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LECTURE 6
Appendix: A special map in symbol space

6.4. The exponential of a differential operator

In these notes we assume that A is a symmetric n × n matrix with complex
entries and with Re 〈Aξ, ξ〉 ≥ 0 for all ξ ∈ Rn. Here 〈 · , · 〉 denotes the standard
bilinear pairing Cn × Cn → C. The function

(6.1) x 7→ e−〈Aξ,ξ〉

is bounded on Rn. Moreover, every derivative of (6.1) is polynomially bounded.
Hence, multiplication by the function (6.1) defines a continuous linear endomor-
phism M(A) of the Schwartz space S(Rn). As the operator M(A) is symmetric
with respect to the usual pairing S(Rn)×S(Rn) → C defined by integration, it
follows that M(A) has a unique extension to a continuous linear endomorphism
S ′(Rn) → S ′(Rn).

Clearly, M(A) leaves each subspace L2
s(Rn), for s ∈ R, invariant and re-

stricts to a bounded linear endomorphism with operator norm at most 1 on
it.

We define E(A) to be the unique continuous linear endomorphism of S ′(Rn)
such that the following diagram commutes

S ′(Rn)
M(A)−→ S ′(Rn)

F ↑ ↑ F
S ′(Rn)

E(A)−→ S ′(Rn)

As F restricts to a topological automorphism of S(Rn) and to an isometric
automorphism isomorphism from Hs(Rn) onto L2

s(Rn), it follows that E(A)
restricts to a bounded endomorphism of Hs(Rn) of operator norm at most 1.
Furthermore, E(A) restricts to a continuous linear endomorphism of S(Rn).

If ϕ ∈ S(Rn), then clearly ∂tM(tA)ϕ + 〈Aξ, ξ〉M(tA)ϕ = 0. By application
of the inverse Fourier transform, we see that for a given function f ∈ S the
function ft := E(tA)f satisfies:

∂tft = −〈AD, D〉ft, where − 〈AD, D〉 =
∑

ij

Aij∂j∂i.

We note that f0 = f, so that ft may be viewed as a solution to the associated
Cauchy problem with initial datum f.

For obvious reasons, we will write

E(tA) = E−t〈AD,D〉

from now on. The purpose of these notes is to derive estimates for E which are
needed for symbol calculus.

Lemma 6.4.1. The operator e〈AD,D〉 : S ′(Rn) → S ′(Rn) commutes with the
translations T ∗a translations and the partial differentiations ∂j , for a ∈ Rn and
1 ≤ j ≤ n.



LECTURE 6. APPENDIX: A SPECIAL MAP IN SYMBOL SPACE 95

Proof This is obvious from the fact that translation and partial differentia-
tion become multiplication with a function after Fourier transform; each such
multiplication operator commutes with M(A). ¤

Lemma 6.4.2. Assume that A is non-singular. Then the tempered function
x 7→ e−〈Ax,x〉/2 has Fourier transform

F(e−〈Ax,x〉/2) = c(A)e−〈Bξ,ξ〉/2

with c(A) a non-zero constant.

Remark 6.4.3. It can be shown that c(A) = (detA)−1/2, where a suitable
analytic branch of the square root must be chosen. However, we shall not need
this here.

Proof For v ∈ Rn let ∂v denote the directional derivative in the direction v.
Thus, ∂vf(x) = df(x)v. Then the tempered distribution f given by the function
x 7→ exp(−〈Ax, x〉/2) satisfies the differential equations ∂vf = −〈Av, x〉f. It
follows that the Fourier transform f̂ satisfies the differential equations 〈v, ξ〉f̂ =
−∂Avf̂ for all v ∈ Rn, or, equivalently, ∂vf = −〈Bv, ξ〉f. This implies that the
tempered distribution

ϕ = e〈Bξ,ξ〉/2f̂

has all partial derivatives equal to zero, hence is the tempered distribution
coming from a constant function c(A). ¤

Proposition 6.4.4. For each k ∈ N there exists a positive constant Ck > 0
such that the following holds. Let A be a complex symmetric n× n-matrix with
ReA ≥ 0. Let f ∈ S(R) and let x ∈ Rn be a point such that the distance d(x)
from x to suppu is at least one. Then

(6.2) |e−〈AD,D〉f(x)| ≤ Ckd(x)−k‖A‖s+k max
|α|≤2s+k

sup |Dαf |.

