
Solutions Final WISB372 (closed book), 9-11-2011

Problem 1 [35 pts.] Consider the following optimal control problem: minimize
∫ 1

0
(u2(t)−at4x(t))dt

over all piecewise continuous functions u : [0, 1] → U := R such that x(0) = 3 and x(1) ≥ b. Here
the dynamical system is ẋ = u and a and b are fixed parameters in R.

a. Determine for the above optimal control problem the candidate-optimal control function(s) for
general a and b in R by means of the MP. Hint: Make sure that your candidate-optimal trajec-
tory/trajectories indeed satisfy the inequality constraint.

b. The Sufficiency Theorem, as given in class (but also in section 21.3 in Dowling for problems
with free end-time position) can be modified so as to take care of the inequality constraint, as
used in the above problem (see the first quiz of this course). Present such a modification of the
Sufficiency Theorem (no proof needed) and show that it can be applied to ensure the optimality of
the function(s) found in part a.

c. As a final check, consider the special case a = 0. For certain values of b the optimal control

function is obvious and can be derived without any appeal to the MP. What are those values and

what is then the associated optimal contorl function? Lastly, check if your solution of part a, when

it is specialized to a = 0 and those suitable values of b, agrees with it.

Solution. a. To conform completely to Dowling’s maximization format, it
is safest to apply the sign trick.1 By this trick, the original problem is equiv-
alent to maximizing

∫ 1

0
at4x(t) − u2(t))dt over all piecewise continuous functions

u : [0, 1] → U := R such that x(0) = 3 and x(1) ≥ b. Therefore, the Hamiltonian is
H(t, x, u, p(t)) = at4x− u2 + p(t)u, so Hx = at4 and Hu = −2u+ p(t). Observe that
Dowling’s conditions 1., 2. and 3. on p. 494 apply, because the ”heroic interiority
assumption” holds (U = R).2 First, the adjoint equation is ṗ = −at4 and this gives
p(t) = −a

5
t5 + c1. Then Dowling’s condition 1. gives u∗(t) = p(t)/2 = − a

10
t5 + c1

2
, so

the dynamical system leads to x∗(t) = − a
60
t6 + c1

2
t + c2, with c2 = 3 by the initial

condition x(0) = 3. Now the only possibilities are as follows.

Case 1: x∗(1) > b. In this case the transversality condition p(1) = 0 holds (see
section 21.5), so the above gives 0 = p(1) = −a

5
+ c1, i.e., c1 = a/5. This causes

the candidate-optimal solution to be u∗(t) = − a
10
t5 + a

10
, with associated trajectory

x∗(t) = − a
60
t6+ a

10
t+3. However, in the present case 1 this candidate-optimal solution

can only be accepted if b < x∗(1) = − a
60

+ a
10

+ 3, i.e., if a > 12b− 36.

Case 2: x∗(1) = b. In this case we must only check that p(1) is nonnegative.
For the original expression for x∗(·) we now have b = x∗(1) = − a

60
+ c1

2
+ 3, i.e.,

1Warning: if this is not done, then the inequality p(T ) ≥ 0, as used in Dowling’s case 2, reverses
sign: it turns into p(T ) ≤ 0! Symbolically, this reversal is understood as follows: (−g) + p(−f) for
the Hamiltonian, as section 21.5 wants it, corresponds to g + (−p)f .

2As in class, the incorrect statement preceding those three conditions should be ignored.
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c1 = a
30

+ 2b − 6 and then it must be that 0 ≤ p(1) = −a
5

+ c1 = −a
6
− 8, which is

to say a
6
≤ 2b − 6, i.e., a ≤ 12b − 36. In this case the optimal solution is u∗(t) =

− a
10
t5 + a

60
+ b− 3 by the original expression for u∗(·).

Summary: the optimal solution is u∗(t) = − a
10
t5 + a

10
if a > 12b− 36 and u∗(t) =

− a
10
t5 + a

60
+ b− 3 if a ≤ 12b− 36.

b. In view of a pattern seen during the first part of the course, the proper modifica-
tion should be the addition of extra concavity: if for every t ∈ [0, T ] the Hamiltonian
function H(t, x, u, p(t)) is concave in (x, u), then the necessary conditions – in this
case these are the conditions stated in section 21.5 – are also sufficient. In fact, in
quiz 1 for WISB372 you had to prove this already.

So all that remains to be done is to check the joint concavity in (x, u) ofH(t, x, u, p(t)) =
at4x− u2 + p(t)u. Note that Hxx = Hxu = Hux = 0 and Huu = −2. Hence, the Hes-
sian matrix HH is evidently negative semi-definite, so the desired concavity property
follows.

c. For a = 0 one has J(u) =
∫ 1

0
u2 ≥ 0 for all control functions u. Hence, the

obvious optimal solution is u∗ ≡ 0, provided that the associated trajectory, which is
obviously x∗ ≡ 3, satisfies 3 = x∗(1) ≥ b. In other words, for any b ≤ 3 the optimal
control function is u∗ ≡ 0. Of course, b ≤ 3 means either (i) b < 3 or (ii) b = 3.

