Analysis on Manifolds Lecture notes for the 2009/2010 Master Class

Erik van den Ban Marius Crainic

E-mail address: .
E-mail address: .
Received by the editors September, 2009.

•

©0000 American Mathematical Society

BAN-CRAINIC, ANALYSIS ON MANIFOLDS

LECTURE 6 Appendix: A special map in symbol space

6.4. The exponential of a differential operator

In these notes we assume that A is a symmetric $n \times n$ matrix with complex entries and with $\operatorname{Re} \langle A\xi, \xi \rangle \geq 0$ for all $\xi \in \mathbb{R}^n$. Here $\langle \cdot, \cdot \rangle$ denotes the standard bilinear pairing $\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$. The function

(6.1)
$$x \mapsto e^{-\langle A\xi, \xi \rangle}$$

is bounded on \mathbb{R}^n . Moreover, every derivative of (6.1) is polynomially bounded. Hence, multiplication by the function (6.1) defines a continuous linear endomorphism M(A) of the Schwartz space $\mathcal{S}(\mathbb{R}^n)$. As the operator M(A) is symmetric with respect to the usual pairing $\mathcal{S}(\mathbb{R}^n) \times \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$ defined by integration, it follows that M(A) has a unique extension to a continuous linear endomorphism $\mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$.

Clearly, M(A) leaves each subspace $L_s^2(\mathbb{R}^n)$, for $s \in \mathbb{R}$, invariant and restricts to a bounded linear endomorphism with operator norm at most 1 on it.

We define E(A) to be the unique continuous linear endomorphism of $\mathcal{S}'(\mathbb{R}^n)$ such that the following diagram commutes

As \mathcal{F} restricts to a topological automorphism of $\mathcal{S}(\mathbb{R}^n)$ and to an isometric automorphism isomorphism from $H_s(\mathbb{R}^n)$ onto $L^2_s(\mathbb{R}^n)$, it follows that E(A)restricts to a bounded endomorphism of $H_s(\mathbb{R}^n)$ of operator norm at most 1. Furthermore, E(A) restricts to a continuous linear endomorphism of $\mathcal{S}(\mathbb{R}^n)$.

If $\varphi \in \mathcal{S}(\mathbb{R}^n)$, then clearly $\partial_t M(tA)\varphi + \langle A\xi, \xi \rangle M(tA)\varphi = 0$. By application of the inverse Fourier transform, we see that for a given function $f \in \mathcal{S}$ the function $f_t := E(tA)f$ satisfies:

$$\partial_t f_t = -\langle AD, D \rangle f_t$$
, where $-\langle AD, D \rangle = \sum_{ij} A_{ij} \partial_j \partial_i$.

We note that $f_0 = f$, so that f_t may be viewed as a solution to the associated Cauchy problem with initial datum f.

For obvious reasons, we will write

$$E(tA) = E^{-t\langle AD, D \rangle}$$

from now on. The purpose of these notes is to derive estimates for E which are needed for symbol calculus.

Lemma 6.4.1. The operator $e^{\langle AD,D\rangle}$: $\mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ commutes with the translations T_a^* translations and the partial differentiations ∂_j , for $a \in \mathbb{R}^n$ and $1 \leq j \leq n$.

Proof This is obvious from the fact that translation and partial differentiation become multiplication with a function after Fourier transform; each such multiplication operator commutes with M(A).

Lemma 6.4.2. Assume that A is non-singular. Then the tempered function $x \mapsto e^{-\langle Ax, x \rangle/2}$ has Fourier transform

$$\mathcal{F}(e^{-\langle Ax,x\rangle/2}) = c(A)e^{-\langle B\xi,\xi\rangle/2}$$

with c(A) a non-zero constant.

Remark 6.4.3. It can be shown that $c(A) = (\det A)^{-1/2}$, where a suitable analytic branch of the square root must be chosen. However, we shall not need this here.

Proof For $v \in \mathbb{R}^n$ let ∂_v denote the directional derivative in the direction v. Thus, $\partial_v f(x) = df(x)v$. Then the tempered distribution f given by the function $x \mapsto \exp(-\langle Ax, x \rangle/2)$ satisfies the differential equations $\partial_v f = -\langle Av, x \rangle f$. It follows that the Fourier transform \hat{f} satisfies the differential equations $\langle v, \xi \rangle \hat{f} = -\partial_{Av} \hat{f}$ for all $v \in \mathbb{R}^n$, or, equivalently, $\partial_v f = -\langle Bv, \xi \rangle f$. This implies that the tempered distribution

$$\varphi = e^{\langle B\xi,\xi\rangle/2} \widehat{f}$$

has all partial derivatives equal to zero, hence is the tempered distribution coming from a constant function c(A).