Proof The function e−〈Aξ,ξ〉f̂ in S(Rn) depends continuously on A and hence,
so does e〈AD,D〉f. We may therefore assume that A is non-singular.

As e−〈AD,D〉 commutes with translation, we may as well assume that x = 0.
We assume that f has support outside the unit ball B in Rn.

For each j let Ωj denote the set points y on the unit sphere S = ∂B with
|〈y, ej〉| > 1/2

√
n. Then the Uj form an open cover of S. Let {ψj} be a partition

of unity subordinate to this covering and define χj : Rn \ {0} → R by χj(y) =
ψj(y/‖y‖). Then each of the functions fj = χjf satisfies the same hypotheses as
f and in addition, |〈y, ej〉| ≥ |y|/2

√
n for y ∈ supp fj . As f =

∑
j fj , it suffices

to prove the estimate for each of the fj . Thus, without loss of generality, we
may assume from the start that there exists a unit vector v ∈ Rn such that
|〈y, v〉| ≥ |y|/2

√
n for all y ∈ supp f.

We now observe that

e−〈AD,D〉f(0) =
∫

e−〈Aξ,ξ〉f̂(ξ) dξ = c

∫
e−〈By,y〉/4 f(y) dy,
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where B = A−1. The idea is to apply partial differentiation with the directional
derivative ∂Av to this formula. For this we note that

e−〈By,y〉/4 = − 2
〈v, y〉∂Ave

−〈By,y〉/4

on supp f, so that, for each j ≥ 0,

e−〈AD,D〉f(0) = c 2j

∫
e−〈By,y〉/4 [〈v, y〉−1∂Av]jf(y) dy

= [e−〈AD,D〉(〈v, · 〉−1∂Av)jf ](0).

By using the Sobolev lemma, we find, for each natural number s > n/2, that

|e−〈AD,D〉f(0)| ≤ C ′ max
|α|≤s

‖Dαe−〈AD,D〉(〈v, · 〉−1∂Av)jf‖L2

= C ′ max
|α|≤s

‖e−〈AD,D〉Dα(〈v, · 〉−1∂Av)jf‖L2

≤ C ′ max
|α|≤s

‖Dα(〈v, · 〉−1∂Av)jf‖L2 .

By application of the Leibniz rule and using that |〈v, y〉| ≥ ‖y‖/2
√

n and ‖y‖ ≥
d ≥ 1 for y ∈ supp f, we see that, for j > 2n,

|e−〈AD,D〉f(0)| ≤ C ′
j‖A‖jdn/2−j max

|α|≤s+j
sup |Dαf |.

We now take j = s + k to obtain the desired estimate. ¤
Our next estimate is independent of supports.

Lemma 6.4.5. Let s > n/2 be an integer. Then there exists a positive con-
stant with the following property. Let A ∈ Mn(C) be symmetric with ReA ≥ 0.
Then for all f ∈ S(Rn) and all x ∈ Rn,

|e−〈AD,D〉f(x)| ≤ C max
|α|≤s

‖Dαf‖L2 .

Proof By the Sobolev lemma we have

|e−〈AD,D〉f(x)| ≤ C max
|α|≤s

‖Dαe−〈AD,D〉f‖L2

= C max
|α|≤s

‖e−〈AD,D〉Dαf‖L2

≤ C max
|α|≤s

‖Dαf‖L2

¤

Corollary 6.4.6. Let s > n/2 be an integer and let C > 0 be the constant of
Lemma 6.4.5. Let K ⊂ Rn a compact subset. Let A ∈ Mn(C) be symmetric
and Re A ≥ 0. Then for every f ∈ Cs

K(Rn), the distribution e−〈AD,D〉f is a
continuous function, and

|e−〈AD,D〉f(x)| ≤ C
√

vol (K) max
|α|≤s

sup |Dαf |, (x ∈ Rn).
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Proof We first assume that f ∈ C∞
K′(R

n) with K′ compact. Then by straight-
forward estimation,

‖Dαf‖L2 ≤ vol (K′) sup |Dαf |
and the estimate follows with K′ instead of K. Let now f ∈ Cs

