General duality - highlights 6

October 2010

Recall from Thm. 3.1(iii):

$$
\begin{aligned}
h \text { continuous at } 0 & \Rightarrow \partial h(0) \neq \emptyset \Rightarrow \\
\Rightarrow \quad \text { set of dual solutions } & =-\partial h(0) \neq \emptyset
\end{aligned}
$$

Seek to relax such continuity for special perturbation functions h, namely polyhedral h.

Def. $S \subset \mathbb{R}^{n}$ is polyhedral if

$$
S=\cap_{j=1}^{J}\left\{x \in \mathbb{R}: y_{j}^{t} x \leq \alpha_{j}\right\}
$$

for some $\left\{y_{1}, \ldots, y_{J}\right\} \subset \mathbb{R}$ and $\left\{\alpha_{1}, \ldots, \alpha_{J}\right\} \subset \mathbb{R}$. This is special type of convex set.

Def. $f: \mathbb{R}^{n} \rightarrow[-\infty,+\infty]$ is polyhedral if epi $f \subset$ $\mathbb{R}^{n} \times \mathbb{R}$ is polyhedral. This is special type of convex function.

Prop. 1.2. Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty], f \not \equiv+\infty$, be polyhedral. Then f is of the following form: there exist a polyhedral set $P \subset \mathbb{R}^{n}$ and affine functions $a_{1}, \ldots, a_{N}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
f(x)=\chi_{P}(x)+\max _{1 \leq i \leq N} a_{i}(x)
$$

Moreover,

$$
\partial f\left(x_{0}\right) \neq \emptyset \text { for every } x_{0} \in \operatorname{dom} f
$$

Obs: The latter does not require the usual condition

$$
f \text { continuous at } x_{0} \Leftrightarrow x_{0} \in \operatorname{int} \operatorname{dom} f(*)
$$

Example. a. Recall: for $n=1$ the convex nonpolyhedral function

$$
f(x):= \begin{cases}1-\sqrt{1-x^{2}} & \text { if }|x| \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

had $\partial f(1)=\emptyset$ "because" $(*)$ is not valid for $x_{0}=1$.
b. However, the polyhedral function

$$
f(x):= \begin{cases}|x| & \text { if }|x| \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

has $\partial f(1) \neq \emptyset$, although $(*)$ is not valid for $x_{0}=1$.

Fenchel's duality theorem can now be modified: if $\left(P_{F}\right)$ is polyhedral, then the sufficient condition for strong stability becomes much weaker than before:
Let A be $m \times n$-matrix. Consider

$$
\left(P_{F}\right) \quad \inf _{x \in \mathbb{R}^{n}}[f(x)+g(A x)],
$$

where $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$ and $g: \mathbb{R}^{m} \rightarrow(-\infty,+\infty]$ are polyhedral functions. Suppose $\inf \left(P_{F}\right) \in \mathbb{R}$.
Define associated Fenchel dual problem:

$$
\left(D_{F}\right) \sup _{q \in \mathbb{R}^{m}}\left[-f^{*}\left(A^{t} q\right)-g^{*}(-q)\right] .
$$

Fenchel's duality thm - polyhedral version
(i) For all $x \in \mathbb{R}^{n}$ and $q \in \mathbb{R}^{m}$

$$
-f^{*}\left(A^{t} q\right)-g^{*}(-q) \leq f(x)+g(A x) .
$$

(ii) If $0 \in \operatorname{inht}(\operatorname{dom} g-A(\operatorname{dom} f)$), then

$$
\inf \left(P_{F}\right)=\max \left(D_{F}\right) .
$$

Moreover, then $\bar{x} \in \mathbb{R}^{n}$ is optimal for $\left(P_{F}\right)$ and $\bar{q} \in$ \mathbb{R}^{k} is optimal for $\left(D_{F}\right)$ if and only if

$$
A^{t} \bar{q} \in \partial f(\bar{x}) \text { and }-\bar{q} \in \partial g(A \bar{x})
$$

Application: semidefinite programming duality \mathbb{S}^{n} : set of all symmetric $n \times n$-matrices \mathbb{S}^{n} is Euclidean vector space with inner product

$$
\langle X, Y\rangle:=\operatorname{tr}(X Y)=\sum_{i, j} X_{i, j} Y_{i, j} .
$$

Two special convex cones in \mathbb{S}^{n} :
\mathbb{S}_{+}^{n} : set of all positive semidefinite matrices
\mathbb{S}_{++}^{n} : set of all positive definite matrices
Recall: $A \in \mathbb{S}_{+}^{n} \Leftrightarrow \forall_{x} x^{t} A x \geq 0$
Recall: $A \in \mathbb{S}_{++}^{n} \Leftrightarrow \forall_{x \neq 0} x^{t} A x>0$
Fact: \mathbb{S}_{+}^{n} is closed and $\mathbb{S}_{++}^{n}=\operatorname{int} \mathbb{S}_{+}^{n}$.

Let $A_{i} \in \mathbb{S}^{n}$ and $b_{i} \in \mathbb{R}$ for $i=1, \ldots, m$.
The primal semidefinite program is
$\left(P_{S D P}\right) \inf _{X \in \mathbb{S}_{+}^{n}}\left\{\operatorname{tr}(C X): \operatorname{tr}\left(A_{i} X\right)=b_{i}, i=1, \ldots, m\right\}$.
Can be written as
$\left(P_{S D P}\right) \inf _{X \in \mathbb{S}_{+}^{n}}\left\{\langle C, X\rangle:\left\langle A_{i}, X\right\rangle=b_{i}, i=1, \ldots, m\right\}$,
Compare to standard linear program

$$
\inf _{x \in \mathbb{R}_{+}^{n}}\left\{\langle c, x\rangle_{\mathbb{R}^{n}}:\left\langle a_{i}, x\right\rangle_{\mathbb{R}^{n}}=b_{i}, i=1, \ldots, m\right\}
$$

Define dual problem of $\left(P_{S D P}\right)$ by

$$
\left(D_{S D P}\right) \sup _{q \in \mathbb{R}^{m}}\left\{b^{t} q: C-\sum_{i=1}^{m} q_{i} A_{i} \in \mathbb{S}_{+}^{n}\right\}
$$