Proposition 6.4.4. For each $k \in \mathbb{N}$ there exists a positive constant $C_k > 0$ such that the following holds. Let A be a complex symmetric $n \times n$ -matrix with $\operatorname{Re} A \geq 0$. Let $f \in \mathcal{S}(\mathbb{R})$ and let $x \in \mathbb{R}^n$ be a point such that the distance d(x)from x to supp u is at least one. Then

(6.2)
$$|e^{-\langle AD,D\rangle}f(x)| \le C_k d(x)^{-k} ||A||^{s+k} \max_{|\alpha|\le 2s+k} \sup |D^{\alpha}f|.$$

Proof The function $e^{-\langle A\xi,\xi\rangle} \widehat{f}$ in $\mathcal{S}(\mathbb{R}^n)$ depends continuously on A and hence, so does $e^{\langle AD,D\rangle} f$. We may therefore assume that A is non-singular.

As $e^{-\langle AD,D\rangle}$ commutes with translation, we may as well assume that x = 0. We assume that f has support outside the unit ball B in \mathbb{R}^n .

For each j let Ω_j denote the set points y on the unit sphere $S = \partial B$ with $|\langle y, e_j \rangle| > 1/2\sqrt{n}$. Then the U_j form an open cover of S. Let $\{\psi_j\}$ be a partition of unity subordinate to this covering and define $\chi_j : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ by $\chi_j(y) = \psi_j(y/||y||)$. Then each of the functions $f_j = \chi_j f$ satisfies the same hypotheses as f and in addition, $|\langle y, e_j \rangle| \ge |y|/2\sqrt{n}$ for $y \in \text{supp } f_j$. As $f = \sum_j f_j$, it suffices to prove the estimate for each of the f_j . Thus, without loss of generality, we may assume from the start that there exists a unit vector $v \in \mathbb{R}^n$ such that $|\langle y, v \rangle| \ge |y|/2\sqrt{n}$ for all $y \in \text{supp } f$.

We now observe that

$$e^{-\langle AD,D\rangle}f(0) = \int e^{-\langle A\xi,\xi\rangle}\widehat{f}(\xi) \ d\xi = c \int e^{-\langle By,y\rangle/4} f(y) \ dy,$$

where $B = A^{-1}$. The idea is to apply partial differentiation with the directional derivative ∂_{Av} to this formula. For this we note that

$$e^{-\langle By,y\rangle/4} = -\frac{2}{\langle v,y\rangle}\partial_{Av}e^{-\langle By,y\rangle/4}$$

on supp f, so that, for each $j \ge 0$,

$$e^{-\langle AD,D\rangle}f(0) = c 2^{j} \int e^{-\langle By,y\rangle/4} [\langle v,y\rangle^{-1}\partial_{Av}]^{j}f(y) dy$$
$$= [e^{-\langle AD,D\rangle}(\langle v,\cdot\rangle^{-1}\partial_{Av})^{j}f](0).$$

By using the Sobolev lemma, we find, for each natural number s > n/2, that

$$\begin{aligned} |e^{-\langle AD,D\rangle}f(0)| &\leq C' \max_{|\alpha|\leq s} \|D^{\alpha}e^{-\langle AD,D\rangle}(\langle v,\,\cdot\,\rangle^{-1}\partial_{Av})^{j}f\|_{L^{2}} \\ &= C' \max_{|\alpha|\leq s} \|e^{-\langle AD,D\rangle}D^{\alpha}(\langle v,\,\cdot\,\rangle^{-1}\partial_{Av})^{j}f\|_{L^{2}} \\ &\leq C' \max_{|\alpha|\leq s} \|D^{\alpha}(\langle v,\,\cdot\,\rangle^{-1}\partial_{Av})^{j}f\|_{L^{2}}. \end{aligned}$$

By application of the Leibniz rule and using that $|\langle v, y \rangle| \ge ||y||/2\sqrt{n}$ and $||y|| \ge d \ge 1$ for $y \in \text{supp } f$, we see that, for j > 2n,

$$|e^{-\langle AD,D\rangle}f(0)| \leq C'_j ||A||^j d^{n/2-j} \max_{|\alpha| \leq s+j} \sup |D^{\alpha}f|.$$

We now take j = s + k to obtain the desired estimate.

Our next estimate is independent of supports.

Lemma 6.4.5. Let s > n/2 be an integer. Then there exists a positive constant with the following property. Let $A \in M_n(\mathbb{C})$ be symmetric with $\operatorname{Re} A \ge 0$. Then for all $f \in \mathcal{S}(\mathbb{R}^n)$ and all $x \in \mathbb{R}^n$,

$$|e^{-\langle AD,D\rangle}f(x)| \le C \max_{|\alpha|\le s} \|D^{\alpha}f\|_{L^2}.$$

Proof By the Sobolev lemma we have

$$\begin{aligned} |e^{-\langle AD,D\rangle}f(x)| &\leq C \max_{|\alpha|\leq s} \|D^{\alpha}e^{-\langle AD,D\rangle}f\|_{L^{2}} \\ &= C \max_{|\alpha|\leq s} \|e^{-\langle AD,D\rangle}D^{\alpha}f\|_{L^{2}} \\ &\leq C \max_{|\alpha|\leq s} \|D^{\alpha}f\|_{L^{2}} \end{aligned}$$