K(Rn). Then
by regularization there is a sequence fn ∈ C∞

Kn
(Rn), with Kn → K and fn →

f in Cs(Rn). By the above estimate, the sequence e−〈AD,D〉fn is Cauchy in
C(Rn). By passing to a subsequence we may arrange that the sequence already
converges to a limit ϕ in C(Rn). By continuity of e−〈AD,D〉 in S ′(Rn) it follows
that ϕ = e−〈AD,D〉f. The required estimate for ϕ now follows from the similar
estimates for e−〈AD,D〉fn by passing to the limit for n →∞. ¤

In the sequel we shall frequently refer to a principle that is made explicit in
the following lemma.

Lemma 6.4.7. Let L : S ′(Rn) → S ′(Rn) be a continuous linear endomor-
phism. Let V,W be linear subspaces of S ′(Rn) equipped with locally convex
topologies for which the inclusion maps are continuous. Assume that C∞

c (Rn)
is dense in V and that W is complete. If L maps C∞

c (Rn) into W, and the
restricted map L0 : C∞

c (Rn) → W is continuous with respect to the V -topology
on the first space, then L(V ) ⊂ W.

Proof The restricted map L0 has a unique extension to a continuous linear
map L1 : V → W. Thus, it suffices to show that L1 = L on V. Fix ϕ ∈ S(Rn).
Then, the linear functional 〈 · , ϕ〉 is continuous on W. It follows that the linear
functional µ on C∞

c (Rn) given by µ(f) = 〈L1f, ϕ〉 is continuous linear for the
V -topology.

From the assumption about the continuity of L is follows that the functional
ν : f 7→ 〈Lf, ϕ〉 is continuous for the S ′(Rn) topology. In particular, this implies
that ν is continuous for the V -topology.

As µ = ν on C∞
c (Rn) and C∞

c (Rn) is dense in V it follows that L1 = L on
V. ¤

If p ∈ N we denote by Cp
b (Rn) the Banach space of p times continuously

differentiable functions f : Rn → C with max|α|≤p sup |Dαf | < ∞.

Proposition 6.4.8. Let s > n/2 be an integer. Then there exists a constant
C > 0 with the following property. For each symmetric A ∈ Mn(C) with Re A ≥
0 and all f ∈ C2s

b (Rn) the distribution e−〈AD,D〉f is continuous and

|e−〈AD,D〉f(x)| ≤ C‖A‖s max
|α|≤2s

sup |Dαf |.

For x with d(x) := d(x, supp f) ≥ 1 the stronger estimate (6.2) is valid.

Proof As in the proof of the previous corollary, we first prove the estimate
for f ∈ C∞

c (Rn). By translation invariance we may as well assume that x = 0.
We fix a function χ ∈ C∞

c (Rn) which equals 1 on the unit ball and has
support contained in K = B(0; 2) and such that 0 ≤ χ ≤ 1. Then the desired
estimate follows from combining the estimate of Corollary 6.4.6 for χf with the
estimate of Proposition 6.4.4 with k = 0 for (1− χ)f.
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By density of C∞
c (Rn) in Cs

c (Rn) it follows that e−〈AD,D〉 maps Cs
c (Rn)

continuously into Cb(Rn), with the desired estimate (apply Lemma 6.4.7). As
Cs

c (Rn) is not dense in Cs
b (Rn) we need an additional argument to pass to the

latter space.
Let χ be as above, and put χn(x) = χ(x/n). Then it is readily seen that

χnf → f in S ′(Rn). Hence e−〈AD,D〉fn → e−〈AD,D〉f in S ′(Rn). It follows by ap-
plication of Proposition 6.4.4 that for each compact subset K ⊂ Rn the sequence
e−〈AD,D〉fn|K is Cauchy in C(K). This implies that e−〈AD,D〉fn converges to a
limit ϕ in the Fréchet space C(Rn). In particular, ϕ is also the limit in S ′(Rn)
so that e−〈AD,D〉f = ϕ is a continuous function.

We now note that by application of the Leibniz rule,

sup |Dαfn| ≤ sup |Dαf |+O(1/n).

