () for each 7. So

T gives maximum in sup < V& = —a; .

By requirement x € R}, distinguish:
Case 1: V;&; < 0: then x; := —fz-_l > () for all 7. So

&) =-n+ Z log(1/ — &) = —n + f(—€).

Case 2: 4; £ > 0: then above sup not attained and
actually f*(€) = +o0.
Combining cases 1-2 gives

I7€) = { +00 otherwise
Next, fix x and calculate f**(x): by f*(£) above
obtain

f*(x) = sup [z +n— f(=¢)]

EeR”
Trick: change of variable ¢ := —¢& gives
(@)= sup [~C'z+n— f(Q]=n+ f(-z)

CERT



by above expression for f*(£). If x € R” _ this im-
plies f*(x) =n—n+ f(x) = f(x) and if x € R" _
one gets f**(z) = n+ oo = 400 = f(z). Hence,
o=
Found twice f** = f! What is the explanation?
Definition: Let f : R" — (—o0,+00]. Then f is
lower semicontinuous (1.s.c.) at xg € R™ if
VTGR,T<f(a:O)3(5>va,]$—$0\<5 f(l’) > T

Also: fis l.s.c. it V,, f ls.c. at zy. Further: f is
upper semicontinuous (u.s.c.) at xg € R" if —f is
l.s.c. at xg.

Elementary facts:
1. For f:R" — (—00,+00]| and zy € int dom f:

f continuous at xy < f l.s.c. and u.s.c. at xy.

2. If {f. : k} is collection of functions f, : R" —
(—00, 400, such that

V.fsis ls.c. at g € R",
then f @ R" — (—o00,+00], defined by f(z) =

sup,. fx(x), is Ls.c. at xg.
3. Fact 2 implies that

F(z) == sup{q(z) - ¢ : R" > R g Ls.c}
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defines a Ls.c. function f : R"* — (—o0, +00]. Name:
l.s.c. (lower) hull of f (it is the "largest L.s.c. func-
tion < f7).

4. For f:R" — (—o0, +o0:

fisls.c. < epi f is closed set.

Theorem B.5 (Fenchel-Moreau): Let f : R" —
(—00, 40| be convex. Then

f(zo) = f(x0) & fisls.c. at xp.
Proof of = is not difficult, because f** is ls.c. by
elementary fact 2 above. <= uses the separation The-

orem A.4, applied to epi f, which is convex and also
closed by above facts 3, 4.

Example B.2 (continued): Concrete calculations
gave f** = f. Explanation: f’s in Example B.2a-b
are convex and l.s.c.

Definition: Let K C R” be a cone at 0 (i.e,
Vasozexaxr € K). The (negative) polar of K is

K" ={£ e R":V,ex€z <0}

Example: Let S C R" and g € S. Then K =
Uasoa(S — x) is cone at 0. Here

K* = Ng(x9) = {€ : Voesé' (z — z0) < 0}.
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Corollary B.6 (bipolar theorem for cones): Let K
be a closed convex cone in R". Then K = K™ =
(K"

Proof. Set f .= xx. Then f is l.s.c. and convex.
So f** = f by F-M theorem. Now check that

f7(§) = sup £’z = x+(§)

reK

for all £. Consequence:

f*(x) = sup 'z
EeKH*

and f** = y g+ follows. So g+ = x . Conclusion:
K =K. QED

Corollary: Let L be a linear subspace of R". Then
L=L" = (L)t

Farkas’ Lemma: Let A be p x n-matrix, ¢ € R".
Then precisely one of the following is true:

(1) JpernAxz <0 and c'x > 0,
(2) HyeRﬁAty =c.

Proof. Hint: (2) = not (1) is easy. Next, not (1)
means:
Voern Ar<oc'® < 0.
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Thus, Veerclz < 0, ie, ¢ € K*. Here K :=
AYRE) is the closed convex cone generated by all
nonnegative linear combinations of colums of A (=
rows of A, viewed as colums). By F-M Theorem,
K* = K, so we obtain ¢ € K* = K = A'(RL).
QED



