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Appendix B: Fenchel conjugation

Definition B.1: Let f : Rn → (−∞,+∞]. The
Fenchel conjugate of f is f ∗ : Rn → [−∞,+∞],
given by

f ∗(ξ) := sup
x∈Rn

[ξtx− f (x)].

Define the Fenchel biconjugate of f by repetition:

f ∗∗(x) := sup
ξ∈Rn

[ξtx− f ∗(ξ)],

so f ∗∗ is the conjugate of f ∗.
Simple general properties (see Proposition B.1):

• f ∗ and f ∗∗ are convex, even when f isn’t.

• f ≥ g ⇒ f ∗ ≤ g∗.

• ∃ξ f ∗(ξ) = −∞ ⇔ f ≡ +∞ on all of Rn.

• ∀x0,ξ∈Rn

f ∗(ξ) ≥ ξtx0 − f (x0) (Young’s inequality).
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• f ≥ f ∗∗.

• ∀x0,ξ∈Rn

f ∗(ξ) = ξtx0 − f (x0) ⇔ ξ ∈ ∂f (x0).

Example B.2: a. Let f : R → (−∞,+∞] be
given by

f (x) :=

 x log x if x > 0,
0 if x = 0,

+∞ if x < 0.

For fixed ξ calculate f ∗(ξ):

Step 1. Can restrict maximization to dom f :

f ∗(ξ) = sup
x≥0

[ξx− x log x].

Here 0 log 0 := 0 captures f (0) = 0.

Step 2: So now we maximize over R+!

Step 2a: Search for interior maximum. Note: f is
convex, so ψ(x) := ξx − x log x is concave. Hence
for x0 > 0:

x0 gives interior maximum ⇔ ψ′(x0) = 0

by Prop. 2.6. So obtain ξ − log x0 − 1 = 0, i.e.,
x0 = exp(ξ−1) (note: x0 > 0, so is indeed interior!).
Get ψ(x0) = exp(ξ − 1).

Step 2b: Search for maximum on boundary. Only
point in boundary is x = 0, with ψ(0) = 0.
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0 < exp(ξ−1), so combining steps 2a-b gives f ∗(ξ) =
exp(ξ − 1).

Next, fix x and calculate f ∗∗(x):

f ∗∗(x) = sup
ξ∈R

φ(ξ) := ξx− exp(ξ − 1)].

Here φ is concave and differentiable on R. So for
ξ0 ∈ R

ξ0 gives maximum ⇔ g′(ξ0) = 0

by Prop. 2.6. So

ξ0 gives maximum ⇔ ξ0 = log x + 1

Note: log x makes only sense for x > 0. So distin-
guish

Case 1: x > 0. Then f ∗∗(x) = φ(log x + 1) =
x log x.

Case 2: x < 0. Then f ∗∗(x) = +∞ (let ξ → −∞).

Case 3: x = 0. Now

f ∗∗(0) = sup
ξ∈R

− exp(ξ − 1) = 0

by limξ→−∞− exp(ξ − 1) = 0.

Combining cases 1,2,3 gives f ∗∗ = f .

b. Let f : Rn → (−∞,+∞] be given by

f (x) :=

{
−

∑n
i=1 log(xi) if x ∈ Rn

++,
+∞ otherwise.

3



Can exclude dom f from sup:

f ∗(ξ) = sup
x∈Rn++

ψ(x) :=
∑
i

ξixi +
∑
i

log(xi).

Here −ψ is convex and differentiable. So for any
x ∈ Rn

++:

x gives maximum in sup ⇔ ∇ψ(x) = 0,

by Prop. 2.6. Gives ξi + x−1
i = 0 for each i. So

x gives maximum in sup ⇔ ∀iξi = −x−1
i .

By requirement x ∈ Rn
++ distinguish:

Case 1: ∀iξi < 0: then xi := −ξ−1
i > 0 for all i. So

f ∗(ξ) = −n +
∑
i

log(1/− ξi) = −n + f (−ξ).

Case 2: ∃j ξj > 0: then above sup not attained and
actually f ∗(ξ) = +∞.
Combining cases 1-2 gives

f ∗(ξ) =

{
−n− f (−ξ) if ξ ∈ Rn

−−
+∞ otherwise

Next, fix x and calculate f ∗∗(x): by f ∗(ξ) above
obtain

f ∗∗(x) = sup
ξ∈Rn−−

[ξtx + n− f (−ξ)].