Hence the desired estimate for f follows from the similar estimate for fn by
passing to the limit. ¤

Theorem 6.4.9. Let s > n/2 be an integer and let k ∈ N. Then there exists
a constant Ck > 0 with the following property. For each symmetric A ∈ Mn(C)
with ReA ≥ 0 and all f ∈ C2s+2k

b (Rn) the function e−〈AD,D〉f is continuous,
and

|e−〈AD,D〉f(x)−
∑

j<k

1
j!

(−〈AD, D〉)jf(x)| ≤ Ck‖A‖s max
|α|≤2s

sup |Dα〈AD, D〉kf |.

Proof Let Rk(A)f(x) denote the expression between absolute value signs
on the left-hand side of the above estimate. We first prove the estimate for a
function f ∈ C∞

c (Rn). The function

ft(x) := e−〈tAD,D〉(x)

is smooth in (t, x) ∈ [0,∞)× Rn and satisfies the differential equation

∂tft(x) = −〈AD, D〉ft(x).

By application of Taylor’s formula with remainder term with respect to the
variable t at t = 0, we find that

f1(x) =
∑

j<k

∂j
t ft(x)− 1

(k − 1)!

∫ 1

0
(1− t)k−1 ∂k

t ft(x) dt.

This leads to

Rk(A)f(x) =
1

(k − 1)!

∫ 1

0
(1− t)k−1 (−〈AD,D〉)k ft(x) dt

=
1

(k − 1)!

∫ 1

0
(1− t)k−1 e−t〈AD,D〉(−〈AD, D〉)k f(x) dt.

By estimation under the integral sign, making use of Proposition 6.4.8, we now
obtain the desired estimate for f ∈ C∞

c (Rn). For the extension of the estimate to
C2s+2k

c (Rn) and finally to C2s+2k
b (Rn) we proceed as in the proof of Proposition

6.4.8. ¤
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6.5. The exponential of a differential operator in symbol space

Let K be a compact subset of Rn and let d ∈ R. Then the space of symbols
Sd
K(Rn) is a subspace of the space of tempered distributions S ′(R2n) with con-

tinuous inclusion map. Indeed, if p ∈ Sd
K(Rn), then for all ϕ ∈ S(Rn) we have

〈p, ϕ〉 =
∫

R2n

p(x, ξ) ϕ(x, ξ) dx dξ

≤
∫

R2n

(1 + ‖ξ‖)−d−n−1|p(x, ξ)|(1 + |(x, ξ)|)|d|+n+1|ϕ(x, ξ)| dx dξ

≤ C µd
K,0(p) ν|d|+n+1,0(ϕ),

with C > 0 only depending on n,K and d.
We consider the second order differential operator

〈Dx, ∂ξ〉 = i
n∑

j=1

∂

∂xj

∂

∂ξj
.

Thus, with notation as in the previous section, 〈Dx, ∂ξ〉 = −〈AD, D〉, where

A = i

(
0 In

In 0

)
,

with In the n × n identity matrix. The matrix A is complex, symmetric, and
has real part equal to zero, hence fulfills all conditions of the previous section.
Moreover, its operator norm ‖A‖ equals 1.

In the rest of this section we will discuss the action of e〈Dx,∂ξ〉 on Sd
K(Rn).

The following lemma is obvious.

Lemma 6.5.1. For each k ∈ N,
1
k!
〈Dx, ∂ξ〉 =

∑

|α|=k

1
α!

Dα
x∂α

ξ .

In particular, 〈Dx, ∂ξ〉 defines a continuous linear map Sd(Rn) → Sd−k(Rn),
preserving supports.

Theorem 6.5.2. Let k ∈ N. Then

(6.3) e〈Dx,∂ξ〉 −
∑

|α|<k

1
α!

Dα
x∂α

ξ ,

originally defined as an endomorphism of S ′(Rn), maps Sd
K(Rn) continuous

linearly into Sd−k(Rn). In particular, e〈Dx,∂ξ〉 restricts to a continuous linear
map Sd

K(Rn) → Sd(Rn).

Before turning to the proof of the theorem, we list a corollary that will be
important for applications.

