Analysis on Manifolds Lecture notes for the 2009/2010 Master Class

Erik van den Ban
Marius Crainic

[^0]
LECTURE 6
 Appendix: A special map in symbol space

6.4. The exponential of a differential operator

In these notes we assume that A is a symmetric $n \times n$ matrix with complex entries and with $\operatorname{Re}\langle A \xi, \xi\rangle \geq 0$ for all $\xi \in \mathbb{R}^{n}$. Here $\langle\cdot, \cdot\rangle$ denotes the standard bilinear pairing $\mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$. The function

$$
\begin{equation*}
x \mapsto e^{-\langle A \xi, \xi\rangle} \tag{6.1}
\end{equation*}
$$

is bounded on \mathbb{R}^{n}. Moreover, every derivative of (6.1) is polynomially bounded. Hence, multiplication by the function (6.1) defines a continuous linear endomorphism $M(A)$ of the Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right)$. As the operator $M(A)$ is symmetric with respect to the usual pairing $\mathcal{S}\left(\mathbb{R}^{n}\right) \times \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ defined by integration, it follows that $M(A)$ has a unique extension to a continuous linear endomorphism $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

Clearly, $M(A)$ leaves each subspace $L_{s}^{2}\left(\mathbb{R}^{n}\right)$, for $s \in \mathbb{R}$, invariant and restricts to a bounded linear endomorphism with operator norm at most 1 on it.

We define $E(A)$ to be the unique continuous linear endomorphism of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ such that the following diagram commutes

$$
\begin{array}{clc}
\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) & \xrightarrow{M(A)} & \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \\
\mathcal{F}^{\prime} \uparrow & & \mathcal{F} \\
\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) & \xrightarrow{E(A)} & \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
\end{array}
$$

As \mathcal{F} restricts to a topological automorphism of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ and to an isometric automorphism isomorphism from $H_{s}\left(\mathbb{R}^{n}\right)$ onto $L_{s}^{2}\left(\mathbb{R}^{n}\right)$, it follows that $E(A)$ restricts to a bounded endomorphism of $H_{s}\left(\mathbb{R}^{n}\right)$ of operator norm at most 1 . Furthermore, $E(A)$ restricts to a continuous linear endomorphism of $\mathcal{S}\left(\mathbb{R}^{n}\right)$.

If $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then clearly $\partial_{t} M(t A) \varphi+\langle A \xi, \xi\rangle M(t A) \varphi=0$. By application of the inverse Fourier transform, we see that for a given function $f \in \mathcal{S}$ the function $f_{t}:=E(t A) f$ satisfies:

$$
\partial_{t} f_{t}=-\langle A D, D\rangle f_{t}, \quad \text { where } \quad-\langle A D, D\rangle=\sum_{i j} A_{i j} \partial_{j} \partial_{i} .
$$

We note that $f_{0}=f$, so that f_{t} may be viewed as a solution to the associated Cauchy problem with initial datum f.

For obvious reasons, we will write

$$
E(t A)=E^{-t\langle A D, D\rangle}
$$

from now on. The purpose of these notes is to derive estimates for E which are needed for symbol calculus.
Lemma 6.4.1. The operator $e^{\langle A D, D\rangle}: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ commutes with the translations T_{a}^{*} translations and the partial differentiations ∂_{j}, for $a \in \mathbb{R}^{n}$ and $1 \leq j \leq n$.

Proof This is obvious from the fact that translation and partial differentiation become multiplication with a function after Fourier transform; each such multiplication operator commutes with $M(A)$.

Lemma 6.4.2. Assume that A is non-singular. Then the tempered function $x \mapsto e^{-\langle A x, x\rangle / 2}$ has Fourier transform

$$
\mathcal{F}\left(e^{-\langle A x, x\rangle / 2}\right)=c(A) e^{-\langle B \xi, \xi\rangle / 2}
$$

with $c(A)$ a non-zero constant.
Remark 6.4.3. It can be shown that $c(A)=(\operatorname{det} A)^{-1 / 2}$, where a suitable analytic branch of the square root must be chosen. However, we shall not need this here.

