Homework for WISB372/ECRMMAT, week 41

Exercise 1 On 12-10 Exercise 3.3 (pp. 143-144) of Bertsekas was started up. Complete it.

Exercise 2 Find the candidate-optimal solutions for the following minimum-time problem: minimize T over all control functions u such that $u(t) \in U:=[-1,1]$, $y(0)=0, \dot{y}(0)=1$ and $y(T)=0$ (note: $\dot{y}(T)$ is free). The dynamical system is $\ddot{y}=u$.

Exercise 3 Find the candidate-optimal solutions for the following minimum-time problem: minimize T over all control functions u such that $u(t) \in U:=[-1,1]$, $y(0)=0, \dot{y}(0)=1, y(0)=0$ and $y(T)=0$. The dynamical system is $\ddot{y}=u$. Note: this problem is treated in Example 3.4.3 in a general way. You must now find a concrete solution for $y_{0}=0$ and $v_{0}=1$, similar to the other, more concrete minimum-time optimal control problem that was solved in class.

Exercise 4 Find the candidate-optimal solutions for the following minimum-time problem: minimize T over all control functions u such that $\int_{0}^{T} u^{2}(t) d t=4, y(0)=0$, $\dot{y}(0)=1$ and $\dot{y}(T)=-1$ (note: $y(T)$ is free and $U=\mathbb{R}$). The dynamical system is $\ddot{y}=u$. Hint: The Hamiltionian should be $H=1+p_{1}(t) x_{2}+p_{2}(t) u+\mu u^{2}$, where $\mu \in \mathbb{R}$ is a Lagrange multiplier. Observe that this is quite similar to what you learned in Dowling, p. 466.

Answer: $T^{*}=1$ and $u^{*} \equiv-2$. This comes from $\mu>0$ (else MP would not hold) and $\mathrm{AE}+\mathrm{TV}$, which give $p_{1} \equiv 0$ and $p_{2} \equiv c=$ constant. The integral constraint causes $c^{2}=4 \mu$, whence $c= \pm 2 \sqrt{\mu}$. The case $c=2 \sqrt{\mu}$ leads to $u(t) \equiv-1 / \sqrt{\mu}$ and then $y(t)=-\frac{1}{2 \sqrt{\mu}} t^{2}+\alpha t+\beta$, where $\beta=0$ and $\alpha=1$ follow from the conditions for $y(0)$ and $\dot{y}(0)$. Then $\dot{y}(T)=-1$ gives $T / \sqrt{\mu}=2$. Also, $4=\int_{0}^{T} 1 / \mu$ gives $T / \mu=4$, so it follows that $T=1$ and $\mu=1 / 4$. So $u \equiv=-1 / \sqrt{\mu}=-2$. The other case is $c=-2 \sqrt{\mu}$. Then a similar reasoning leads to $u \equiv 1 / \sqrt{\mu}$ and, inter alia, to $-1=\dot{y}(T)=T / \sqrt{\mu}+1$, which is impossible.

Exercise 5 Exercises 3.10 and 3.13 in Bertsekas.
Exercise 6 Find the candidate-optimal solutions for the following discrete-time optimal control problem: maximize $\sum_{k=0}^{4}\left(10 x_{k}-\frac{1}{10} u_{k}^{2}\right)$ over all control vectors $\left(u_{0}, u_{1}, u_{2}, u_{4}\right)$, where the dynamical system is given by $x_{k+1}=x_{k}+u_{k}$ and the initial state is $x_{0}=0$. Hint: You can apply (3.44) here instead of (3.43), after using the sign trick.