Corollary 6.5.3. Let p ∈ Sd
K(Rn). Then e〈Dx,∂ξ〉p ∈ Sd(Rn) and

e〈Dx,∂ξ〉p ∼
∑

α∈Nn

1
α!

Dα
x∂α

ξ p.
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We will prove Theorem 6.5.2 through a number of lemmas of a technical
nature. The next lemma will be used frequently for extension purposes.

Lemma 6.5.4. Let K ⊂ U be compact and let d < d′. Then the space C∞
K,c(Rn)

is dense in Sd
K(U) for the topology of Sd′

K (U).

Proof Let p ∈ Sd
K(U). Select ψ ∈ C∞

c (Rn) such that ψ = 1 on a neighborhood
of 0. Put ψn(ξ) = ψ(ξ/n) and

pn(x, ξ) = ψn(ξ)p(x, ξ).

Then by an application of the Leibniz rule in a similar fashion as in the proof
of Lemma 4.1.9, it follows that νd′

K,k(pn − r) → 0 as n →∞, for each k ∈ N. ¤
The expression (6.3) is abbreviated by Rk(D). It will be convenient to use

the notation

C∞
K,c(R2n) := {f ∈ C∞

c (R2n) | supp f ⊂ K × Rn}.
Lemma 6.5.5. Let k ∈ N. Then for each d < k the map Rk(D) maps Sd

K(Rn)
continuous linearly into Cb(R2n).

Proof Let s > n/2 be an integer. Let f ∈ C∞
K,c(R2n). Then by Theorem 6.4.9,

|Rk(D)f(x, ξ)| ≤ Ck max
|α|+|β|≤2s

sup
K×Rn

|Dα
x∂β

ξ 〈Dx, ∂ξ〉kf(x, ξ)|

≤ C ′
k max
|α|+|β|≤2s,|γ|=k

sup
K×Rn

|Dα+γ
x ∂β+γ

ξ f(x, ξ)|

≤ C ′
k max
|α|+|β|≤2s,|γ|=k

sup
K×Rn

(1 + ‖ξ‖)d−k νd
K,2s+2k(f)

≤ C ′
k νd

K,2s+2k(f).

It follows that the map Rk(D) is continuous C∞
K,c(R2n) → Cb(R2n), with respect

to the Sd
K(Rn)-topology on the first space, for each d < k.

Let now d < k and fix d′ with d < d′ < k. Then by density of C∞
K,c(R2n)

in Sd
K(R2n) for the Sd′

K (R2n)-topology, it follows by application of Lemma 6.4.7
that Rk(D) maps Sd

K(Rn) to Cb(Rn) with continuity relative to the Sd′
K (Rn)-

topology on the domain. As this topology is weaker than the original topology
on Sd

K(Rn), the result follows. ¤

Lemma 6.5.6. Let d ∈ R and assume that k > |d|. Let s be an integer > n/2.
Then there exists a constant C > 0 such that for all f ∈ C∞

K,c(Rn) and all
(x, ξ) ∈ R2n with ‖ξ‖ ≥ 4 we have

(6.4) |Rk(D)f(x, ξ)| ≤ C(1 + ‖ξ‖)|d|−kνd
K,2s+2k(f).

Proof Let χ ∈ C∞
c (Rn) be a smooth function which is identically 1 on the

unit ball of Rn, and has support inside the ball B(0; 2). For t > 0 we define
the function χt ∈ C∞

c (Rn) by χt(ξ) = χ(t−1ξ). Then χt(ξ) is identically 1 on
B(0; t) and has support inside the ball B(0; 2t). We agree to write ψ = 1−χ and
ψt(ξ) = ψ(t−1ξ). In the following we will frequently use the obvious equalities

sup |∂α
ξ χt| = t−|α| sup |∂α

ξ χ|, sup |∂α
ξ ψt| = t−|α| sup |∂α

ξ ψ|.
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Let f ∈ C∞
K,c(Rn). Then f is a Schwartz function, hence e〈Dx,∂ξ〉f is a Schwartz

function as well, and therefore, so is Rk(D)f. For t > 0 we agree to write
ft(x, ξ) = χt(ξ)f(x, t) and gt(x, ξ) = ψt(ξ))f(x, ξ). Then f = ft + gt. From now
on we assume that (x, ξ) ∈ R2n, that ‖ξ‖ ≥ 4 and t = 1