Proof For $v \in \mathbb{R}^{n}$ let ∂_{v} denote the directional derivative in the direction v. Thus, $\partial_{v} f(x)=d f(x) v$. Then the tempered distribution f given by the function $x \mapsto \exp (-\langle A x, x\rangle / 2)$ satisfies the differential equations $\partial_{v} f=-\langle A v, x\rangle f$. It follows that the Fourier transform \widehat{f} satisfies the differential equations $\langle v, \xi\rangle \widehat{f}=$ $-\partial_{A v} \widehat{f}$ for all $v \in \mathbb{R}^{n}$, or, equivalently, $\partial_{v} f=-\langle B v, \xi\rangle f$. This implies that the tempered distribution

$$
\varphi=e^{\langle B \xi, \xi\rangle / 2} \widehat{f}
$$

has all partial derivatives equal to zero, hence is the tempered distribution coming from a constant function $c(A)$.

Proposition 6.4.4. For each $k \in \mathbb{N}$ there exists a positive constant $C_{k}>0$ such that the following holds. Let A be a complex symmetric $n \times n$-matrix with $\operatorname{Re} A \geq 0$. Let $f \in \mathcal{S}(\mathbb{R})$ and let $x \in \mathbb{R}^{n}$ be a point such that the distance $d(x)$ from x to $\operatorname{supp} u$ is at least one. Then

$$
\begin{equation*}
\left|e^{-\langle A D, D\rangle} f(x)\right| \leq C_{k} d(x)^{-k}\|A\|^{s+k} \max _{|\alpha| \leq 2 s+k} \sup \left|D^{\alpha} f\right| \tag{6.2}
\end{equation*}
$$

Proof The function $e^{-\langle A \xi, \xi\rangle} \widehat{f}$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ depends continuously on A and hence, so does $e^{\langle A D, D\rangle} f$. We may therefore assume that A is non-singular.

As $e^{-\langle A D, D\rangle}$ commutes with translation, we may as well assume that $x=0$. We assume that f has support outside the unit ball B in \mathbb{R}^{n}.

For each j let Ω_{j} denote the set points y on the unit sphere $S=\partial B$ with $\left|\left\langle y, e_{j}\right\rangle\right|>1 / 2 \sqrt{n}$. Then the U_{j} form an open cover of S. Let $\left\{\psi_{j}\right\}$ be a partition of unity subordinate to this covering and define $\chi_{j}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ by $\chi_{j}(y)=$ $\psi_{j}(y /\|y\|)$. Then each of the functions $f_{j}=\chi_{j} f$ satisfies the same hypotheses as f and in addition, $\left|\left\langle y, e_{j}\right\rangle\right| \geq|y| / 2 \sqrt{n}$ for $y \in \operatorname{supp} f_{j}$. As $f=\sum_{j} f_{j}$, it suffices to prove the estimate for each of the f_{j}. Thus, without loss of generality, we may assume from the start that there exists a unit vector $v \in \mathbb{R}^{n}$ such that $|\langle y, v\rangle| \geq|y| / 2 \sqrt{n}$ for all $y \in \operatorname{supp} f$.

We now observe that

$$
e^{-\langle A D, D\rangle} f(0)=\int e^{-\langle A \xi, \xi\rangle} \widehat{f}(\xi) d \xi=c \int e^{-\langle B y, y\rangle / 4} f(y) d y
$$

where $B=A^{-1}$. The idea is to apply partial differentiation with the directional derivative $\partial_{A v}$ to this formula. For this we note that

$$
e^{-\langle B y, y\rangle / 4}=-\frac{2}{\langle v, y\rangle} \partial_{A v} e^{-\langle B y, y\rangle / 4}
$$

on $\operatorname{supp} f$, so that, for each $j \geq 0$,

$$
\begin{aligned}
e^{-\langle A D, D\rangle} f(0) & =c 2^{j} \int e^{-\langle B y, y\rangle / 4}\left[\langle v, y\rangle^{-1} \partial_{A v}\right]^{j} f(y) d y \\
& =\left[e^{-\langle A D, D\rangle}\left(\langle v, \cdot\rangle^{-1} \partial_{A v}\right)^{j} f\right](0) .
\end{aligned}
$$

