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FATOU'S LEMMA FOR MULTIFUNCTIONS WITH 
UNBOUNDED VALUES 

ERIK J. BALDER AND CHRISTIAN HESS 

For multifunctions having unbounded sets as values we give Fatou-type inclusions for the 
Kuratowski limes superior, in finite as well as infinite dimensions. These are derived from 
similar, known Fatou-type inequalities for single-valued multifunctions (i.e., ordinary func- 
tions), that is, from Balder's unifying Fatou lemma in case the image set is finite-dimensional, 
and from an update of related results by Balder in the infinite dimensional case. For this 
extension from the single-valued to the multivalued situation a lemma due to Hess, used to 

prove earlier Fatou-type inclusions, is of critical importance, Also, an asymptotic correction 
term, introduced here, plays an important role. The two main results thus obtained subsume 
and extend an entire class of comparable Fatou lemmas. 

1. Introduction. Fatou's lemma in several dimensions, formulated for ordinary 
functions (i.e., single-valued multifunctions) is known to be of some use in the theory 
of competitive equilibria (Hildenbrand 1974) and in proving existence results for 
variational problems in economics and optimal control theory (Balder 1984 a, c). The 
first such lemmas were given by Aumann (1965) and Schmeidler (1970), and the result 
was successively extended by Hildenbrand-Mertens (1971), Cesari-Suryanarayana 
(1978), and Artstein (1979) in different directions. All these results were unified by 
Balder (1984a), who based his proof on the tightness approach for Young measures. 
A formulation in terms of polar cones was given later in Olech (1987) and Balder 
(1991) (see also Balder 1988); it has also been adopted here (cf. Page 1991 for a 
recent development in another direction). Infinite-dimensional results of a simpler, 
approximate nature were obtained by Khan-Majumdar (1984), Yannelis (1988, 1991), 
Balder (1988), and Castaing (1987). 

Fatou-type results for multifunctions were motivated by developments in mathe-- 
matical economics. At first, results of this kind were derived very directly from the 
single-valued Fatou lemmas mentioned above (Aumann 1965, Schmeidler 1970, 
Hildenbrand 1974, Yannelis 1988). Later, also a different approach, based on the use 
of support functions, was pursued in infinite dimensions by Pucci-Vitillaro (1984), 
Hiai (1985), (Aumann, 1965, Schmeidler 1970, Hildenbrand 1974, Yannelis 1988) and 
Hess (1986, 1991); this approach leans heavily on the approximate nature of Fatou-type 
results in infinite dimensions, and would therefore seem to be hardly of any use in 
finite dimensions, i.e., in the most challenging case. The results in Pucci and Vitillaro 
(1984, Theorem 3.5) and Hiai (1985, Theorem 2.8(2)), concern multifunctions with 
bounded values. In Hess (1991, Theorem 4.3) (see also Hess (1986, Theorem 3.14) 
Hess gave the first Fatou-type result for multifunctions with unbounded values. Such 
an extension of the scope of Fatou-type lemmas is highly desirable, since it applies to 
epigraphic multifunctions, canonically associated to normal integrands. The proof of 
Hess consists of an adaptation of Hiai's proof by means of a truncation argument. 
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In this paper we confirm the soundness of the more traditional approach to Fatou 
lemmas for multifunctions, by showing that single-valued results can be used in very 
general multivalued situations, both in finite and infinite dimensions. The introduc- 
tion of an asymptotic correction term in the critical inclusion affords formulations of 
a great precision. Our main Fatou lemma in finite dimensions, Theorem 3.2, is 
entirely new. Also, Theorem 3.3, our main approximate Fatou lemma in infinite 
dimensions, substantially generalizes the results of Hiai (1985), Hess (1991) and 
several others. Moreover the precision of Theorem 3.2 is so great that the unifying 
Fatou lemma of Balder (1984a), upon which the proof in the finite-dimensional case 
rests, also follows again as a specialization to single-valued multifunctions (Corollary 
4.3). In infinite dimensions the same holds true for the single-valued Fatou lemmas in 
Balder (1988, Theorems 2.1, 2.4), which are subsumed and sharpened in Corollary 
4.4. An auxiliary result from convex analysis, due to Hess (1991, Lemma 4.1), plays an 
important role in deriving the multivalued Fatou lemmas from the single-valued ones, 
in both finite and infinite dimensions. 