Corollary 6.4.6. Let s > n/2 be an integer and let C > 0 be the constant of Lemma 6.4.5. Let $\mathcal{K} \subset \mathbb{R}^n$ a compact subset. Let $A \in M_n(\mathbb{C})$ be symmetric and Re $A \ge 0$. Then for every $f \in C^s_{\mathcal{K}}(\mathbb{R}^n)$, the distribution $e^{-\langle AD,D \rangle}f$ is a continuous function, and

$$|e^{-\langle AD,D\rangle}f(x)| \le C\sqrt{\operatorname{vol}\left(\mathcal{K}\right)} \max_{|\alpha|\le s} \sup |D^{\alpha}f|, \qquad (x\in\mathbb{R}^n).$$

Proof We first assume that $f \in C^{\infty}_{\mathcal{K}'}(\mathbb{R}^n)$ with \mathcal{K}' compact. Then by straightforward estimation,

$$\|D^{\alpha}f\|_{L^2} \le \operatorname{vol}\left(\mathcal{K}'\right) \sup |D^{\alpha}f|$$

and the estimate follows with \mathcal{K}' instead of \mathcal{K} . Let now $f \in C^s_{\mathcal{K}}(\mathbb{R}^n)$. Then by regularization there is a sequence $f_n \in C^{\infty}_{\mathcal{K}_n}(\mathbb{R}^n)$, with $\mathcal{K}_n \to \mathcal{K}$ and $f_n \to f$ in $C^s(\mathbb{R}^n)$. By the above estimate, the sequence $e^{-\langle AD,D \rangle}f_n$ is Cauchy in $C(\mathbb{R}^n)$. By passing to a subsequence we may arrange that the sequence already converges to a limit φ in $C(\mathbb{R}^n)$. By continuity of $e^{-\langle AD,D \rangle}$ in $\mathcal{S}'(\mathbb{R}^n)$ it follows that $\varphi = e^{-\langle AD,D \rangle}f$. The required estimate for φ now follows from the similar estimates for $e^{-\langle AD,D \rangle}f_n$ by passing to the limit for $n \to \infty$.

In the sequel we shall frequently refer to a principle that is made explicit in the following lemma.

Lemma 6.4.7. Let $L : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ be a continuous linear endomorphism. Let V, W be linear subspaces of $\mathcal{S}'(\mathbb{R}^n)$ equipped with locally convex topologies for which the inclusion maps are continuous. Assume that $C_c^{\infty}(\mathbb{R}^n)$ is dense in V and that W is complete. If L maps $C_c^{\infty}(\mathbb{R}^n)$ into W, and the restricted map $L_0: C_c^{\infty}(\mathbb{R}^n) \to W$ is continuous with respect to the V-topology on the first space, then $L(V) \subset W$.

Proof The restricted map L_0 has a unique extension to a continuous linear map $L_1: V \to W$. Thus, it suffices to show that $L_1 = L$ on V. Fix $\varphi \in \mathcal{S}(\mathbb{R}^n)$. Then, the linear functional $\langle \cdot, \varphi \rangle$ is continuous on W. It follows that the linear functional μ on $C_c^{\infty}(\mathbb{R}^n)$ given by $\mu(f) = \langle L_1 f, \varphi \rangle$ is continuous linear for the V-topology.

From the assumption about the continuity of L is follows that the functional $\nu : f \mapsto \langle Lf, \varphi \rangle$ is continuous for the $\mathcal{S}'(\mathbb{R}^n)$ topology. In particular, this implies that ν is continuous for the V-topology.

As $\mu = \nu$ on $C_c^{\infty}(\mathbb{R}^n)$ and $C_c^{\infty}(\mathbb{R}^n)$ is dense in V it follows that $L_1 = L$ on V.

If $p \in \mathbb{N}$ we denote by $C_b^p(\mathbb{R}^n)$ the Banach space of p times continuously differentiable functions $f : \mathbb{R}^n \to \mathbb{C}$ with $\max_{|\alpha| < p} \sup |D^{\alpha}f| < \infty$.

Proposition 6.4.8. Let s > n/2 be an integer. Then there exists a constant C > 0 with the following property. For each symmetric $A \in M_n(\mathbb{C})$ with $\operatorname{Re} A \ge 0$ and all $f \in C_b^{2s}(\mathbb{R}^n)$ the distribution $e^{-\langle AD,D \rangle}f$ is continuous and

$$|e^{-\langle AD,D\rangle}f(x)| \le C ||A||^s \max_{|\alpha|\le 2s} \sup |D^{\alpha}f|.$$

For x with $d(x) := d(x, \operatorname{supp} f) \ge 1$ the stronger estimate (6.2) is valid.

Proof As in the proof of the previous corollary, we first prove the estimate for $f \in C_c^{\infty}(\mathbb{R}^n)$. By translation invariance we may as well assume that x = 0.

We fix a function $\chi \in C_c^{\infty}(\mathbb{R}^n)$ which equals 1 on the unit ball and has support contained in $\mathcal{K} = B(0; 2)$ and such that $0 \leq \chi \leq 1$. Then the desired estimate follows from combining the estimate of Corollary 6.4.6 for χf with the estimate of Proposition 6.4.4 with k = 0 for $(1 - \chi)f$. By density of $C_c^{\infty}(\mathbb{R}^n)$ in $C_c^s(\mathbb{R}^n)$ it follows that $e^{-\langle AD,D\rangle}$ maps $C_c^s(\mathbb{R}^n)$ continuously into $C_b(\mathbb{R}^n)$, with the desired estimate (apply Lemma 6.4.7). As $C_c^s(\mathbb{R}^n)$ is not dense in $C_b^s(\mathbb{R}^n)$ we need an additional argument to pass to the latter space.

