General duality – highlights 6

October 2010

Recall from Thm. 3.1(iii):

 $h \text{ continuous at } 0 \Rightarrow \partial h(0) \neq \emptyset \Rightarrow$

 \Rightarrow set of dual solutions $= -\partial h(0) \neq \emptyset$

Seek to relax such continuity for special perturbation functions h, namely *polyhedral* h.

Def. $S \subset \mathbb{R}^n$ is **polyhedral** if

$$S = \bigcap_{j=1}^{J} \{ x \in \mathbb{R} : y_j^t x \le \alpha_j \}$$

for some $\{y_1, \ldots, y_J\} \subset \mathbb{R}$ and $\{\alpha_1, \ldots, \alpha_J\} \subset \mathbb{R}$. This is *special* type of convex set.

Def. $f : \mathbb{R}^n \to [-\infty, +\infty]$ is **polyhedral** if epi $f \subset \mathbb{R}^n \times \mathbb{R}$ is polyhedral. This is *special* type of convex function.

Prop. 1.2. Let $f : \mathbb{R}^n \to (-\infty, +\infty], f \not\equiv +\infty$, be polyhedral. Then f is of the following form: there exist a polyhedral set $P \subset \mathbb{R}^n$ and affine functions $a_1, \ldots, a_N : \mathbb{R}^n \to \mathbb{R}$ such that

$$f(x) = \chi_P(x) + \max_{1 \le i \le N} a_i(x).$$

Moreover,

$$\partial f(x_0) \neq \emptyset$$
 for every $x_0 \in \text{dom } f$.

Obs: The latter does **not** require the usual condition

f continuous at $x_0 \Leftrightarrow x_0 \in \mathbf{int} \operatorname{dom} f$ (*)

Example. a. Recall: for n = 1 the convex non-polyhedral function

$$f(x) := \begin{cases} 1 - \sqrt{1 - x^2} & \text{if } |x| \le 1 \\ +\infty & \text{otherwise} \end{cases}$$

had $\partial f(1) = \emptyset$ "because" (*) is not valid for $x_0 = 1$. b. However, the polyhedral function

$$f(x) := \begin{cases} |x| & \text{if } |x| \le 1\\ +\infty & \text{otherwise} \end{cases}$$

has $\partial f(1) \neq \emptyset$, although (*) is not valid for $x_0 = 1$.

Fenchel's duality theorem can now be modified: if (P_F) is polyhedral, then the sufficient condition for strong stability becomes much weaker than before: Let A be $m \times n$ -matrix. Consider

$$(P_F) \quad \inf_{x \in \mathbb{R}^n} [f(x) + g(Ax)],$$

where $f : \mathbb{R}^n \to (-\infty, +\infty]$ and $g : \mathbb{R}^m \to (-\infty, +\infty]$ are **polyhedral** functions. Suppose $\inf(P_F) \in \mathbb{R}$.

Define associated *Fenchel dual problem*:

$$(D_F) \quad \sup_{q \in \mathbb{R}^m} [-f^*(A^t q) - g^*(-q)].$$

Fenchel's duality thm – polyhedral version (i) For all $x \in \mathbb{R}^n$ and $q \in \mathbb{R}^m$

$$-f^*(A^tq) - g^*(-q) \le f(x) + g(Ax).$$

(*ii*) If $0 \in int(\text{dom } g - A(\text{dom } f))$, then

 $\inf(P_F) = \max(D_F).$

Moreover, then $\bar{x} \in \mathbb{R}^n$ is optimal for (P_F) and $\bar{q} \in \mathbb{R}^k$ is optimal for (D_F) if and only if

$$A^t \bar{q} \in \partial f(\bar{x}) \text{ and } - \bar{q} \in \partial g(A\bar{x}).$$

Application: semidefinite programming duality \mathbb{S}^n : set of all symmetric $n \times n$ -matrices \mathbb{S}^n is Euclidean vector space with inner product

$$\langle X, Y \rangle := \operatorname{tr}(XY) = \sum_{i,j} X_{i,j} Y_{i,j}.$$

Two special convex cones in \mathbb{S}^n :

 \mathbb{S}^n_+ : set of all **positive semidefinite** matrices \mathbb{S}^n_{++} : set of all **positive definite** matrices Recall: $A \in \mathbb{S}^n_+ \Leftrightarrow \forall_x x^t A x \ge 0$ Recall: $A \in \mathbb{S}^n_{++} \Leftrightarrow \forall_{x \neq 0} x^t A x > 0$ Fact: \mathbb{S}^n_+ is closed and $\mathbb{S}^n_{++} = \operatorname{int} \mathbb{S}^n_+$. Let $A_i \in \mathbb{S}^n$ and $b_i \in \mathbb{R}$ for $i = 1, \ldots, m$.

The **primal semidefinite program** is

 $(P_{SDP}) \inf_{X \in \mathbb{S}^n_+} \{ \operatorname{tr}(CX) : \operatorname{tr}(A_i X) = b_i, i = 1, \dots, m \}.$

Can be written as

$$(P_{SDP}) \inf_{X \in \mathbb{S}^n_+} \{ \langle C, X \rangle : \langle A_i, X \rangle = b_i, i = 1, \dots, m \},\$$

Compare to standard linear program

 $\inf_{x \in \mathbb{R}^n_+} \{ \langle c, x \rangle_{\mathbb{R}^n} : \langle a_i, x \rangle_{\mathbb{R}^n} = b_i, \ i = 1, \ \dots, m \},\$

Define **dual problem** of (P_{SDP}) by

$$(D_{SDP}) \quad \sup_{q \in \mathbb{R}^m} \{ b^t q : C - \sum_{i=1}^m q_i A_i \in \mathbb{S}^n_+ \}.$$