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Description of zero-sum game.

Two players, I (”row player”) and II (”column player”).

Player I’s actions: numbered 1, . . . ,m.

Player II’s actions: numbered 1, . . . , n.

Payoff matrix: m× n-matrix P = (pij)i,j.

Interpretation: pij Euros is what I must pay to II if

I chooses action I and II chooses action j.

Def: A pure equilibrium pair is pair of actions
(̄i, j̄) such that

∀1≤i≤m pīj̄ ≤ pij̄ and ∀1≤j≤n pīj̄ ≥ pīj.

i.e., such that

max
j

pīj = pīj̄ = min
i

pij̄.

Obs: equilibrium discourages unilateral deviations.
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However, pure equilibrium rarely exists.

Remedy: ”gamble if you must” (von Neumann and
gamblers (± 1700))

Def: A mixed action for player I is a probability
vector from

SI := {x ∈ Rm
+ :

m∑
i=1

xi = 1}

and a mixed action for player II is a probability
vector from

SII := {u ∈ Rn
+ :

n∑
j=1

uj = 1}

Observation 1: degenerate mixed actions (= unit vec-
tors) give original actions.

Net result of choices x by I and u by II:

payoff outcome pij gets probability xi × uj.

Observation 2: presumes independence.

Hence expected payoff for player I is

E(x, u) :=

m∑
i=1

n∑
j=1

xiujpij = xtPu

and for player II it is −E(x, u).
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Def. A mixed equilibrium pair is pair (x̄, ū) in
SI × SII such that

∀x∈SI
E(x̄, ū) ≤ E(x, ū) and ∀u∈SII

E(x̄, ū) ≥ E(x̄, u),

so again unilateral deviations are disadvantageous.

Above inequalities can be rewritten as

∀x∈SI ,u∈SII
E(x̄, u) ≤ E(x̄, ū) ≤ E(x, ū)

and also as

max
u∈SII

x̄tPu = x̄tPū = min
x∈SI

xtPū.

Observe, similar to LP, that

max
u∈SII

x̄tPu = max
j

(P tx̄)j = max
j

x̄tP j,

where P j := j-th column of P .

Likewise
min
x∈SI

xtPū = min
i

(Pū)i.
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Define player I’s optimization problem as

(PI) inf
x∈SI

max
j

xtP j.

Minimizes I’s maximum expected amount to be paid.

Define player II’s optimization problem as

(PII) sup
u∈SII

min
i

(Pu)i.

Maximizes II’s minimum expected amount to be re-
ceived.

Obs: inf(PI) and sup(PII) are attained (Weierstrass).
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Trick: for every x ∈ SI

max
j

xtP j = inf{r ∈ R : r ≥ xtP j∀1≤j≤n}.

So can rewrite (PI) equivalently as convex program:

(P ) inf
x≥0,r∈R

{r : xtP j−r ≤ 0, j = 1, . . . , n, 1−
m∑

i=1

xi = 0}.

Observe: Slater’s CQ holds for (P ).

For Lagrangian dual define

θ(u, v) := inf
x≥0,r∈R

r+
∑

j

uj(x
tP j−r)+v(1−

∑
i

xi).

Then calculation gives

θ(u, v) =

{
v if

∑
j uj = 1 and v ≤ mini(Pu)i,

−∞ otherwise.

Lagrangian dual (D) of (P ) is

sup
u≥0,v

θ(u, v) = sup
u∈SI ,v≤mini(Pu)i

v = sup
u∈SI

min
i

(Pu)i,

so equivalent to player II’s problem (PII).

Conclusion: v̄ := min(PI) = max(PII)
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Consequences:
(i) a mixed equilibrium pair exists.

(ii) a pair (x̄, ū) ∈ SI × SII is mixed equilibrium
pair if and only if

x̄ optimal for (PI) and ū optimal for (PII)

(iii) (by CS): if (x̄, ū) is mixed equilibrium pair, then

∀i x̄i((Pū)i − v̄) = 0 (equalizing property for I),

i.e., x̄i > 0 ⇒ (Pū)i = v̄, and

∀j ūj((P
tx̄)j − v̄) = 0 (equalizing property for II),

i.e., ūj > 0 ⇒ (P tx̄)j = v̄.

Example. Let

P =

(
2 3 1 5
4 1 6 0

)
Observe (PI) can be reduced to interval optimization:

(I) inf
0≤x2≤1

max
1≤j≤4

[p1j(1− x2) + p2jx2],

which gives x̄2 = 2/5 and then x̄1 = 3/5.

Hence v̄ = inf(PI) = inf(I) = 3 follows.

Use contrapositive equalizing property for I:

x̄tP = (14/5, 11/5, 3, 3) ⇒ ū1 = ū2 = 0.
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Next, use equalizing property for II:
x̄1, x̄2 > 0 ⇒ (Pū)1 = (Pū)2 = v̄ = 3

Hence, ū3+5ū4 = 3 and 6ū3 = 3, so ū = (0, 0, 1/2, 1/2)t.
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