Solution of Quiz 1 ECRMMAT, 7-10-2011

Problem Consider the optimal consumption problem to maximize $\int_{0}^{T} e^{-\rho t} \sqrt{y(t)} d t$ over all control functions $y(\cdot):[0, T] \rightarrow \mathbb{R}_{+}$such that $x(0)=1$ and $x(T) \geq x_{\text {min }}$. Here $\rho>0$ is a given discount factor, $x_{\min } \in \mathbb{R}$ is a given real number and the dynamical system is $\dot{x}=-y$.
a. [10 pts] Discuss briefly how the above problem could be interpreted as an optimal consumption problem. Discuss in this connection in particular the economic meaning of the values $x(t)$ and the dynamical system.
b. [60 pts] Derive, under Dowling's "heroic interiority assumption", all possible candidate(s) $y^{*}(\cdot)$ for optimality, based on Dowling's conditions 1., 2., 3., as adapted on pp. 498-499.
c. [20 pts] Check that the Suffiency Theorem for optimal control theory, as treated in class, is applicable here. Use this to identify all possible optimal control functions $y^{*}(\cdot)$ (if any) which satisfy the "heroic interiority assumption".
d. [10 pts] Give an economic interpretation of your outcomes; explain your outcomes in particular for the special case where $x_{\text {min }}=2$ and $\rho=0$.

Solution. a. We interpret $y(t)$ as the consumption rate, i.e., in a small time interval of length Δt around time t the amount consumed of a certain good is $y(t) \Delta t$. This causes $x(t+\Delta t)-x(t)$ to be approximately equal to $-y(t) \Delta t$, where $x(t)$ represents the total supply at time t of the good. This explains the dynamical system. The initial supply of the good is 1 and the terminal supply should at least be $x_{\text {min }}$. Moreover, during that same time interval the discounted utility value of $y(t)$ is set at $e^{-\rho t} \sqrt{y(t)}$, so the time interval itself contributes $e^{-\rho t} \sqrt{y(t)} \Delta t$, where ρ is a discount factor. Summing over all time intervals and letting $\Delta t \rightarrow 0$ then shows that $\int_{0}^{T} e^{-\rho t} \sqrt{y(t)} d t$ can be interpreted as the total discounted utility enjoyed by consuming at the rate $y(\cdot)$ over the time interval $[0, T]$.

Observation: From this economic interpretation it is already obvious that the case $x_{\text {min }}>1$ is impossible, because negative consumption is not allowed by the model: $\sqrt{y(t)}$ only makes sense for $y(t) \geq 0$. The mathematics below will completely confirm this economic intuition.
b. These necessary conditions for y^{*} to be an optimal control are as follows:

1. $\forall_{t} H_{\theta}\left(x^{*}(t), y^{*}(t), \lambda(t), t\right)=0$,
2. $\forall_{t} \dot{\lambda}(t)=-H_{\xi}\left(x^{*}(t), y^{*}(t), \lambda(t), t\right)$ and $\dot{x}^{*}(t)=g\left(x^{*}(t), y^{*}(t), t\right)$,
3. $x^{*}(0)=x_{0}$ and either $\left(\right.$ i) $x^{*}(T)>x_{\text {min }}$ and $\lambda(T)=0$ or $(i i) x^{*}(T)=x_{\text {min }}$ and $\lambda(T) \geq 0$,

Here $f(\xi, \theta, t)=e^{-\rho t} \sqrt{\theta}$ and $g(\xi, \theta, t)=-\theta$, so the Hamiltonian is

$$
\begin{equation*}
H(\xi, \theta, \lambda(t), t):=e^{-\rho t} \sqrt{\theta}-\lambda(t) \theta \tag{1}
\end{equation*}
$$

This gives $H_{\xi}=0$ and $H_{\theta}=\frac{1}{2} e^{-\rho t} \theta^{-1 / 2}-\lambda(t)$. Hence, 2. gives $\dot{\lambda}=0$, so $\lambda=c_{1}$, a constant. Then 1 . implies $y^{*}(t)=\frac{1}{4 c_{1}^{2}} e^{-2 \rho t}$ (provided that $c_{1} \neq 0$ of course). ${ }^{1}$ By the dynamical system this implies $x^{*}(t)=\frac{1}{8 c_{1}^{2}} e^{-2 \rho t}+c_{2}$, where c_{2} is an integration constant. For $t=0$ this yields $1=x^{*}(0)=\frac{1}{8 c_{1}^{2}}+c_{2}$, i.e., $c_{2}=1-\frac{1}{8 c_{1}^{2}}$. So

$$
x^{*}(t)=\frac{1}{8 c_{1}^{2}}\left(e^{-2 \rho t}-1\right)+1
$$

provided that $c_{1} \neq 0$. For $t=T$ we distinguish the two cases (i) and (ii) as in 3 . above:

Case (i). We have $c_{1}=\lambda(1)=0$, so we must go back to "provided that $c_{1} \neq 0$ " above. This provision was made in connection with 1. , which now runs as follows: because of $\lambda(t)=c_{1}=0, H_{\theta}=\frac{1}{2} e^{-\rho t} \theta^{-1 / 2}=0$ must be solved. However, this equation has no solution, so case (i) cannot happen at all.