Ad (i): b < 3 (still for a = 0) corresponds to case 1 in part a, which states that
u∗(t) = − 0

10
t5 + 0

60
= 0 is the optimal control function.

Ad (ii): b = 3 (again for a = 0) belongs to case 2 in part a, which states that
u∗(t) = − 0

10
t5 + 0

60
+ 3− 3 = 0 is the optimal control function.

Conclusion: for b ≤ 3 the obvious optimal control function u∗ ≡ 0 matches the
results in part a.
Problem 2 [35 pts.] In the two-rounds chess tournament in Bertsekas with sudden death possibility
(see Example 1.1.5 on p. 11), the objective is to maximize the player’s probability of winning the
tournament (e.g., see the lines following (2) in Example 1.1.5). This problem is completely solved
in Example 1.3.3 (pp. 32-33).3 Now consider precisely the same tournament, but with the following
objective: to maximize the player’s expected net score at the end of the tournament. Here ”net
score” is as defined in Example 1.3.3 (p. 32).

a. Formulate the associated maximization problem as a standard dynamical programming problem.
Hint: be careful about the net end-score in the sudden death possibility.

b. Find the optimal policy for maximizing the expected net end-score if pd = 1/2 and pw = 1/5.

Summary of the solution: For N = 2 in Example 1.3.3 a positive net score
x2 (winning the tournament) was valued by 1 and a negative net score (losing) by 0;
this was done so as to deal with maximizing P (E) = expectation of the characteristic
fuction 1E = probability of winning the tournament (here E is the event of winning
the tournament). The sudden death mode required a small adaptation. The only
difference with the present problem is that now the net score x2 itself must be counted,
again with a similar adaptation for the sudden death mode.

Solution. a. The model of pp. 32-33 can be copied (of course for N = 2, as in
Example 1.1.5), but now gN = g2, which is the expression on the right in formula

3Recall: ”timid” or ”bold” can be played in each round, with ”timid” resulting in a draw [loss]
with probability pd [1− pd] and ”bold” in a win [loss] with probability pw [1− pw].
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(1.10) of Bertsekas, must be modified: it is g2(x2) = x2 if x2 6= 0 and 2pw − 1 if
x2 = 0. Indeed, if x2 6= 0 then it is the net end-score x2 which counts, and if there is
a draw at the end (x2 = 0) the same reasoning about the sudden death extension can
be followed as in Bertsekas: it makes only sense to play ”bold” and this results in a
net end-score of 1 (probability pw) or of -1 (probability 1− pw), causing the expected
net score to be 2pw − 1. Otherwise, nothing changes, so the DPA-algorithm is as in
(1.8) (with N = 2 and J2 = new g2 above).

b. The new details give g2(x2) = x2 if x2 6= 0, i.e., if x2 = 2, 1,−1 or −2 and
g2(0) = 2

5
− 1 = −3

5
. For k = N − 1 = 1 and x1 = −1, 0 or 1, formula (1.8) implies

J1(x1) = max[
1

2
J2(x1) +

1

2
J1(x1 − 1),

1

5
J2(x1 + 1) +

4

5
J2(x1 − 1)]

Concretely, for x1 = −1 this gives

J1(−1) = max[
1

2
∗ (−1) +

1

2
∗ (−2),

1

5
∗ (−3

5
) +

4

5
∗ (−2)] = −1.5 for u∗1 = ”timid”

(apparently this situation gives so little hope that the player simply concentrates on
preventing the net end-score to be -2!). For x1 = 0 and x1 = 1 respectively the same
formula gives

J1(0) = max[
1

2
∗ (−3

5
) +

1

2
∗ (−1),

1

5
∗ 1 +

4

5
∗ (−1)] = −0.6 for u∗1 = ”bold”

J1(1) = max[
1

2
∗ 1 +

1

2
∗ (−3

5
),

1

5
∗ 2 +

4

5
∗ (−3

5
)] = 0.2 for u∗1 = ”timid”

Finally, x0 = 0 gives, still using (1.8) in Bertsekas,

J0(0) = max[
1

2
∗ J1(0) +

1

2
∗ J1(−1),

1

5
∗ J1(1) +

4

5
∗ J1(−1)] =

= max[
1

2
∗ (−0.6) +

1

2
∗ (−1.5),

1

5
∗ 0.2 +

4

5
∗ (−1.5)] = −1.05 for u∗0 = ”timid”

Problem 3 [35 pts.] Consider the following optimal control problem, which is a resource allocation

problem of the type studied in Bertsekas Examples 3.1.2 and 3.3.2. Maximize µx(T ) +
∫ T
0

