
Solutions Quiz 2, WISB372, 28-10-2011 (closed
book)

Problem 1. [50 pts] Consider the following optimal control problem with variable end time. Mini-

mize
∫ T

0
1
2 (u2(t)+1)dt over all T > 0 and all control functions u : [0, T ]→ [−2, 2] such that x(0) = 5

and x(T ) = 0. Here ẋ = u is the dynamical system. Determine all candidate-optimal control

functions, using the minimum principle.

Solution. The Hamiltonian is H(x, u, p(t)) = 1
2
(u2 + 1) + p(t)u. It has Hx = 0,

so the adjoint equation gives ṗ = 0, whence p(t) ≡ c1, a constant. Also, the minimum
principle gives u∗(t) ≡ −c1, with the implicit condition |c1| ≤ 2; ; however, for c1 > 2
minimization would still give u∗(t) = −2 whereas c1 < −2 would give x∗(t) = 2.
Equivalently, we can say that u∗(t) ≡ −c1 holds, with |c1| ≤ 2. The associated
trajectory is therefore x∗(t) = −c1t + 5, in view of the initial condition. Because
of the variable end time and the stationarity of the problem, we must also have
H(x∗(t), u∗(t), p(t)) ≡ 0; this gives 1

2
(c21 + 1) − c21 = 0. This equation yields c21 = 1,

whence either c1 = 1 or c1 = −1 (note that the above condition |c1| ≤ 2 is satisfied
in either case).

Case 1: c1 = 1. This gives u∗ ≡ −1 and x∗(t) = 5 − t. So T ∗ = 5 follows by the
end time condition.

Case 2: c1 = −1. This gives u∗ ≡ 1 and x∗(t) = 5 + t. But now the end time
condition leads to T ∗ = −5 < 0, which is not allowed.

Conclusion: there is essentially one candidate-optimal solution and it is u∗ ≡ −1.

Problem 2. [50 pts] Consider the following optimal control problem: maximize 6x1(5) − 3x2(5)
over all control functions u : [0, 5] → [0, 1] such that x1(0) = 1 and x2(0) = 2. Here the dynamical
system is ẋ1 = x1 + x2 + u and ẋ2 = 2x1 − u.

a. Determine all candidate-optimal control functions, using the minimum principle. Hint: Note
that the adjoint equation is actually a system of two differential equations, similar to your solution
method for the water reservoir homework problem from Bertsekas.

b. Check if the sufficiency theorem (which continues to hold when the state space is multi-

dimensional) can be applied here.

Solution. a. The Hamiltonian is H(x1, x2, u, p1(t), p2(t)) = p1(t)(x1 + x2 + u) +
p2(t)(2x1−u), so the partial derivativesHx1 = p1+2p2 andHx2 = p1 follow. Therefore,
the adjoint equations are ṗ1 = −p1 − 2p2 and ṗ2 = −p1, which form a homogeneous
system. By differentiating again (this method was demonstrated in class), this gives
p̈1 + ṗ1− 2p1 = 0. The associated characteristic equation is r2 + r− 2 = 0 and it has
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roots r1 = −2 and r2 = 1. Hence, the first solution of the adjoint equation system is
p1(t) = A1e

−2t + A2e
t and then p2(t) = 1

2
(−p1(t) − ṗ1(t)) = 1

2
A1e

−2t − A2e
t follows

with ease. By transversality we also have p1(5) = 6 and p2(5) = −3. Therefore,
α1 := A1e

−10 and α2 := A2e
5 must satisfy α1 + α2 = 6 and 1

2
α1 − α2 = −3. This

gives α1 = 2 and α2 = 4, so p1(t) = 2e10−2t + 4et−5 and p2(t) = e10−2t − 4et−5

follow. Next, by the maximum principle we know that u∗(t) maximizes (p1(t)−p2(t))u
over u ∈ U := [0, 1]. Now p1(t) − p2(t) = e10−2t + 8et−5 is strictly positive for
any t. Hence, u∗ ≡ 1 is the desired candidate-optimal solution. As an extra, the
associated trajectory – formally the problem does not ask for it, so it can be ignored
– follows from solving the system ẋ1 = x1 + x2 + 1 and ẋ2 = 2x1 − 1. This gives first
ẍ1− ẋ1−2x1 = 0, with characteristic equation r2−r−2 = 0 (roots: −1 and 2). Then
x1(t) = B1e

−t + B2e
2t and x2(t) = ẋ1(t) − x1(t) − 1 = −2B1e

−t + B2e
2t − 1 follow.

Finally, the two integration constants are determined by the two initial conditions:
1 = x1(0) = B1 + B2 and 2 = −2B1 + B2 − 1 give B1 = −2/3 and B2 = 5/3. This
leads to x∗1(t) = −2

3
e−t + 5

3
e2t and x∗2(t) = 4

3
e−t + 5

3
e2t − 1.

b. The function H(x1, x2, u, p1(t), p2(t)) is clearly linear in (x1, x2, u), so a fortiori
it is concave in (x1, x2, u). Hence, the sufficiency theorem applies; this implies that
u∗ ≡ 1, as found in part a, is optimal.
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