Let χ be as above, and put $\chi_n(x) = \chi(x/n)$. Then it is readily seen that $\chi_n f \to f$ in $\mathcal{S}'(\mathbb{R}^n)$. Hence $e^{-\langle AD,D \rangle} f_n \to e^{-\langle AD,D \rangle} f$ in $\mathcal{S}'(\mathbb{R}^n)$. It follows by application of Proposition 6.4.4 that for each compact subset $\mathcal{K} \subset \mathbb{R}^n$ the sequence $e^{-\langle AD,D \rangle} f_n|_{\mathcal{K}}$ is Cauchy in $C(\mathcal{K})$. This implies that $e^{-\langle AD,D \rangle} f_n$ converges to a limit φ in the Fréchet space $C(\mathbb{R}^n)$. In particular, φ is also the limit in $\mathcal{S}'(\mathbb{R}^n)$ so that $e^{-\langle AD,D \rangle} f = \varphi$ is a continuous function.

We now note that by application of the Leibniz rule,

$$\sup |D^{\alpha} f_n| \le \sup |D^{\alpha} f| + \mathcal{O}(1/n).$$

Hence the desired estimate for f follows from the similar estimate for f_n by passing to the limit.

Theorem 6.4.9. Let s > n/2 be an integer and let $k \in \mathbb{N}$. Then there exists a constant $C_k > 0$ with the following property. For each symmetric $A \in M_n(\mathbb{C})$ with $\operatorname{Re} A \ge 0$ and all $f \in C_b^{2s+2k}(\mathbb{R}^n)$ the function $e^{-\langle AD,D \rangle}f$ is continuous, and

$$|e^{-\langle AD,D\rangle}f(x) - \sum_{j < k} \frac{1}{j!} (-\langle AD,D\rangle)^j f(x)| \le C_k ||A||^s \max_{|\alpha| \le 2s} \sup |D^{\alpha}\langle AD,D\rangle^k f|.$$

Proof Let $R_k(A)f(x)$ denote the expression between absolute value signs on the left-hand sign of the above estimate. We first prove the estimate for a function $f \in C_c^{\infty}(\mathbb{R}^n)$. The function

$$f_t(x) := e^{-\langle tAD, D \rangle}(x)$$

is smooth in $(t, x) \in [0, \infty) \times \mathbb{R}^n$ and satisfies the differential equation

$$\partial_t f_t(x) = -\langle AD, D \rangle f_t(x).$$

By application of Taylor's formula with remainder term with respect to the variable t at t = 0, we find that

$$f_1(x) = \sum_{j < k} \partial_t^j f_t(x) - \frac{1}{(k-1)!} \int_0^1 (1-t)^{k-1} \partial_t^k f_t(x) dt.$$

This leads to

$$R_k(A)f(x) = \frac{1}{(k-1)!} \int_0^1 (1-t)^{k-1} (-\langle AD, D \rangle)^k f_t(x) dt$$

= $\frac{1}{(k-1)!} \int_0^1 (1-t)^{k-1} e^{-t\langle AD, D \rangle} (-\langle AD, D \rangle)^k f(x) dt.$

By estimation under the integral sign, making use of Proposition 6.4.8, we now obtain the desired estimate for $f \in C_c^{\infty}(\mathbb{R}^n)$. For the extension of the estimate to $C_c^{2s+2k}(\mathbb{R}^n)$ and finally to $C_b^{2s+2k}(\mathbb{R}^n)$ we proceed as in the proof of Proposition 6.4.8.

6.5. The exponential of a differential operator in symbol space

Let \mathcal{K} be a compact subset of \mathbb{R}^n and let $d \in \mathbb{R}$. Then the space of symbols $S^d_{\mathcal{K}}(\mathbb{R}^n)$ is a subspace of the space of tempered distributions $\mathcal{S}'(\mathbb{R}^{2n})$ with continuous inclusion map. Indeed, if $p \in S^d_{\mathcal{K}}(\mathbb{R}^n)$, then for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\begin{aligned} \langle p, \varphi \rangle &= \int_{\mathbb{R}^{2n}} p(x,\xi) \ \varphi(x,\xi) \ dx \ d\xi \\ &\leq \int_{R^{2n}} (1+\|\xi\|)^{-d-n-1} |p(x,\xi)| (1+|(x,\xi)|)^{|d|+n+1} |\varphi(x,\xi)| \ dx \ d\xi \\ &\leq C \ \mu^d_{\mathcal{K},0}(p) \ \nu_{|d|+n+1,0}(\varphi), \end{aligned}$$

with C > 0 only depending on n, \mathcal{K} and d.

