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Remark: (a) Let xyp € S, with § C R" convex.
Then the subgradient Oxg(zg), used in the above
proof, coincides with the following convex cone (see

Appendix B.3):
Ng(zg) = {6 € R": &z —29) <0 Va2 € S}

Name: the normal cone to S at xp. Hence, one has
—& € Ng(xg) in Theorem 2.10.

(b) If xyp € int S, then Ng(zy) = {0}. So Theo-
rem 2.10 states 0 € 0f(z) if x € int S.

Remark: If in Theorem 2.10 f is additionally dif-
ferentiable, then Theorem 2.10 states:

r € S optimal for (P) & —V f(z) € Ng(z). (1)
Moreover, if & € int S, then it just says:

T € S optimal for (P) & Vf(z)=0.



Exercise: Given m points 1, ..., 2, in R", con-
sider

Use Theorem 2.10 to determine the optimal solu-
tion.

Exercise: Let S C R" be convex. If f : § —- R
is differentiable but perhaps non-convex, then = in

(1) continues to hold. Prove this. Show also that <
may then fail.



Directional derivatives and the DM-theorem

Definition 2.13: The directional derivative of a
convex function f : R" — (—o0,400] at the point
xo € domf in the direction d € R" is defined as
oo Jlxo+ Ad) — f(xo)
f (ZIZ(), d) = 1){?01 )\ .

Proposition 2.14: Let f : R” — (—o0, 4] be a
convex function and let xy be a point in dom f. Then
for every direction d € R" and every Ay, Ay € R such
that Ao > A1 > 0 we have
f(xo+ Ad) — f(xo) < f(xo+ Aad) — f(z0)
A1 N A2

Consequence:
) . o+ Ad) — flx
f (ZU(), d> _ 1nf>\>0f< 0 )\) f( 0).

Hence f'(xg, d) well-defined (in [—o0, +00])!

Example (continues Exercise 2.1c) Let f :
R"™ — R be given by f(z) =1 —+v1—2?if z €
|—1,+1] and by f(z) =40 ifxz < —1orz > 1.
Then for d = 3
3f/($()> if ‘iU()‘ <1
f(20:3) = ¢ +00 if 2o =1 (by f = +o0 on (1, 00))
—00 if zg = —1 (by a "real” limit)
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Theorem 2.15: Let f : R" — (—o00,+00| be a
convex function and let xy be a point in int dom f.
Then

f(zg;d) = sup £d for every d € R™.
£€af(xo)

Proof on p. 11 uses Appendix B, but independent
proof also possible.

Theorem 2.17 (Dubovitskii-Milyutin) Let
fi,-  fm : R" — (—o00, +00] be convex functions
and let xg be a point in N ,int dom f;. Let f :
R" — (—o00, +00] be given by

f(z) = max fi(x)

1<i<m
and let I(x() be the (nonempty) set ofall¢ € {1,---,m}
for which fi(xg) = f(xg). Then

Of (w0) = co Uicr(zy) Ofi(w0).

Proof of D-M theorem: Write I = I(xg). If & €
Ofi(xg), ¢ € I, then

V. f(x) > fi(z) > fizo) + &' (x — xp)
with fi(zo) = f(xg) by ¢ € I. So & € 0f(xy). By
convexity of df(xy) this gives

K :=co Ujer 6’fz(x0) C (9f<33'0>
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Next, weprove { € K = & & Of(x). By Lemma 2.16
and Exercise 2.18 K is compact, hence closed. By
separation Thm. A.2:

Jiern aeré'd > a > max sup £'d= maxf (x0;d)
1€l ¢red f(wy) <

(= holds by Thm. 2.15). Now

oL fi(zo + Ad) — fi(xo)
Plasd) =™

So f'(xg; d) equals
. filzo + Ad) — fi(wo)
T ) = nigge i )

Conclusion: &'d > f'(xg;d). Hence & & Of(xy).
QED

Example: Let m =2, n =1, fi(x) =z, fo(x) =
—x and g = 0. Then f(z) = |z|, [(0) ={1,2} and
the D-M theorem says:

Of (xg) = co ({1} U{~1}) = [=1, 1],

known already by different reasoning.




