Applications of duality - highlights 8

November 2010

Description of zero-sum game.
Two players, I ("row player") and II ("column player").

Player I's actions: numbered $1, \ldots, m$.
Player II's actions: numbered $1, \ldots, n$.
Payoff matrix: $m \times n$-matrix $P=\left(p_{i j}\right)_{i, j}$.
Interpretation: $p_{i j}$ Euros is what I must pay to II if
I chooses action I and II chooses action j.
Def: A pure equilibrium pair is pair of actions (\bar{i}, \bar{j}) such that

$$
\forall_{1 \leq i \leq m} \quad p_{\bar{i} \bar{j}} \leq p_{i \bar{j}} \text { and } \forall_{1 \leq j \leq n} \quad p_{\bar{i} \bar{j}} \geq p_{\bar{i} j}
$$

i.e., such that

$$
\max _{j} p_{\bar{i} j}=p_{\bar{i} \bar{j}}=\min _{i} p_{i \bar{j}} .
$$

Obs: equilibrium discourages unilateral deviations.

However, pure equilibrium rarely exists.
Remedy: "gamble if you must" (von Neumann and gamblers (\pm 1700))

Def: A mixed action for player I is a probability vector from

$$
S_{I}:=\left\{x \in \mathbb{R}_{+}^{m}: \sum_{i=1}^{m} x_{i}=1\right\}
$$

and a mixed action for player II is a probability vector from

$$
S_{I I}:=\left\{u \in \mathbb{R}_{+}^{n}: \sum_{j=1}^{n} u_{j}=1\right\}
$$

Observation 1: degenerate mixed actions (= unit vectors) give original actions.

Net result of choices x by I and u by II:
payoff outcome $p_{i j}$ gets probability $x_{i} \times u_{j}$.
Observation 2: presumes independence.
Hence expected payoff for player I is

$$
E(x, u):=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} u_{j} p_{i j}=x^{t} P u
$$

and for player II it is $-E(x, u)$.

Def. A mixed equilibrium pair is pair (\bar{x}, \bar{u}) in $S_{I} \times S_{I I}$ such that
$\forall_{x \in S_{I}} E(\bar{x}, \bar{u}) \leq E(x, \bar{u})$ and $\forall_{u \in S_{I I}} E(\bar{x}, \bar{u}) \geq E(\bar{x}, u)$,
so again unilateral deviations are disadvantageous.
Above inequalities can be rewritten as

$$
\forall_{x \in S_{I}, u \in S_{I I}} E(\bar{x}, u) \leq E(\bar{x}, \bar{u}) \leq E(x, \bar{u})
$$

and also as

$$
\max _{u \in S_{I I}} \bar{x}^{t} P u=\bar{x}^{t} P \bar{u}=\min _{x \in S_{I}} x^{t} P \bar{u} .
$$

Observe, similar to LP, that

$$
\max _{u \in S_{I I}} \bar{x}^{t} P u=\max _{j}\left(P^{t} \bar{x}\right)_{j}=\max _{j} \bar{x}^{t} P^{j}
$$

where $P^{j}:=j$-th column of P.
Likewise

$$
\min _{x \in S_{I}} x^{t} P \bar{u}=\min _{i}(P \bar{u})_{i} .
$$

Define player I's optimization problem as

$$
\left(P_{I}\right) \inf _{x \in S_{I}} \max _{j} x^{t} P^{j}
$$

Minimizes I's maximum expected amount to be paid.

Define player II's optimization problem as

$$
\left(P_{I I}\right) \sup _{u \in S_{I I}} \min _{i}(P u)_{i} .
$$

Maximizes II's minimum expected amount to be received.

Obs: $\inf \left(P_{I}\right)$ and $\sup \left(P_{I I}\right)$ are attained (Weierstrass).

Trick: for every $x \in S_{I}$

$$
\max _{j} x^{t} P^{j}=\inf \left\{r \in \mathbb{R}: r \geq x^{t} P^{j} \forall_{1 \leq j \leq n}\right\}
$$

So can rewrite $\left(P_{I}\right)$ equivalently as convex program:
$(P) \inf _{x \geq 0, r \in \mathbb{R}}\left\{r: x^{t} P^{j}-r \leq 0, j=1, \ldots, n, 1-\sum_{i=1}^{m} x_{i}=0\right\}$.
Observe: Slater's CQ holds for (P).
For Lagrangian dual define
$\theta(u, v):=\inf _{x \geq 0, r \in \mathbb{R}} r+\sum_{j} u_{j}\left(x^{t} P^{j}-r\right)+v\left(1-\sum_{i} x_{i}\right)$.
Then calculation gives
$\theta(u, v)= \begin{cases}v & \text { if } \sum_{j} u_{j}=1 \text { and } v \leq \min _{i}(P u)_{i}, \\ -\infty & \text { otherwise. }\end{cases}$
Lagrangian dual (D) of (P) is

$$
\sup _{u \geq 0, v} \theta(u, v)=\sup _{u \in S_{I}, v \leq \min _{i}(P u)_{i}} v=\sup _{u \in S_{I}} \min _{i}(P u)_{i}
$$

so equivalent to player II's problem $\left(P_{I I}\right)$.
Conclusion: $\bar{v}:=\min \left(P_{I}\right)=\max \left(P_{I I}\right)$

Consequences:

(i) a mixed equilibrium pair exists.
(ii) a pair $(\bar{x}, \bar{u}) \in S_{I} \times S_{I I}$ is mixed equilibrium pair if and only if
\bar{x} optimal for $\left(P_{I}\right)$ and \bar{u} optimal for $\left(P_{I I}\right)$
(iii) (by CS): if (\bar{x}, \bar{u}) is mixed equilibrium pair, then
$\forall_{i} \bar{x}_{i}\left((P \bar{u})_{i}-\bar{v}\right)=0$ (equalizing property for I),
i.e., $\bar{x}_{i}>0 \Rightarrow(P \bar{u})_{i}=\bar{v}$, and
$\forall_{j} \bar{u}_{j}\left(\left(P^{t} \bar{x}\right)_{j}-\bar{v}\right)=0$ (equalizing property for II),
i.e., $\bar{u}_{j}>0 \Rightarrow\left(P^{t} \bar{x}\right)_{j}=\bar{v}$.

Example. Let

$$
P=\left(\begin{array}{llll}
2 & 3 & 1 & 5 \\
4 & 1 & 6 & 0
\end{array}\right)
$$

Observe $\left(P_{I}\right)$ can be reduced to interval optimization:

$$
\text { (I) } \inf _{0 \leq x_{2} \leq 1} \max _{1 \leq j \leq 4}\left[p_{1 j}\left(1-x_{2}\right)+p_{2 j} x_{2}\right] \text {, }
$$

which gives $\bar{x}_{2}=2 / 5$ and then $\bar{x}_{1}=3 / 5$.
Hence $\bar{v}=\inf \left(P_{I}\right)=\inf (\mathbb{I})=3$ follows.
Use contrapositive equalizing property for I:
$\bar{x}^{t} P=(14 / 5,11 / 5,3,3) \Rightarrow \bar{u}_{1}=\bar{u}_{2}=0$.

Next, use equalizing property for II:
$\bar{x}_{1}, \bar{x}_{2}>0 \Rightarrow(P \bar{u})_{1}=(P \bar{u})_{2}=\bar{v}=3$
Hence, $\bar{u}_{3}+5 \bar{u}_{4}=3$ and $6 \bar{u}_{3}=3$, so $\bar{u}=(0,0,1 / 2,1 / 2)^{t}$.