2. Preliminaries. Let (X, 1' l) be a separable Banach space (in the finite- 
dimensional case we simply set X =' Rd, and take for 1. II the Euclidean norm). As 
usual, the radius of a bounded set A (its maximum distance to the origin) is denoted 
by IIAl := supx Allxll. The dual of X will be denoted by X*; the dual norm on X" 
is denoted by 11 I* and the corresponding closed unit ball of X* by B*. Topological 
notions on X will be referred to by the symbol s or w, according to whether we 
consider them for the strong (i.e., norm-) topology, or the weak topology (i.e., 
r(X, X*)). Of course, in the finite-dimensional situation these topologies coincide 
with the usual Euclidean topology. Moreover, it is standard to indicate sequential 
versions of notions for the w-topology by adding 'seq' to the notation. For instance, 
s-cl A commonly indicates the norm-closure of a set A, and w-seq-cl A the weak 
sequential closure of A. A subset A of X is said to be locally w-compact if every 
point of A has an open neighborhood which is relatively w-compact. Also A is said 
to be w-ball compact if it has a w-compact intersection with every closed ball. 

For any sequence (Ak) of subsets of X' the sequential Kuratowski w-limes superior 
w-seq-Lsk Ak is defined as the set (possibly empty) of all x E X for which there exists 
a subsequence (Akj) of (Ak) such that x = w-limj Xk; for certain Xk E Ak. In case 
the Ak happen to be singletons (ak), we write w-seq-Lskak instead of the more 
formal expression w-seq-Lsk{ak}. We shall also encounter the nonsequential Kura- 
towski limes superior w-LskAk of (Ak), which is defined as the intersection of all 
closures w-cl UAk: k > p}, p E N. Of course, the inclusion 

w-seq-LskAk c w-LskAk 

holds always. Clearly, when the topology on X is metrizable (as in the finite-dimen- 
sional situation) it becomes an identity, but below we shall give a more interesting 
situation where the identity is also valid. 

Convex analysis, and especially asymptotic cones, will play a role in this paper; 
everything needed in this respect can be found in Castaing and Valadier (1977, I). We 
summarize some key notions and their notation: For any nonempty subset A of X 
the support function of A is the functional x* - s(x* A) from X* into (-0o, +oo], 
with 

s(x*IA) := sup x, x*). 
xeA 

IBy such notation the domain of the index k is tacitly understood to be the set N of natural numbers. 
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Recall that the effective domain dom s( IA) of this support function is the convex 
cone of all x* e X* for which s(x* IA) < + o. The polar cone of a cone C c X* is 
defined as the set of all x E X such that (x, x*) < 0 for all x* E C; this polar cone 
is denoted by C*. The asymptotic cone As A of an arbitrary set A c X is defined as 
the polar cone of dom s(A A); thus, by definition, it coincides with As(cl co A), the 
asymptotic cone of the closed convex hull of A. When A is closed and convex, the 
asymptotic cone As A can be characterized as the largest cone D in X for which 
x + D cA for every x E A. 

Further, we follow Hess (1990) in introducing the following notation. By S we 
denote the collection of all w-closed and w-ball-compact subsets of X. Note already 
that when X is finite-dimensional (or even reflexive), S consists precisely of all 
w-closed subsets of X. Also, by z we denote the collection of all sets whose closed 
convex hull is locally w-compact and does not contain any line. As observed in Hess 
(1990), any w-closed set in must belong to S. Note also that when X is 
finite-dimensional, any closed set is automatically locally compact; hence, in that case 
f consists of all sets whose closed convex hull does not contain any lines. As 

promised above, we can now state an interesting situation where the identity 

w-seq-Lsk A = w-LskAk 

is valid: it occurs when there exists a set C E J such that U kAk c C. This follows 
by a simple application of Hess (1990, Proposition 3.7). 

