
Solution of Quiz 1, WISB372, 7-10-2011

Problem. The following well-known ”mod 4” optimal control problem is also studied in Dowling’s textbook: max-

imize J(y) :=
∫ T
0 f(x(t), y(t), t)dt over all control functions y(·) : [0, T ] → Ω := R such that the dynamical system

ẋ(t) = g(x(t), y(t), t) holds with initial condition x(0) = x0 and terminal condition x(T ) ≥ xmin. Here xmin ∈ R is
given. Let y∗(·) be a given control function, with associated trajectory x∗(·).

a. [20 pts] State sufficient conditions for y∗(·) to be optimal for the above problem. Note that, similar to certain
homework problems already distributed (e.g. for ”mod 1”, ”mod 2a” and ”mod 2b”), these sufficient conditions
must be patterned after a combination of the following two: (1) the sufficiency theorem for the ”simplest problem in
optimal control theory”, as given and proved in class1 and (2) the well-known necessary conditions for this problem,
which you know from Dowling.

b. [30 pts] Give a complete proof of the fact that the conditions which you stated in part a are indeed sufficient
for y∗(·) to be optimal. Advice: Pay careful attention to the role played by the different conditions for λ(T ) (same
notation as used in Dowling) and make it quite clear how your reasoning goes.

c. [20 pts] Suppose now that the concavity conditions for the Hamiltonian (see footnote 1) are strengthened into
strict concavity conditions. What more do the sufficient conditions in part a then imply? Prove this as well.

d. [15 pts] Consider the above ”mod 4” optimal control problem again, but with the terminal condition x(T ) ≥
xmin replaced by the following one: xmin ≤ x(T ) ≤ xmax. Here xmin, xmax ∈ R are given with xmin < xmax.
Similar to part a, state sufficient conditions for y∗(·) to be an optimal control function for the new optimal control
problem.

e. [15 pts] Similar to part b, give a proof of the fact that the conditions which you stated in part d are indeed

sufficient for optimality of y∗(·).

Solution. a. The method to create sufficient optimality conditions for the original OC-problem
in Dowling and other mod’s was to copy their respective necessary optimality conditions and aug-
ment these by additional concavity conditions. So here that simply means that we should restate
the necessary conditions for ”mod 4” from Dowling and adding condition of concavity for the Hamil-
tonian:

1. ∀tHθ(x
∗(t), y∗(t), λ(t), t) = 0,

2. ∀tλ̇(t) = −Hξ(x
∗(t), y∗(t), λ(t), t) and ẋ∗(t) = g(x∗(t), y∗(t), t),

3. x∗(0) = x0 and either (i) x∗(T ) > xmin and λ(T ) = 0 or (ii) x∗(T ) = xmin and λ(T ) ≥ 0,

4. ∀tH(ξ, θ, λ(t), t) is concave in (ξ, θ).

Of course, we still need to prove that this really works, which will be done in part b!

b. Let the above four conditions hold. To prove that the given y∗(·) is optimal for the above
optimal control problem, it is enough to prove that the inequality J(y∗) ≥ J(y) holds for any
arbitrary control function y(·) whose trajectory x(·) (associated to y via DS and x(0) = x0) meets
the terminal condition x(T ) ≥ xmin. Just as seen in class and in the homework exercises about
”mod 1”, ”mod 2a” and ”mod 2b”, we have for any fixed t ∈ [0, T ] that

H(ξ, θ, λ(t), t) ≤ H(x∗(t), y∗(t), λ(t), t) +R for every (ξ, θ) (1)

by condition 4, where we set

R := Hξ(x
∗(t), y∗(t), λ(t), t)︸ ︷︷ ︸

=−λ̇(t)

(ξ − x∗(t)) +Hθ(x
∗(t), y∗(t), λ(t), t)︸ ︷︷ ︸

=0

(θ − ẋ∗(t))

and already indicate the future effect of conditions 1. and 2. by the underbraces. For ξ := x(t) and
θ := ẋ(t), combined with conditions 1.-2., (1) gives

H(x(t), y(t), λ(t), t)︸ ︷︷ ︸
=f(x(t),y(t),t)+λ(t)ẋ(t)

≤ H(x∗(t), y∗(t), λ(t), t)︸ ︷︷ ︸
=f(x∗(t),y∗(t),t)+λ(t)ẋ∗(t)

−λ̇(t)(x(t)− x∗(t)) (2)

1Recall that these involved concavity conditions for the Hamiltonian.
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for every t ∈ [0, T ]. After integration of both sides in (2) over [0, T ] this gives

J(y) +

∫ T

0

λẋ ≤ J(y∗) +

∫ T

0

λẋ∗ −
∫ T

0

λ̇(x− x∗). (3)

Now ∫ T

0

λ̇(x− x∗) = λ(T )(x(T )− x∗(T ))− λ(0) (x(0)− x∗(0))︸ ︷︷ ︸
=x0−x0=0

−
∫ T

0

λ(ẋ− ẋ∗)

holds by partial integration. We substitute this in (3) and get

J(y) +

∫ T

0

λẋ ≤ J(y∗)− λ(T )(x(T )− x∗(T )) +

∫ T

0

λẋ.