Case (ii). In this case $x^{*}(T)=x_{\text {min }}$ holds. By the above this gives

$$
x_{\min }=x^{*}(T)=\frac{1}{8 c_{1}^{2}} e^{-2 \rho T}+1-\frac{1}{8 c_{1}^{2}}
$$

from which it follows that $\frac{1}{8 c_{1}^{2}}$ is equal to $\left(1-x_{\min }\right) /\left(1-e^{-2 \rho T}\right)$. Because $\frac{1}{8 c_{1}^{2}}$ is strictly positive, this equality can only occur if $1-x_{\min }>0$, i.e., if $x_{\min }$ is strictly less than the initial supply $x_{0}=1$. So we must distinguish between $x_{\min }<1$ (case (iia)) and $x_{\text {min }} \geq 1$ (case (iib).

Case (iia) : $x_{\min }<1$. The above gives

$$
x^{*}(t)=\frac{1-x_{\min }}{1-e^{-2 \rho T}}\left(e^{-2 \rho t}-1\right)+1
$$

So

$$
y^{*}(t)=-\dot{x}^{*}(t)=\frac{2 \rho\left(1-x_{\min }\right)}{1-e^{-2 \rho T}} e^{-2 \rho t}
$$

is the candidate-optimal control function.
Case (iib): $x_{\min } \geq 1$. In this case the above reasoning does not provide a candidate for optimality. Actually, if $x_{\text {min }}>1$ we see immediately that no control function $y(\cdot)$ at all can have an associated trajectory $x(\cdot)$ with $x(0)=1<x_{\min } \leq x(T)$, because $\dot{x}=-y \leq 0$ implies that $x(\cdot)$ cannot increase strictly. The case $x_{\min }=1$ is a little more subtle: again by $\dot{x}=-y \leq 0$, the function $y \equiv 0$ constantly equal to zero is the only control function for which the associated trajectory $x(\cdot)$ can meet both $x(0)=1$ and $x(T) \geq 1$. Therefore, $y \equiv 0$ is trivially also the optimal control. However, it is not detected by $1 ., 2 ., 3$. because $y \equiv 0$ violates the "heroic interiority assumption": by $\Omega=\mathbb{R}_{+}$such interiority requires $y(t)>0$ for all $t .^{2}$

[^0]c. The Hamiltonian of (1) has as its Hessian in the variables ξ, θ a 2×2-matrix whose only nonzero element is in the bottom right corner: it is $-\frac{1}{4} \theta^{-3 / 2}$, which is strictly negative. Hence, it follows immediately (from the definition) that this Hessian is negative semi-definite. For this reason $H(\xi, \theta, \lambda(t), t)$ is concave in (ξ, θ). Therefore, the Sufficiency Theorem guarantees that the candidate-optimal control function $y^{*}(\cdot)$, found in case (iia), gives indeed a global maximum.
d. We now consider what happens if $x_{\text {min }}=2$ and $\rho=0$. The special case $\rho=0$ violates the original assumption $\rho>0$. So we must trace back the previous arguments: for $\rho=0$ the above derivation gives $\lambda \equiv c_{1}$ and $y^{*} \equiv \frac{1}{4 c_{1}^{2}}$, provided $c_{1} \neq 0$ (thus, case (i) in 3 . goes just as above: it cannot occur). This causes the supply to decrease linearly rather than exponentially: $x^{*}(t)=-\frac{1}{4 c_{1}^{2}} t+c_{2}$ and $c_{2}=1$ follows from $x^{*}(0)=1$. As only case (ii) can occur, we get $x_{\text {min }}=x^{*}(T)=-\frac{1}{4 c_{1}^{c}} T+1<1$. So $x_{\text {min }}=2>1$ gives a meaningless problem, as was to be expected from the previous considerations in part b (and see also the observation made at the end of part a).

[^0]: ${ }^{1}$ Use of the current value Hamiltonian $H_{c}(\xi, \theta, \mu(t), t):=\sqrt{\theta}-\mu(t) \theta$ leads to the same expression via $\dot{\mu}=\rho \mu$ (whence $\mu(t)=C_{1} e^{\rho t}$) and $\left(H_{c}\right)_{\theta}=\frac{1}{2} \theta^{-1 / 2}-\mu(t)=0$, causing $\frac{1}{2} y^{*}(t)^{-1 / 2}=C_{1} e^{\rho t}$.
 ${ }^{2}$ Observe: $y(t)>0$ for all t is also needed for another reason. Namely, the underlying technical conditions of the model would be violated by allowing $y(t)=0$, because $f(t, \xi, \theta)=\exp ^{-\rho t} \sqrt{\theta}$ is not partially differentiable for $\theta=0$.