Let ((, -, /,) be a finite measure space. Recall that such as measure space can 
always be decomposed into a purely atomic part flpa and a nonatomic part fna 
(Hildenbrand 1974). Recall also that the outer integral over fQ of a nonmeasurable, 
extended real-valued function q: f -> [- 0o, + c] is defined by 

dIndJ =inf{f( d b ( ,4) > i a.e.}. 

See Balder (1984b), for instance. The set of all Bochner-integrable X-valued func- 
tions on (Q, -, ,u) is denoted by ,x. By separability of X,we have f E fx if and 
only if f: n -> X is measurable, with respect to 9 and (X), and fllf I dL < +oo.3 
Recall that a sequence (k)k in R' is uniformly integrable if 

lim sup f l ik idlu = 0. 
a-- o k {,kl>/a} 

In this paper a sequence (fk)k of (possibly nonmeasurable) functions qk: f -> R is 
said to be uniformly integrably bounded if there exists a uniformly integrable sequence 
(>k)k such that 1k(w)l < <k(o) a.e. for all k. For any multifunction G: Q1 -- 2X the 
(possibly empty) set f of all integrable selectors of G is defined by 

G u- lx E X (Ct) E G( c,))a.e.}. 

Also, the integral of G is defined by 

f Gdw = d ( ud,uL:u e _1; 

2The infimum over the empty set is +oo by definition. 
3We consider the prequotient setting; of course, all results can easily be restated for the quotient setup. 
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this definition makes sense for an arbitrary multifunction G, for we allow 
Gl-whence fJG dp itself- to be empty. 

3. Main results. As in the previous section, let X be a separable Banach space 
and (f, Y-, ,) a finite measure space. Let (Fk) be a given sequence of multifunctions 
from f into 2x. Observe that no measurability whatsoever is required for these 
multifunctions. We suppose the following basic hypotheses (Ho)-(H6) to hold: there 
exist a sequence (Gk) of multifunctions from fl into 2X, a sequence (rk) in R, and 
a subset L of X such that 

(Ho) Fk(c) c Gk(W) + rk(w)L a.e. for all k, 
(H1) Gk(w) is w-compact a.e. for all k, 
(H2) sUPk JfQ\Gk(W)\[x(dO) < +CO, 
(H3) (rk)k is uniformly integrable, 
(H4) L belongs to i. 
Moreover, we suppose that there exists a multifunction R from f into 2x such 

that the following hypothesis hold: 
(Hs) U kFk() c R() a.e. 
(H6) R(w) belongs to S a.e. 
REMARK 3.1. Hypotheses (H5)-(H6) hold automatically when the Banach space 

X is reflexive (this includes the finite-dimensional case), for then X e X, as we 
noticed earlier. Another obvious case when (H5)-(H6) hold, is when U kFk(c) is a 
relatively w-compact set for a.e. w in fl. 

We are now ready to state our principal results. Let C be the convex cone 
consisting of all x* E X* for which 

(max[O, s(-x*Gk( .))] )k is uniformly integrably bounded 

(see the previous section for the definition involved and note how this sidesteps the 
measurability issue for the multifunctions Gk). In finite dimensions our main result is 
the following Fatou-like lemma: 

THEOREM 3.2 (FINITE DIMENSIONS). Suppose that X is finite-dimensional. Under the 
hypotheses (Ho)-(H4) 

LsJ Fk dL c fFd, + As(L - C*), 

where F: fl -> 2x is defined by 

F(w) := LskFk(o). 

It is well-known that Fatou-type lemmas do not extend directly to infinite dimen- 
sions, because of the breakdown of Lyapunov's theorem (Rustichini 1989). In this 
situation much simpler, approximate versions form the natural counterparts of the 
results obtained in finite dimensions (see Rustichini and Yannelis 1991, Main Theo- 
rem, for a different way to resolve the problem). These are obtained by taking the 
closure on the right-hand side of the inclusion statement. Even more precision is 
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achieved by us here by omitting the usual closure on the left-hand side (see Remark 
3.5), and by splitting the measure space into its purely atomic and nonatomic parts: 

THEOREM 3.3 (INFINITE DIMENSIONS). Under the hypotheses (Ho)-(H6), 

w-seq-Lsk Fk dl c f Fdl+ + s-cl Fd,i + As(L - C*), 
Qn S1pa na 

where the nonsequential limes superior multifunction F: fl - 2x is defined by 

F(o) := w-LskFk(). 