We consider the second order differential operator

$$\langle D_x, \partial_\xi \rangle = i \sum_{j=1}^n \frac{\partial}{\partial x_j} \frac{\partial}{\partial \xi_j}.$$

Thus, with notation as in the previous section, $\langle D_x, \partial_\xi \rangle = -\langle AD, D \rangle$, where

$$A = i \left(\begin{array}{cc} 0 & I_n \\ I_n & 0 \end{array} \right),$$

with I_n the $n \times n$ identity matrix. The matrix A is complex, symmetric, and has real part equal to zero, hence fulfills all conditions of the previous section. Moreover, its operator norm ||A|| equals 1.

In the rest of this section we will discuss the action of $e^{\langle D_x, \partial_\xi \rangle}$ on $S^d_{\mathcal{K}}(\mathbb{R}^n)$. The following lemma is obvious.

Lemma 6.5.1. For each $k \in \mathbb{N}$,

$$\frac{1}{k!} \langle D_x, \partial_\xi \rangle = \sum_{|\alpha|=k} \frac{1}{\alpha!} D_x^{\alpha} \partial_\xi^{\alpha}.$$

In particular, $\langle D_x, \partial_\xi \rangle$ defines a continuous linear map $S^d(\mathbb{R}^n) \to S^{d-k}(\mathbb{R}^n)$, preserving supports.

Theorem 6.5.2. Let $k \in \mathbb{N}$. Then

(6.3)
$$e^{\langle D_x, \partial_\xi \rangle} - \sum_{|\alpha| < k} \frac{1}{\alpha!} D_x^{\alpha} \partial_\xi^{\alpha},$$

originally defined as an endomorphism of $\mathcal{S}'(\mathbb{R}^n)$, maps $S^d_{\mathcal{K}}(\mathbb{R}^n)$ continuous linearly into $S^{d-k}(\mathbb{R}^n)$. In particular, $e^{\langle D_x,\partial_\xi\rangle}$ restricts to a continuous linear map $S^d_{\mathcal{K}}(\mathbb{R}^n) \to S^d(\mathbb{R}^n)$.

Before turning to the proof of the theorem, we list a corollary that will be important for applications.

Corollary 6.5.3. Let $p \in S^d_{\mathcal{K}}(\mathbb{R}^n)$. Then $e^{\langle D_x, \partial_{\xi} \rangle} p \in S^d(\mathbb{R}^n)$ and $e^{\langle D_x, \partial_{\xi} \rangle} p \sim \sum_{\alpha \in \mathbb{N}^n} \frac{1}{\alpha!} D^{\alpha}_x \partial^{\alpha}_{\xi} p.$

We will prove Theorem 6.5.2 through a number of lemmas of a technical nature. The next lemma will be used frequently for extension purposes.

Lemma 6.5.4. Let $\mathcal{K} \subset U$ be compact and let d < d'. Then the space $C^{\infty}_{\mathcal{K},c}(\mathbb{R}^n)$ is dense in $S^d_{\mathcal{K}}(U)$ for the topology of $S^{d'}_{\mathcal{K}}(U)$.

Proof Let $p \in S^d_{\mathcal{K}}(U)$. Select $\psi \in C^{\infty}_c(\mathbb{R}^n)$ such that $\psi = 1$ on a neighborhood of 0. Put $\psi_n(\xi) = \psi(\xi/n)$ and

$$p_n(x,\xi) = \psi_n(\xi)p(x,\xi).$$

Then by an application of the Leibniz rule in a similar fashion as in the proof of Lemma 4.1.9, it follows that $\nu_{\mathcal{K},k}^{d'}(p_n-r) \to 0$ as $n \to \infty$, for each $k \in \mathbb{N}$. \Box

The expression (6.3) is abbreviated by $R_k(D)$. It will be convenient to use the notation

$$C^{\infty}_{\mathcal{K},c}(\mathbb{R}^{2n}) := \{ f \in C^{\infty}_{c}(\mathbb{R}^{2n}) \mid \operatorname{supp} f \subset \mathcal{K} \times \mathbb{R}^{n} \}.$$

Lemma 6.5.5. Let $k \in \mathbb{N}$. Then for each d < k the map $R_k(D)$ maps $S^d_{\mathcal{K}}(\mathbb{R}^n)$ continuous linearly into $C_b(\mathbb{R}^{2n})$.

Proof Let s > n/2 be an integer. Let $f \in C^{\infty}_{\mathcal{K},c}(\mathbb{R}^{2n})$. Then by Theorem 6.4.9,

$$\begin{aligned} |R_{k}(D)f(x,\xi)| &\leq C_{k} \max_{|\alpha|+|\beta|\leq 2s} \sup_{\mathcal{K}\times\mathbb{R}^{n}} |D_{x}^{\alpha}\partial_{\xi}^{\beta}\langle D_{x},\partial_{\xi}\rangle^{k}f(x,\xi)| \\ &\leq C_{k}' \max_{|\alpha|+|\beta|\leq 2s,|\gamma|=k} \sup_{\mathcal{K}\times\mathbb{R}^{n}} |D_{x}^{\alpha+\gamma}\partial_{\xi}^{\beta+\gamma}f(x,\xi)| \\ &\leq C_{k}' \max_{|\alpha|+|\beta|\leq 2s,|\gamma|=k} \sup_{\mathcal{K}\times\mathbb{R}^{n}} (1+\|\xi\|)^{d-k} \nu_{\mathcal{K},2s+2k}^{d}(f) \\ &\leq C_{k}' \nu_{\mathcal{K},2s+2k}^{d}(f). \end{aligned}$$

It follows that the map $R_k(D)$ is continuous $C^{\infty}_{\mathcal{K},c}(\mathbb{R}^{2n}) \to C_b(\mathbb{R}^{2n})$, with respect to the $S^d_{\mathcal{K}}(\mathbb{R}^n)$ -topology on the first space, for each d < k.