4‖ξ‖.
We will complete the proof by showing that both the values |Rk(D)ft(x, ξ)|

and |Rk(D)gt(x, ξ)| can be estimated by C ′νd
K,2s+k(f) with C ′ > 0 a constant

independent of f, x, ξ. We start with the first of these functions. As ft has
support inside B(0; 2t) = B(0; ‖ξ‖/2), it follows that d(ξ, supp ft) ≥ ‖ξ‖/2 ≥ 2.
In view of Proposition 6.4.4 it follows that there exists a constant Ck > 0, only
depending on k, such that

|Rk(D)f(x, ξ)| = |e〈Dx,∂ξ〉f(x, ξ)|
≤ Ck(‖ξ‖/2)−k max

|α|+|β|≤2s+k
sup |Dα

x∂β
ξ (χtf)|

≤ C ′
k(1 + ‖ξ‖)−k max

|α|+|β1+β2|≤2s+k
sup |∂β1

ξ χt Dα
x∂β2

ξ f |,

with C ′
k > 0 independent of f, x and ξ. For η ∈ suppχt we have ‖η‖ ≤ ‖ξ‖/2,

so that

|∂β1

ξ χt(η) Dα
x∂β2

ξ f(y, η)| ≤ C ′′
k t−|β1|(1 + ‖η‖)d−|β2|νd

K,2s+k(f)

≤ C ′′
k (1 + ‖ξ‖/2)|d|νd

K,2s+k(f)

≤ C ′′′
k (1 + ‖ξ‖)|d|νd

K,2s+k(f).

It follows that

|Rk(D)ft(x, ξ)| ≤ C ′(1 + ‖ξ‖)|d|−kνd
K,2s+2k(f).

We now turn to gt. By application of Theorem 6.4.9 it follows that

|Rk(D)(gt)(x, ξ)|
≤ Dk max

|α|+|β|≤2s
sup |Dα

x∂β
ξ 〈Dx, ∂ξ〉k(ψtf)|

≤ D′
k max
|α|+‖β‖≤2s,|γ|=k

sup |∂γ+β
ξ (ψtD

α+γ
x f)|

To estimate the latter expression, we concentrate on

(6.5) |∂γ+β
ξ (ψtD

α+γ
x f)(y, η)|,

for y ∈ K and η ∈ Rn. Since ψt(η) equals zero for ‖η‖ ≤ t = ‖ξ‖/4 and equals 1
for ‖η‖ ≥ 2t = ‖ξ‖/2, we distinguish two cases: (a) ‖ξ‖/4 ≤ ‖η‖ ≤ ‖ξ‖/2 and
(b) ‖η‖ ≥ ‖ξ‖/2.

Case (a): the expression (6.5) can be estimated by a sum of derivatives of the
form

|(∂γ1

ξ ψt)Dα+γ
x ∂γ2

ξ f(y, η)|, (γ1 + γ2 = γ + β),
with suitable binomial coefficients. Now

|(∂γ1

ξ ψt)Dα+γ
x ∂γ2

ξ f(y, η)| ≤ D′′
kt−|γ1|(1 + ‖η‖)d−‖γ2‖νd

K,2s+2k(f)

≤ D′′′
k (1 + ‖ξ‖)−|γ1|(1 + ‖ξ‖)d−|γ2|νd

K,2s+2k(f)

≤ D′′′
k (1 + ‖ξ‖)d−kνd

K,2s+2k(f).
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Case (b): we now have that (6.5) equals |Dα+γ
x ∂γ+β

ξ f(y, η)|, and can be esti-
mated by

|Dα+γ
x ∂γ+β

ξ f)(y, η)| ≤ (1 + ‖η‖)d−|γ+β|νd
K,2s+2k(f)

≤ (1 + ‖η‖)|d|−kνd
K,2s+2k(f)

≤ (1 + ‖ξ‖/2)d−kνd
K,2s+2k(f)

≤ D(1 + ‖ξ‖)d−kνd
K,2s+2k(f).