REMARK 3.4. If (H6) in Theorem 3.3 is strengthened into 
(H6) R(o) is w-closed and belongs to Y a.e. 

(recall that any w-closed set in Y belongs to S), then F in Theorem 3.3 can be 
replaced by the sequential limes superior multifunction Fseq, given by 

Fseq( ) = w-seq-LskFk (), 

as a consequence of the identity F(o) = Fseq(t), then valid a.e. (see ?2). 
REMARK 3.5. Note that always 

w-seq-Ls f Fk di = w-seq-Lsks-cl Fk di, 

because s-closures and sequential s-closures coincide. 
It is instructive to consider the example given by Hess (1991, Remark 4.4) because 

it illustrates the need for what we shall call the asymptotic correction term As 
(L - C*) in the right-hand side of the critical inclusion. 

EXAMPLE 3.6. Let (fl, , ,i) be the Lebesgue unit interval, X = R, L = R+, and 

Fk( 
L ifo [0, l/k], 

Fk(w) = ({O} if E c(1/k,1] 

Of course, for the pointwise Kuratowski limes superior this gives F(w) - {0}. On the 
other hand, JfFk d,t = L for all k. Therefore, L = LskfrFk dF t ? fJFFddL = {0). 
Nevertheless, Gk -{0} gives C = X* = R and C* = {0}. Therefore, adding the 
asymptotic correction term makes the critical inclusion into L c {0} + As(L - {0}) = 
L, which is in agreement with Theorem 3.2. 

The following counterexample shows that our hypothesis (H4) for the closed 
convex hull of L not to have any lines, is vital for our results to be valid. 

EXAMPLE 3.7. Let (fI, S, AL) be the Lebesgue unit interval, X = L = R, and 

f{k) if w E [0, 1/2], 
Fk(w) {-k} if o c(1/2, 1] 

Then fHFk d,L = {0} for all k, so LskflFk ddL = {0}. On the other hand, it is evident 
that F, the pointwise Kuratowski limes superior, is empty-valued on ft. So ftFdiu is 
empty, as is the entire right-hand side of the critical inclusion by implication. Apart 
from (H4), the other hypotheses hold obviously (take Gk {0}, rk 1). 
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4. Consequences of the main results. In this section we shall derive some 
well-known Fatou-type lemmas from Theorems 3.2-3.3. Basically, these follow by 
introducing additional conditions, which affect the asymptotic correction term of the 
critical inclusion statement. 

REMARK 4.1. If in Theorems 3.2-3.3, -C* c As L, then obviously As(L - C*) 
= As L. This applies in particular when we follow Hiai (1985), Hess (1991) in 
supposing that 

(11Gk( ) II)k is uniformly integrably bounded,4 

for then C = X*, so C* = {0}. 
REMARK 4.2. In Theorems 3.2-3.3, L c -C*, then clearly As(L - C*) = -C*. 

This applies in particular if we suppose (as in Hiai 1985), 

Fk has w-compact values for all k, 

for then one can choose Gk := Fk, L := {0}; this time C can be equivalently expressed 
as the cone of all x* E X* such that 

(max[0, s( -x*lFk( ))] ) is uniformly integrably bounded. 

As a particular instance of this, consider the case when the Fk's are single-valued: 

Fk(co) is a singleton {fk(()} for all w and k; 

here (fk)k is a sequence of functions in x.5 In this single-valued case the cone C 
consists of all x* E X* such that 

(max[0, - < f( ), x* > ])k is uniformly integrable. 

Remarks 3.1, 4.1 apply to the Fatou-type results of Hiai (1985) and Hess (1991) 
(the first part of Remark 4.2 applies to the result of Hiai as well). The result of Hiai 
in infinite dimensions (Hiai 1985, Theorem 2.8(2)) follows by either of the two 
remarks above, by noting that he has As(L - C*) = {0}. Hence his critical inclusion 
becomes 

w-seq-Ls k -clf Fk d, c s-cl F d,i 

using Remark 3.5. The result of Hess (1991, Theorem 4.3) is also stated only in 
approximate, infinite-dimensional form; it follows directly from combining Remarks 
3.5, 4.1 and the following additional condition (Hess, 1991, Condition (c2'), p. 640): 

As L c s-clfcl co Fdp. 