This will imply the desired J(y∗) ≥ J(y) if we can prove that

both cases (i) and (ii) in condition 3. imply λ(T )(x(T )− x∗(T )) ≥ 0. (4)

Now in case (i) this is trivial because

λ(T )(x(T )− x∗(T )) = λ(T )︸ ︷︷ ︸
=0

(x(T )− x∗(T )) = 0

and in case (ii) it follows by

λ(T )(x(T )− x∗(T )) = λ(T )︸ ︷︷ ︸
≥0

(x(T )− xmin)︸ ︷︷ ︸
≥0

≥ 0.

Conclusion: J(y∗) ≥ J(y). Because y(·) was chosen arbitrarily, this proves that y∗(·) is optimal.

c. If strict concavity is supposed in 4., then for every t ∈ [0, T ] the inequality in (2) becomes
strict, at least if (x(t), y(t)) 6= (x∗(t), ẋ∗(t)) (!) We claim that y 6= y∗ implies J(y) < J(y∗).
Indeed, if y 6= y∗, then there exists τ ∈ [0, T ] with y(τ) 6= y∗(τ). Because both y and y∗ are
continuous2, it follows that for some sufficiently small δ > 0 the inequality y(t) 6= y∗(t) holds for all
t ∈ I := (τ − δ, τ + δ) (so that the inequality in (2) becomes strict for all t ∈ I). This implies that
instead of (3) we now obtain

J(y) +

∫ T

0

λẋ < J(y∗) +

∫ T

0

λẋ∗ −
∫ T

0

λ̇(x− x∗).

because∫ T

0

H(x(t), y(t), λ(t), t)dt =

∫
I

H(x(t), y(t), λ(t), t)dt︸ ︷︷ ︸
<H(x∗(t),y∗(t),λ(t),t)−λ̇(t)(x(t)−x∗(t))

+

∫
[0,T ]\I

H(x(t), y(t), λ(t), t)dt︸ ︷︷ ︸
≤H(x∗(t),y∗(t),λ(t),t)−λ̇(t)(x(t)−x∗(t))

.

The reasoning following (3) can just be repeated, so it follows that J(y∗) > J(y) for every y 6= y∗.
Conclusion: under the additional strict concavity assumption, the control function y∗ is the unique
optimal solution, but only if all control functions are supposed to be continuous. Observe that the
latter clarification of what ”unique” should mean comes only from the proof (consider
footnote 2 once more for the total confusion that could result for someone who was
unable to provide such a proof ...).

d-e. We must now extend Dowling’s 3. above by distinguishing three different cases:

2 If they are both piecewise continuous, then the uniqueness statement must become more delicate. For instance,
if in problem 21.9 of Dowling the stated optimal control function is given the value 1010 in the single point 1

2
∈ [0, 1],

then the resulting control function is different, but still optimal!
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3’. x∗(0) = x0 and either (i) xmin < x∗(T ) < xmax and λ(T ) = 0 or (ii) x∗(T ) = xmin and
λ(T ) ≥ 0 or (iii) x∗(T ) = xmax and λ(T ) ≤ 0.

From the role played by (4) in the previous proof, we see that it is now enough to prove the
following:

the three cases (i), (ii) and (iii) in condition 3’. imply λ(T )(x(T )− x∗(T )) ≥ 0,

where both x∗(·) and x(·) satisfy the new terminal condition, i.e., xmin ≤ x∗(T ) ≤ xmax and
xmin ≤ x(T ) ≤ xmax both hold. For cases (i) and (ii) this goes exactly as was demonstrated above
and for case (iii) we now have

λ(T )(x(T )− x∗(T )) = λ(T )︸ ︷︷ ︸
≤0

(x(T )− xmax)︸ ︷︷ ︸
≤0

≥ 0,

as desired. Observe here again, next to the comment about uniqueness in part c, that
the applied mathematician who is unable to see through the structure of the above
analysis would have to rely on pure guesswork when confronted with the new, very
practical situation introduced in part d.
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