Let now d < k and fix d' with d < d' < k. Then by density of $C^{\infty}_{\mathcal{K},c}(\mathbb{R}^{2n})$ in $S^d_{\mathcal{K}}(\mathbb{R}^{2n})$ for the $S^{d'}_{\mathcal{K}}(\mathbb{R}^{2n})$ -topology, it follows by application of Lemma 6.4.7 that $R_k(D)$ maps $S^d_{\mathcal{K}}(\mathbb{R}^n)$ to $C_b(\mathbb{R}^n)$ with continuity relative to the $S^{d'}_{\mathcal{K}}(\mathbb{R}^n)$ topology on the domain. As this topology is weaker than the original topology on $S^d_{\mathcal{K}}(\mathbb{R}^n)$, the result follows.

Lemma 6.5.6. Let $d \in \mathbb{R}$ and assume that k > |d|. Let s be an integer > n/2. Then there exists a constant C > 0 such that for all $f \in C^{\infty}_{\mathcal{K},c}(\mathbb{R}^n)$ and all $(x,\xi) \in \mathbb{R}^{2n}$ with $\|\xi\| \ge 4$ we have

(6.4)
$$|R_k(D)f(x,\xi)| \le C(1+||\xi||)^{|d|-k}\nu^d_{\mathcal{K},2s+2k}(f).$$

Proof Let $\chi \in C_c^{\infty}(\mathbb{R}^n)$ be a smooth function which is identically 1 on the unit ball of \mathbb{R}^n , and has support inside the ball B(0;2). For t > 0 we define the function $\chi_t \in C_c^{\infty}(\mathbb{R}^n)$ by $\chi_t(\xi) = \chi(t^{-1}\xi)$. Then $\chi_t(\xi)$ is identically 1 on B(0;t) and has support inside the ball B(0;2t). We agree to write $\psi = 1-\chi$ and $\psi_t(\xi) = \psi(t^{-1}\xi)$. In the following we will frequently use the obvious equalities

$$\sup |\partial_{\varepsilon}^{\alpha} \chi_t| = t^{-|\alpha|} \sup |\partial_{\varepsilon}^{\alpha} \chi|, \qquad \sup |\partial_{\varepsilon}^{\alpha} \psi_t| = t^{-|\alpha|} \sup |\partial_{\varepsilon}^{\alpha} \psi|.$$

Let $f \in C^{\infty}_{\mathcal{K},c}(\mathbb{R}^n)$. Then f is a Schwartz function, hence $e^{\langle D_x,\partial_\xi \rangle} f$ is a Schwartz function as well, and therefore, so is $R_k(D)f$. For t > 0 we agree to write $f_t(x,\xi) = \chi_t(\xi)f(x,t)$ and $g_t(x,\xi) = \psi_t(\xi))f(x,\xi)$. Then $f = f_t + g_t$. From now on we assume that $(x,\xi) \in \mathbb{R}^{2n}$, that $\|\xi\| \ge 4$ and $t = \frac{1}{4}\|\xi\|$.

We will complete the proof by showing that both the values $|R_k(D)f_t(x,\xi)|$ and $|R_k(D)g_t(x,\xi)|$ can be estimated by $C'\nu^d_{\mathcal{K},2s+k}(f)$ with C' > 0 a constant independent of f, x, ξ . We start with the first of these functions. As f_t has support inside $B(0;2t) = B(0; ||\xi||/2)$, it follows that $d(\xi, \operatorname{supp} f_t) \geq ||\xi||/2 \geq 2$. In view of Proposition 6.4.4 it follows that there exists a constant $C_k > 0$, only depending on k, such that

$$\begin{aligned} |R_k(D)f(x,\xi)| &= |e^{\langle D_x,\partial_\xi\rangle}f(x,\xi)| \\ &\leq C_k(\|\xi\|/2)^{-k} \max_{|\alpha|+|\beta| \leq 2s+k} \sup |D_x^{\alpha}\partial_\xi^{\beta}(\chi_t f)| \\ &\leq C'_k(1+\|\xi\|)^{-k} \max_{|\alpha|+|\beta_1+\beta_2| \leq 2s+k} \sup |\partial_\xi^{\beta_1}\chi_t D_x^{\alpha}\partial_\xi^{\beta_2}f|, \end{aligned}$$

with $C'_k > 0$ independent of f, x and ξ . For $\eta \in \operatorname{supp} \chi_t$ we have $\|\eta\| \le \|\xi\|/2$, so that

$$\begin{aligned} |\partial_{\xi}^{\beta_{1}}\chi_{t}(\eta) D_{x}^{\alpha}\partial_{\xi}^{\beta_{2}}f(y,\eta)| &\leq C_{k}''t^{-|\beta_{1}|}(1+\|\eta\|)^{d-|\beta_{2}|}\nu_{\mathcal{K},2s+k}^{d}(f) \\ &\leq C_{k}''(1+\|\xi\|/2)^{|d|}\nu_{\mathcal{K},2s+k}^{d}(f) \\ &\leq C_{k}'''(1+\|\xi\|)^{|d|}\nu_{\mathcal{K},2s+k}^{d}(f). \end{aligned}$$