This gives his result 

w-seq-Lsks-cl fFk di c s-clf cl co Fdpj, 
J^ n 

4This concept was defined in ?2. 
SOf course, in this case, fJSFk d., is only nonempty if iffk E x. 
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but it is quite evident that also our inclusions used along the way to this specialization 
have greater precision. Note also that both Hiai (1985) and Hess (1991) consider only 
measurable multifunctions, whereas we allow arbitrary ones (with measurable selec- 

tors, to be sure). Further, Hiai supposes fJFdAL to be nonempty; this condition is 
shown to be redundant in our results (which imply simply that s-clfnFdgt-i.e., the 

right-hand side of Hiai's critical inclusion above-is nonempty whenever the left-hand 
side is so). A similar comment applies to the result by Hess (1991); we elaborate a 
little on this, because the statement of nonemptiness of f Fd,l forms an integral part 
of Hess 1991, Theorem 4.3(i)). In Hess (1991) the sequence (dist(Fk( ),0))k is 
supposed to be uniformly integrable (Hess 1991, Condition (L1)): together with the 

measurability of the Fk's, as supposed in Hess (1991), this implies in particular that 

w-seq-Lsk fFk is nonempty. We observe that uniform boundedness of the integrals 
in (fI dist(Fk( ), 0) dL)k would already be enough for such nonemptiness; see Theo- 
rem 5.5, 5.7 in Hess (1990). Hence, under the additional conditions of Hess (1991), 
Remark 4.1 also ensures (independently) the nonemptiness of fIFdt. 

In Pucci and Vitillaro (1984, Theorem 3.5) the authors state a Fatou-type result for 
w-compact-valued multifunctions where the "dominating" multifunction R of 
(H5)-(H6) has w-compact values. This result follows directly from our Theorem 3.3, 
using Remarks 3.1, 4.2. Notice that their notion of limes superior is rather less 
general than ours (by Remark (2) in Pucci and Vitillaro 1984, p. 89 their limes 
superior of a sequence of subsets is equal to the closed convex hull of our sequential 
w-limes superior). Likewise, by the same remarks, the Fatou lemma of Yannelis 
(1988, 1991) for multifunctions, subject to the same kind of domination, follows 
directly from Theorem 3.3. 

Amrani's Fatou lemma for Pettis integrals of multifunctions (Amrani 1991, Theo- 
rem 3.2) is not directly comparable to our results, because it contains additional 
features to ensure Pettis integrability. Another Fatou-type lemma which does not 
relate directly to the results presented here, is the one by Castaing-Clauzure ((1991, 
Theorem 4.2). However, a substantial generalization of their result can be obtained 
by observing (Balder and Hess) that Balder (1989b, Theorem 2.2) continues to hold 
when its multifunction g takes values in S. The validity of this improvement is 
immediately evident from the proof of Balder (1989b, Theorem 2.2) (it suffices to 
repeat the inf-compactness argument given in the proof of Corollary 5.3 below). Inter 
alia, it thus follows that in (Castaing, and Clauzure (1991, Theorem 4.2) condition (i) 
and the Radon-Nikodym property for X can be completely omitted. 

Remark 4.2 applies in particular when the multifunctions (Fk) are single-valued. In 
finite dimensions Theorem 3.2 thus extends the unifying Fatou lemma of Balder 
(1984a, b, 1991). By implication, this is also true for the Fatou lemmas which the 
unifying lemma subsumes: i.e., those of Artstein (1979), Cesari-Suryanarayana (1978), 
Hildenbrand-Mertens (1971) and Schmeidler (1970). Since Balder's result not only 
follows from Theorem 3.2, but will also be used in its proof, we shall state it in full, 
giving an independent reference: 

COROLLARY 4.3 (BALDER 1994, PROPOSITION 3.7). Suppose that X is finite-dimen- 
sional. Suppose that (fk)k is a sequence in /x1 such that 

sup fIfk(fo)) )l(dw() < +oo. 
k Q 

Then 

Lsjkffk d tc i Fo d/i -Co LS k k 
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where Fo(o) = Lskfk(o), and where Co is the cone of all x* E X* for which 

(max[O, - (x*, fk >)k is uniformly integrable. 