Collecting these estimates we see that

|Rk(D)gt(x, ξ)| ≤ D′(1 + ‖ξ‖)|d|−k νd
2s+2k(f),

with D′ > 0 a constant independent of f, x and ξ. ¤

Corollary 6.5.7. Let d, k and s be as in the above lemma. With a suitable
adaptation of the constant C > 0, the estimate (6.4) holds for all (x, ξ) ∈ R2n.

Proof It follows from Lemma 6.5.5 and its proof that there exists a constant
C1 > 0 such that |Rk(D)f(x, ξ)| ≤ C1ν

d
K,2s+2k(f). We now use that

(1 + ‖ξ‖)|d|−k ≥ 5|d|−k

for all ξ with |ξ‖ ≤ 4. Hence, the estimate (6.4) holds with C = 5k−|d|C1 for
‖ξ‖ ≤ 4. ¤

Corollary 6.5.8. Let d ∈ R and m ∈ N. Then there exist constants C > 0
and l ∈ N such that for all f ∈ C∞

K,c(Rn) and all (x, ξ) ∈ R2n we have

(6.6) |Rm(D)f(x, ξ)| ≤ C(1 + ‖ξ‖)d−mνd
K,l(f).

Proof Let s be as in the previous corollary. Fix k ∈ N such that |d| − k <
d −m. Let now C ′ > 0 be constant as in the previous corollary. Then for all
f ∈ C∞

K,c(Rn) we have

|Rk(D)f(x, ξ)| ≤ C ′(1 + ‖ξ‖)|d|−kνd
K,2s+2m(f), ( (x, ξ) ∈ R2n).

On the other hand,

Rm(D)−Rk(D) =
∑

k≤j≤m

〈Dx, ∂ξ〉j

is a continuous linear operator Sd
K(Rn) → Sd−k

K (Rn). In fact, there exists a
constant C ′′ > 0 such that

|Rm(D)f(f(x, ξ)−Rk(D)f(x, ξ)| ≤ C ′′(1 + ‖ξ‖)d−kνd
K,2m−2(f)

for all f ∈ Sd
K(Rn) and (x, ξ) ∈ R2n. The result now follows with C = C ′ + C ′′

and with l = max(2s + 2m, 2m− 2). ¤

After these technicalities we can now finally complete the proof of the main
theorem of this section.
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Completion of the proof of Theorem 6.5.2 Let k ∈ N, let α, β ∈ Nn and
put m = k − |β|. Then by the previous corollary, applied with d− |β| in place
of d there exist constants C > 0 and l ∈ N such that for all f ∈ C∞

K,c(Rn) and
all (x, ξ) ∈ R2n,

|Rk(D)f(x, ξ)| ≤ (1 + ‖ξ‖)d−|β|νd−|β|
K,l (f).

Moreover, by definition of the seminorms,

ν
d−|β|
K,l (Dα

x∂β
ξ f) ≤ νd

K,l+|α|+|β|(f)

for all f ∈ C∞
K,c(Rn). Combining these estimates and using that Rk(D) com-

mutes with Dα
x∂β

ξ , we find that

|Dα
x∂β

ξ Rk(D)f(x, ξ)| = Rk(D)[Dα
x∂β

ξ f ](x, ξ)

≤ Cνd
K,l+|α|+|β|(f),

for all f ∈ C∞
K,c(Rn) and (x, ξ) ∈ R2n.

It follows from the above that for each d′ ∈ R the map

Rk+1(D) : C∞
K,c(Rn) → Sd′−(k+1)(Rn)

is continuous with respect to the Sd′
K (Rn)-topology on C∞

K,c(Rn). In particular,
this is valid for d′ = d + 1. As C∞

K,c(Rn) is dense in Sd
K(Rn) with respect to the

topology of Sd+1
K (Rn), it follows by application of Lemma 6.4.7 that Rk+1(D)

maps Sd
K(Rn) into Sd−k(Rn) with continuity relative to the Sd+1

K (Rn)-topology
on the first space. As this topology is weaker than the usual one, we conclude
that Rk+1(D) : Sd

K(Rn) → Sd−k(Rn) is continuous. Now

Rk+1(D)−Rk(D) = 〈Dx, ∂ξ〉k
is continuous Sd

K(Rn) → Sd−k(Rn) as well, and the result follows. ¤