Trick: change of variable ζ := −ξ gives

f ∗∗(x) = sup
ζ∈Rn++

[−ζ tx + n− f (ζ)]
!
= n + f ∗(−x)
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by above expression for f ∗(ξ). If x ∈ Rn
−− this im-

plies f ∗∗(x) = n− n+ f (x) = f (x) and if x 6∈ Rn
−−

one gets f ∗∗(x) = n + ∞ = +∞ = f (x). Hence,
f ∗∗ = f .

Found twice f ∗∗ = f ! What is the explanation?

Definition: Let f : Rn → (−∞,+∞]. Then f is
lower semicontinuous (l.s.c.) at x0 ∈ Rn if

∀r∈R,r<f(x0)∃δ>0∀x,|x−x0|<δ f (x) > r.

Also: f is l.s.c. if ∀x0 f l.s.c. at x0. Further: f is
upper semicontinuous (u.s.c.) at x0 ∈ Rn if −f is
l.s.c. at x0.

Elementary facts:

1. For f : Rn → (−∞,+∞] and x0 ∈ int dom f :

f continuous at x0 ⇔ f l.s.c. and u.s.c. at x0.

2. If {fκ : κ} is collection of functions fκ : Rn →
(−∞,+∞], such that

∀κfκ is l.s.c. at x0 ∈ Rn,

then f : Rn → (−∞,+∞], defined by f (x) :=
supκ fκ(x), is l.s.c. at x0.

3. Fact 2 implies that

f̄ (x) := sup
q
{q(x) : q : Rn → R, q l.s.c.}
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defines a l.s.c. function f̄ : Rn → (−∞,+∞]. Name:
l.s.c. (lower) hull of f (it is the ”largest l.s.c. func-
tion ≤ f”).

4. For f : Rn → (−∞,+∞]:

f is l.s.c. ⇔ epi f is closed set.

Theorem B.5 (Fenchel-Moreau): Let f : Rn →
(−∞,+∞] be convex. Then

f (x0) = f ∗∗(x0) ⇔ f is l.s.c. at x0.

Proof of ⇒ is not difficult, because f ∗∗ is l.s.c. by
elementary fact 2 above. ⇐ uses the separation The-
orem A.4, applied to epi f̄ , which is convex and also
closed by above facts 3, 4.

Example B.2 (continued): Concrete calculations
gave f ∗∗ = f . Explanation: f ’s in Example B.2a-b
are convex and l.s.c.

Definition: Let K ⊂ Rn be a cone at 0 (i.e.,
∀α>0,x∈Kαx ∈ K). The (negative) polar of K is

K∗ := {ξ ∈ Rn : ∀x∈Kξtx ≤ 0}.

Example: Let S ⊂ Rn and x0 ∈ S. Then K :=
∪α>0α(S − x0) is cone at 0. Here

K∗ = NS(x0) = {ξ : ∀x∈Sξt(x− x0) ≤ 0}.
6



Corollary B.6 (bipolar theorem for cones): Let K
be a closed convex cone in Rn. Then K = K∗∗ :=
(K∗)∗.

Proof. Set f := χK. Then f is l.s.c. and convex.
So f ∗∗ = f by F-M theorem. Now check that

f ∗(ξ) = sup
x∈K

ξtx = χK∗(ξ)

for all ξ. Consequence:

f ∗∗(x) = sup
ξ∈K∗

ξtx

and f ∗∗ = χK∗∗ follows. So χK∗∗ = χK. Conclusion:
K∗∗ = K. QED

Corollary: Let L be a linear subspace of Rn. Then
L = L⊥⊥ := (L⊥)⊥.

Farkas’ Lemma: Let A be p× n-matrix, c ∈ Rn.
Then precisely one of the following is true:

(1) ∃x∈RnAx ≤ 0 and ctx > 0,

(2) ∃y∈Rp+A
ty = c.

Proof. Hint: (2) ⇒ not (1) is easy. Next, not (1)
means:

∀x∈Rn,Ax≤0c
tx ≤ 0.
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Thus, ∀x∈K∗ctx ≤ 0, i.e., c ∈ K∗∗. Here K :=
At(Rp

+) is the closed convex cone generated by all
nonnegative linear combinations of colums of At (=
rows of A, viewed as colums). By F-M Theorem,
K∗∗ = K, so we obtain c ∈ K∗∗ = K = At(Rp

+).
QED
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