The result also follows immediately from the proof of the main result in Balder 
(1984a). The following result not only follows from Theorem 3.3 (again by Remark 
4.2), but will also be used to prove it. An independent proof will be furnished in the 
next section. 

COROLLARY 4.4. Suppose that (fk)k is a sequence in x1 such that 

sup fIIfk((o)\l (d() < +oo, 
k 

with 

fk(o) E R(w) a.e. for allk, 

where R is a multifunction from fl into X having values in S. Then 

w-seq-Ls fdk d,uc f F( dlt + s-clf Fo dl - C, 
X g pa ria 

where FO,(o) := w-Lskfk(w), and where Co is the cone of all x* E X* for which 

(max[O, - (x*, fk)k is uniformly integrable. 

REMARK 4.5. In Corollary 4.4, if the sets R(o) are not only w-closed but belong 
to Y a.e., then the multifunction Fo appearing in Corollary 4.4 has a measurable 
modification. This follows by Hess (1990, Theorem 4.4), because then 

w-Lskfk(w) = w-seq-LSkfk(o)a.e. 

by what we observed before. 
Because of Remarks 3.1 and 4.2, Corollary 4.4 generalizes the two single-valued 

Fatou-type in Theorems 2.1 and 2.4 of Balder (1988). Consequently, the single-valued 
Fatou-type lemma of Khan-Majumdar (1984, Theorem 2) follows as well (their result 
has (fk)k even taking values in a single w-compact subset of X). In contrast to 
Corollary 4.3, for which we cited two references independent of this paper, Corollary 
4.4 is new, since it is somewhat sharper than Balder (1988, Theorems 2.1, 2.4), which 
both follow from it. For this reason a proof of Corollary 4.4-of course independent of 
Theorems 3.2, 3.3-is provided at the end of the paper. 

5. Proofs of the main results. In this section we shall first prove Theorem 3.2 
from Corollary 4.3 and Theorem 3.3 from Corollary 4.4. Next to some convex analysis, 
recalled already in ?2, we shall need the following lemma from Hess (1991). 

LEMMA 5.1 (HESS 1991, LEMMAS 2.1, 4.1). Let L belong to Y. Then dom 
s( IL) = dom s( cl co L) has a nonempty interior for the Mackey topology, and for 
any x4 in this interior there exists a constant y, only depending upon L, such that for 
every w-compact convex K c X, every r > 0 and every point x E K + rL, 

IIxII < IIKII + y[s(x\IK) + r - (x, x>]. 
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PROOF. By Castaing and Valadier (1977, 1.15) the interior of dom s('lL) is 
nonempty. By the same result and by the given w-compactness and convexity of K, 
for any x* in this interior. 

W .= {x K + rL:(x, -4) < 8) 

is a w-compact subset of X for any /8 E R. Moreover, W, is also nonempty, if we 
choose 3 > -s(xIK + rL). As in Castaing and Valadier (1977, 1.24), one obtains 
that for every x* E X*, 

(XI) infs(x*W) = inf [s(x + AxIK + rL) + A3]. 

In particular, this implies s(x*lW3) s(x* + x lK + rL) + /8 for all x* E X*, so 
obviously 

s(x*lW ) < s(x*lK) + s(x IK) + rs(x* + x L) + . 