It follows that

$$|R_k(D)f_t(x,\xi)| \le C'(1+\|\xi\|)^{|d|-k}\nu^d_{\mathcal{K},2s+2k}(f).$$

We now turn to g_t . By application of Theorem 6.4.9 it follows that

$$\begin{aligned} &|R_k(D)(g_t)(x,\xi)| \\ &\leq D_k \max_{|\alpha|+|\beta| \leq 2s} \sup |D_x^{\alpha} \partial_{\xi}^{\beta} \langle D_x, \partial_{\xi} \rangle^k(\psi_t f)| \\ &\leq D'_k \max_{|\alpha|+||\beta|| \leq 2s, |\gamma|=k} \sup |\partial_{\xi}^{\gamma+\beta}(\psi_t D_x^{\alpha+\gamma} f)| \end{aligned}$$

To estimate the latter expression, we concentrate on

(6.5)
$$|\partial_{\xi}^{\gamma+\beta}(\psi_t D_x^{\alpha+\gamma} f)(y,\eta)|,$$

for $y \in \mathcal{K}$ and $\eta \in \mathbb{R}^n$. Since $\psi_t(\eta)$ equals zero for $\|\eta\| \le t = \|\xi\|/4$ and equals 1 for $\|\eta\| \ge 2t = \|\xi\|/2$, we distinguish two cases: (a) $\|\xi\|/4 \le \|\eta\| \le \|\xi\|/2$ and (b) $\|\eta\| \ge \|\xi\|/2$.

Case (a): the expression (6.5) can be estimated by a sum of derivatives of the form

$$|(\partial_{\xi}^{\gamma_1}\psi_t)D_x^{\alpha+\gamma}\partial_{\xi}^{\gamma_2}f(y,\eta)|, \qquad (\gamma_1+\gamma_2=\gamma+\beta),$$

with suitable binomial coefficients. Now

$$\begin{aligned} |(\partial_{\xi}^{\gamma_{1}}\psi_{t})D_{x}^{\alpha+\gamma}\partial_{\xi}^{\gamma_{2}}f(y,\eta)| &\leq D_{k}''t^{-|\gamma_{1}|}(1+\|\eta\|)^{d-\|\gamma_{2}\|}\nu_{\mathcal{K},2s+2k}^{d}(f) \\ &\leq D_{k}'''(1+\|\xi\|)^{-|\gamma_{1}|}(1+\|\xi\|)^{d-|\gamma_{2}|}\nu_{\mathcal{K},2s+2k}^{d}(f) \\ &\leq D_{k}'''(1+\|\xi\|)^{d-k}\nu_{\mathcal{K},2s+2k}^{d}(f). \end{aligned}$$

Case (b): we now have that (6.5) equals $|D_x^{\alpha+\gamma}\partial_{\xi}^{\gamma+\beta}f(y,\eta)|$, and can be estimated by

$$\begin{aligned} |D_x^{\alpha+\gamma}\partial_{\xi}^{\gamma+\beta}f)(y,\eta)| &\leq (1+\|\eta\|)^{d-|\gamma+\beta|}\nu_{\mathcal{K},2s+2k}^d(f) \\ &\leq (1+\|\eta\|)^{|d|-k}\nu_{\mathcal{K},2s+2k}^d(f) \\ &\leq (1+\|\xi\|/2)^{d-k}\nu_{\mathcal{K},2s+2k}^d(f) \\ &\leq D(1+\|\xi\|)^{d-k}\nu_{\mathcal{K},2s+2k}^d(f). \end{aligned}$$

Collecting these estimates we see that

$$|R_k(D)g_t(x,\xi)| \le D'(1+||\xi||)^{|d|-k} \nu_{2s+2k}^d(f),$$

with D' > 0 a constant independent of f, x and ξ .

Corollary 6.5.7. Let d, k and s be as in the above lemma. With a suitable adaptation of the constant C > 0, the estimate (6.4) holds for all $(x, \xi) \in \mathbb{R}^{2n}$.

Proof It follows from Lemma 6.5.5 and its proof that there exists a constant $C_1 > 0$ such that $|R_k(D)f(x,\xi)| \leq C_1 \nu_{\mathcal{K},2s+2k}^d(f)$. We now use that

$$(1 + \|\xi\|)^{|d|-k} \ge 5^{|d|-k}$$

for all ξ with $|\xi|| \leq 4$. Hence, the estimate (6.4) holds with $C = 5^{k-|d|}C_1$ for $\|\xi\| \leq 4$.