(1 −
u(t))x(t)dt subject to u(t), the portion of the production rate used for reinvestment, being in U :=
[0, 1] for all t ∈ [0, T ] and x(0) = x0 = initial production rate (recall that the portion 1 − u(t) is
used for production of a storable good). Here the dynamical system is: ẋ(t) = γu(t)x(t) and γ > 0,
µ > 0 and x0 > 0 are given parameters. Obviously, for µ = 0 this problem reduces to one studied
in Example 3.3.2 of Bertsekas.

a. Let u(·) : [0, T ] → [0, 1] be any control function. Using (16.1) in Dowling, demonstrate that the
associated trajectory x(·) in the above problem is such that x(t) ≥ x0 > 0 for all t ∈ [0, T ].

b. Imitate Example 3.3.2, including the use of certain illustrative figures, as much as possible to
obtain the candidate-optimal control function (denoted below by u∗µ) for the above optimal control
problem. Among other things, show that the co-state function p(t) has ṗ(t) < 0 for all t.

c. Argue that letting µ → ∞ in the above problem comes down, in some sense, to the following
trivial problem: maximize x(T ) subject to precisely the same conditions as before (i.e., U = [0, 1],
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ẋ = γux and x(0) = x0). State, without any appeal to the MP, the optimal control function (denote
it by u∗) for this problem and explain its nature from an economic viewpoint.

d. Prove that limµ→∞ u∗µ(t) = u∗(t) holds on [0, T ].

Solution. a. In formula (16.1) of Dowling we substitute z = 0 and v(t) := −γu(t).
Then (16.1) gives x(t) = e−V (t)(A+0), where V (t) is a fixed primitive function for the
function v(t) = −γu(t) ≤ 0. For V (t) we may choose V (t) :=

∫ t
0
−γu(t′)dt′ ≤ 0 by

what is said in Dowling (see Example 3 on p. 363). Now −V (t) ≥ 0 for all t ∈ [0, T ]
implies x(t) = Ae−V (t) ≥ Ae0 = A = x(0) = x0.

b. The Hamiltonian is the same as on p. 121, namely H(x, u, p(t)) = (1− u)x +
p(t)γux. The adjoint equation is also the same: ṗ(t) = −γu∗(t)p(t) − 1 + u∗(t), but
the transversality condition is different: this time it is p(T ) = µ > 0. The maximum
principle is again the same: u∗(t) = 0 if p(t) < 1/γ and u∗(t) = 1 if p(t) > 1/γ.
Substitution in the adjoint equation of the latter two expressions for u∗(t) yields
ṗ(t) = −1 < 0 if p(t) < 1/γ and ṗ(t) = −γp(t) < 0 if p(t) > 1/γ. Moreover, for
p(t) = 1/γ the adjoint equation gives ṗ(t) = −u∗(t)− 1 + u∗(t) = −1 < 0. So p(t) is
strictly decreasing in t.

Case 1: γ < 1/µ. In this case p(T ) = µ < 1/γ, so the reasoning in Bertsekas
can be repeated: close to T we will have p(t) < 1/γ and this causes u∗(t) = 0 by the
maximum principle and in turn ṗ = −1, i.e., p(t) = −t+c1. Then µ = p(T ) = −T+c1
implies p(t) = µ + T − t > 0 for those t near T . A switch will occur if p(t) = 1/γ,
which corresponds to the switch time ts = T+µ− 1

γ
< T . If ts < 0, i.e., if T+µ ≤ 1/γ,

then u∗ ≡ 0 and no switch will actually occur. On the other hand, if T + µ > 1/γ,
then ts ∈ (0, T ) and a switch occurs at ts.

Case 2: γ ≥ 1/µ. By the above, p(t) decreases strictly to p(T ) = µ. So for every
t < T we have p(t) > p(T ) = µ ≥ 1/γ. By the maximum principle, this implies
that u∗(t) = 1 for all t ≤ T if γ > 1/µ and if γ = 1/µ then it certainly implies that
u∗(t) = 1 for al t < T , while, as argued in class, the value of u∗(·) in the single point
T can be set equal to 1 as well. So the candidate-optimal control function in this
case is u∗ ≡ 1.

c. By µ > 0, the original optimal control problem is equivalent to maximizing
the sum x(T ) + 1

µ

∫ T
0

(1 − u)x over all control functions u such that x(0) = x0. For
very large µ the second summand in this expression can be neglected, which leads
to maximizing x(T ), an objective function which completely disregards storage and
only appreciates capital at the end time T , over all control functions u such that
x(0) = x0. So clearly the obvious thing to do is not to contribute to storage at all
and to concentrate entirely on raising the end capital. This means choosing u∗ ≡ 1.

d. By γ > 0, only case 2 in part b can hold for sufficiently large µ (namely, for
µ > 1/γ), which implies u∗µ(t) ≡ 1 for all µ > 1/γ.
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