By the choice of x*, the function s(f + x IL) = s(- + cl co L) is Mackey-continuous 
at the origin; hence it is also continuous for the dual norm topology. So there exists 
a > 0 such that s(x* x lL) < 1 for all x* E aB*. Of course, we also have 
s(x*IK) < allKlI for all x* E aB*. Hence, it follows that 

allW,Ill sup s(x*IJWp) < aIllKI + s(x41K) + r + J3; 
x*c aB* 

observe that the way a was defined involved only the set L. For any x E K + rL we 
must have (x, -x4) < 8 for some 8 E R large enough. Then x e W., and the 
inequality just reached gives the desired inequality in the statement of the lemma, 
with y := 1/a. u 

PROOF OF THEOREM 3.2. Let a be an arbitrary element of Lsk fi Fk d,f. Then 
there exist a subsequence of (Fk) (for convenience we take the entire sequence, which 
can-at least notationally-always be achieved by renumbering), and corresponding 
integrable selectors fk EE , such that a = limk fufk d,u. Hence, a E Lskflfk dLt. 
Also, by (Ho)-(H1), Lemma 5.1 gives the existence of x4 E X* and a constant y 
such that for all k, 

IIfk(to)11 < (1)IGk + yy) + [rk(io) - (fk(w), x)] a.e. 

This implies that supk fIllfkll d, < +C0, by (H2)-(H3) and the convergence 
Jf(fk, x )d,r -> (a, x >. Thus, the one condition of Corollary 4.3 holds, and we 
obtain 

a EfF0od -C 

where Fo0() := Lskfk(o), and where Co is the cone of all x* E X* for which 

(max[O, - <fk( e), x* > )k is uniformly integrable. 

Clearly, a.e., Fo(w) c F(w) := LskFk(w). Therefore, the proof is finished by proving 
the inclusion - C c As(L - C*). Using the definition of asymptotic cone, it is easy 
to see that the set on the right (which coincides by definition with As [cl(L - C*)]) is 
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the polar of the cone dom s('lL)n - C. For arbitrary x* E dom s(-\L)n - C it 
follows elementarily that 

(fk(w), -x*) > -max[O, s(x*lGk(w))] - rk(W)s(x*IL) a.e. for all k. 

Here the right-hand side is uniformly integrably bounded, by the definition of C and 
(H3). So x* belongs to - C0. Taking polars gives the desired inclusion [ 

PROOF OF THEOREM 3.3. This proof proceeds along exactly the same lines, this 
time by an application of Corollary 4.4, explaining the appearance of the s-closure 
term on the right of the critical inclusion. c 

We finish with a proof of Corollary 4.4. As was mentioned before, this essentially 
comes about by strengthening and combining the proofs of Theorems 2.1, 2.4 in 
Balder (1988). In a variation on the traditional themes of Young measure theory, we 
shall rely on results of Prohorov-Komlos-type, which were established in Balder 
(1990) ?5) and (1991) as particular cases of a general approach involving Koml6s' 
theorem (see also (Balder (1989b) for different applications). An analogous, more 
conventional Prohorov-type result at the same level of generality was given in Balder 
1989a). Let Wx denote the set of all Young measures (alias transition probabilities) 
from (fl, -) into (X, X(X)) (note that the Borel o-algebras of (X, w) and (X, s) 
coincide). Also, let => stand for classical weak (alias narrow) convergence in the set 
of all probability measures on (X, W(X)) Dellacherie and Meyer 1978), and let 
supp v stand for the support of a probability measure v on (X, W(X)). 

THEOREM 5.2 (PROHOROV-KOML6S THEOREM (BALDER 1991, A.5, A.7)). Suppose 
that (8l) is a sequence in $x such that there exists a function h: fl x X -> [0, + co] with 
the following two properties: 

h(o, ) is inf-compact on (X,w) for a.e. o, 

sup, f fh(w, x)8l(w)(dx) I(dw) =o < -+-o. 

Then there exist a subsequence (5m) of (86) and a Young measure 8. in 3x such that 
for every sub-subsequence (6mj), 

n 

E 8i(w) . 8j (Y () asn -> oo 
j=1 

for a.e. wo. Moreover, 

8, (o)(w-Ls, supp 81(w)) = 1 a.e. 

and 

f f h(w,x)s8(w)(dx) p((do) < o. 

More generally, in Balder (1990, ?5) and (1991) the role of (X, w) is played by a 
completely regular Suslin space.6 

6Actually, a regular Suslin space is automatically completely regular; we are indebted to Professor E. 
Lanery (CEREMADE) for this observation. 
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Observe that any ordinary (S-, (X))-measurable function f: f -> X has a natu- 
ral counterpart in /x, namely the Young measure obtained by setting 

ef((o) := Dirac measure at f(w). 