Corollary 6.5.8. Let $d \in \mathbb{R}$ and $m \in \mathbb{N}$. Then there exist constants C > 0and $l \in \mathbb{N}$ such that for all $f \in C^{\infty}_{\mathcal{K},c}(\mathbb{R}^n)$ and all $(x,\xi) \in \mathbb{R}^{2n}$ we have

(6.6)
$$|R_m(D)f(x,\xi)| \le C(1+||\xi||)^{d-m}\nu^d_{\mathcal{K},l}(f).$$

Proof Let s be as in the previous corollary. Fix $k \in \mathbb{N}$ such that |d| - k < d - m. Let now C' > 0 be constant as in the previous corollary. Then for all $f \in C^{\infty}_{K,c}(\mathbb{R}^n)$ we have

$$|R_k(D)f(x,\xi)| \le C'(1+||\xi||)^{|d|-k}\nu^d_{\mathcal{K},2s+2m}(f), \qquad ((x,\xi)\in\mathbb{R}^{2n}).$$

On the other hand,

$$R_m(D) - R_k(D) = \sum_{k \le j \le m} \langle D_x, \partial_\xi \rangle^j$$

is a continuous linear operator $S^d_{\mathcal{K}}(\mathbb{R}^n) \to S^{d-k}_{\mathcal{K}}(\mathbb{R}^n)$. In fact, there exists a constant C'' > 0 such that

$$|R_m(D)f(f(x,\xi) - R_k(D)f(x,\xi)| \le C''(1 + ||\xi||)^{d-k}\nu_{\mathcal{K},2m-2}^d(f)$$

for all $f \in S^d_{\mathcal{K}}(\mathbb{R}^n)$ and $(x,\xi) \in \mathbb{R}^{2n}$. The result now follows with C = C' + C''and with $l = \max(2s + 2m, 2m - 2)$.

After these technicalities we can now finally complete the proof of the main theorem of this section.

102

Completion of the proof of Theorem 6.5.2 Let $k \in \mathbb{N}$, let $\alpha, \beta \in \mathbb{N}^n$ and put $m = k - |\beta|$. Then by the previous corollary, applied with $d - |\beta|$ in place of d there exist constants C > 0 and $l \in \mathbb{N}$ such that for all $f \in C^{\infty}_{\mathcal{K},c}(\mathbb{R}^n)$ and all $(x,\xi) \in \mathbb{R}^{2n}$,

$$|R_k(D)f(x,\xi)| \le (1 + ||\xi||)^{d-|\beta|} \nu_{\mathcal{K},l}^{d-|\beta|}(f).$$

Moreover, by definition of the seminorms,

$$\nu_{\mathcal{K},l}^{d-|\beta|}(D_x^{\alpha}\partial_{\xi}^{\beta}f) \le \nu_{\mathcal{K},l+|\alpha|+|\beta|}^d(f)$$

for all $f \in C^{\infty}_{\mathcal{K},c}(\mathbb{R}^n)$. Combining these estimates and using that $R_k(D)$ commutes with $D^{\alpha}_x \partial^{\beta}_{\mathcal{E}}$, we find that

$$\begin{aligned} |D_x^{\alpha}\partial_{\xi}^{\beta}R_k(D)f(x,\xi)| &= R_k(D)[D_x^{\alpha}\partial_{\xi}^{\beta}f](x,\xi) \\ &\leq C\nu_{\mathcal{K},l+|\alpha|+|\beta|}^d(f), \end{aligned}$$

for all $f \in C^{\infty}_{\mathcal{K},c}(\mathbb{R}^n)$ and $(x,\xi) \in \mathbb{R}^{2n}$.

It follows from the above that for each $d' \in \mathbb{R}$ the map

$$R_{k+1}(D): C^{\infty}_{\mathcal{K},c}(\mathbb{R}^n) \to S^{d'-(k+1)}(\mathbb{R}^n)$$

is continuous with respect to the $S_{\mathcal{K}}^{d'}(\mathbb{R}^n)$ -topology on $C_{\mathcal{K},c}^{\infty}(\mathbb{R}^n)$. In particular, this is valid for d' = d + 1. As $C_{\mathcal{K},c}^{\infty}(\mathbb{R}^n)$ is dense in $S_{\mathcal{K}}^d(\mathbb{R}^n)$ with respect to the topology of $S_{\mathcal{K}}^{d+1}(\mathbb{R}^n)$, it follows by application of Lemma 6.4.7 that $R_{k+1}(D)$ maps $S_{\mathcal{K}}^d(\mathbb{R}^n)$ into $S^{d-k}(\mathbb{R}^n)$ with continuity relative to the $S_{\mathcal{K}}^{d+1}(\mathbb{R}^n)$ -topology on the first space. As this topology is weaker than the usual one, we conclude that $R_{k+1}(D) : S_{\mathcal{K}}^d(\mathbb{R}^n) \to S^{d-k}(\mathbb{R}^n)$ is continuous. Now

$$R_{k+1}(D) - R_k(D) = \langle D_x, \partial_\xi \rangle^k$$

is continuous $S^d_{\mathcal{K}}(\mathbb{R}^n) \to S^{d-k}(\mathbb{R}^n)$ as well, and the result follows.