The Young measure Ef is also called the relaxation off. 

COROLLARY 5.3. Suppose that (fl) is a sequence in 4x1 such that 

a := sup f llfi(w) l1 (dto) < +oo, 

with 

fi()c) E R(w) a.e. for all l, 

where R is a multifunction from fl into X having values in M. Then there exist a 
subsequence (fm) of (fi) and a transition probability 8, from (fl, y-) into (X, ,(X)) 
such that for every sub-subsequence (fm.), 

1 n 
E L e(mw)() (w) as n -> oo 

j=l 

for a.e. w. Moreover, 

,(o)(w-Lslfl(t)) = 1 a.e. 

and 

f fIlX,(8*() (dx) d(dw) < r. 

PROOF. The result will be derived directly from applying Theorem 5.2 to the 
sequence (ef). Define h: Q x X -> [0, + oo] as follows: 

h(o, x) = (lxll 
if x E 

r(t), 
+ oc otherwise. 

Then for any to E f and /3 E R+ the set 

{x E X:h(w, x) < 3} = {x E R(w): Ilxll < i} 

is w-compact, precisely by ball-compactness of R(w). Also, by 

fh(w, x)ef,()(dx) 
= h(w, f()) = l|f/(w)ll a.e. 

we see that the conditions of Theorem 5.2 are met. This gives immediately the result 
(note that supp Eff(0) = {fi(o)}). O 

PROOF OF COROLLARY 4.4. Let a E w-seq-LSkf/fk ddL be arbitrary. Without loss 
of generality we may assume that a = w-limk fnfk dlt. Without loss of generality, 
flpa may be supposed to be the countable union of disjoint atoms Ai. On each such 
atom Ai the fk's are all a.e. constant (say fk ck i) and Lt(Ai)llk,ill < 
supk fnllfkll duL. Since there exists a null set N such that fk(Go) = ck,i E R(o) for all 
wo in the set Ai \ N (which cannot be empty), it follows from the w-ball-compactness 
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property of the sets R(w) that (ck i)k contains a convergent subsequence for each i 
(observe that by the Eberlein-Smulian theorem w-compact sets are also sequentially 
w-compact, and vice versa). By an obvious diagonal extraction argument, this gives 
the existence of a subsequence (fl) of (fk) such that f, (w) : liml f(wo) exists a.e. on 
dPa. This gives 

w-Lsfl(w) = { f,(w)} a.e. in lPa. 

Let (f,o) and b, be as in Corollary 5.3. By what we know about the support of 8,, it 
follows that 

6,(w) = f (o) a.e. in fPa. 

Also, by the inequality involving r in Corollary 5.3 and by well-known properties of 
Bochner integration, the two integrals 

b =f f*dAi, c:= n fx8s*() (dx) /i(do) J pa fna X 

are well defined. Define gx,(o, x) = (x, -x*), x* e X. For every x* E Co the 
conditions of the Fatou-type Lemma A.7 in Balder (1991) are met. This gives that for 
every x* E Cg, 

f f g,*(o, x), (w) (dx) i.(dw) < liminf flg(,,fm(w))) (dw), _ X m 

i.e., (b + c, -x*>) < (a, -x*). Hence a - b - c belongs to C* the negative polar 
of C0. The definition of b shows immediately that b belongs to fn,aFo dA. Finally, 
the support property of * in Corollary 5.3 gives 

fxx8(w) (dx) e clcoF0(w) a.e. in fna, 

by a well-known property of barycenters. In view of the definition of c, it now remains 
to prove 

f clco Fo d cs-cl Fo dl . 
na na 

But this inclusion holds by results from Hess (1990) and Hiai (1985): by Fatou's 
lemma the function w -> liminfk I1fk(o)ll is integrable. Hence, by the fact that R 
takes its values in S, it follows from Theorem 5.5 of Hess (1990) that ~) is 
nonempty. So the inclusion follows from Hiai, and Umegaki (1977, Theorem 1.5 and 
the proof of Theorem 4.2). o 
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