By using the Sobolev lemma, we find, for each natural number $s>n / 2$, that

$$
\begin{aligned}
\left|e^{-\langle A D, D\rangle} f(0)\right| & \leq C^{\prime} \max _{|\alpha| \leq s}\left\|D^{\alpha} e^{-\langle A D, D\rangle}\left(\langle v, \cdot\rangle^{-1} \partial_{A v}\right)^{j} f\right\|_{L^{2}} \\
& =C^{\prime} \max _{|\alpha| \leq s}\left\|e^{-\langle A D, D\rangle} D^{\alpha}\left(\langle v, \cdot\rangle^{-1} \partial_{A v}\right)^{j} f\right\|_{L^{2}} \\
& \leq C^{\prime} \max _{|\alpha| \leq s}\left\|D^{\alpha}\left(\langle v, \cdot\rangle^{-1} \partial_{A v}\right)^{j} f\right\|_{L^{2}} .
\end{aligned}
$$

By application of the Leibniz rule and using that $|\langle v, y\rangle| \geq\|y\| / 2 \sqrt{n}$ and $\|y\| \geq$ $d \geq 1$ for $y \in \operatorname{supp} f$, we see that, for $j>2 n$,

$$
\left|e^{-\langle A D, D\rangle} f(0)\right| \leq C_{j}^{\prime}\|A\|^{j} d^{n / 2-j} \max _{|\alpha| \leq s+j} \sup \left|D^{\alpha} f\right|
$$

We now take $j=s+k$ to obtain the desired estimate.
Our next estimate is independent of supports.
Lemma 6.4.5. Let $s>n / 2$ be an integer. Then there exists a positive constant with the following property. Let $A \in \mathrm{M}_{n}(\mathbb{C})$ be symmetric with $\operatorname{Re} A \geq 0$. Then for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and all $x \in \mathbb{R}^{n}$,

$$
\left|e^{-\langle A D, D\rangle} f(x)\right| \leq C \max _{|\alpha| \leq s}\left\|D^{\alpha} f\right\|_{L^{2}}
$$

Proof By the Sobolev lemma we have

$$
\begin{aligned}
\left|e^{-\langle A D, D\rangle} f(x)\right| & \leq C \max _{|\alpha| \leq s}\left\|D^{\alpha} e^{-\langle A D, D\rangle} f\right\|_{L^{2}} \\
& =C \max _{|\alpha| \leq s}\left\|e^{-\langle A D, D\rangle} D^{\alpha} f\right\|_{L^{2}} \\
& \leq C \max _{|\alpha| \leq s}\left\|D^{\alpha} f\right\|_{L^{2}}
\end{aligned}
$$

Corollary 6.4.6. Let $s>n / 2$ be an integer and let $C>0$ be the constant of Lemma 6.4.5. Let $\mathcal{K} \subset \mathbb{R}^{n}$ a compact subset. Let $A \in \mathrm{M}_{n}(\mathbb{C})$ be symmetric and $\operatorname{Re} A \geq 0$. Then for every $f \in C_{\mathcal{K}}^{s}\left(\mathbb{R}^{n}\right)$, the distribution $e^{-\langle A D, D\rangle} f$ is a continuous function, and

$$
\left|e^{-\langle A D, D\rangle} f(x)\right| \leq C \sqrt{\operatorname{vol}(\mathcal{K})} \max _{|\alpha| \leq s} \sup \left|D^{\alpha} f\right|, \quad\left(x \in \mathbb{R}^{n}\right)
$$

Proof We first assume that $f \in C_{\mathcal{K}^{\prime}}^{\infty}\left(\mathbb{R}^{n}\right)$ with \mathcal{K}^{\prime} compact. Then by straightforward estimation,

$$
\left\|D^{\alpha} f\right\|_{L^{2}} \leq \operatorname{vol}\left(\mathcal{K}^{\prime}\right) \sup \left|D^{\alpha} f\right|
$$

and the estimate follows with \mathcal{K}^{\prime} instead of \mathcal{K}. Let now $f \in C_{\mathcal{K}}^{s}\left(\mathbb{R}^{n}\right)$. Then by regularization there is a sequence $f_{n} \in C_{\mathcal{K}_{n}}^{\infty}\left(\mathbb{R}^{n}\right)$, with $\mathcal{K}_{n} \rightarrow \mathcal{K}$ and $f_{n} \rightarrow$ f in $C^{s}\left(\mathbb{R}^{n}\right)$. By the above estimate, the sequence $e^{-\langle A D, D\rangle} f_{n}$ is Cauchy in $C\left(\mathbb{R}^{n}\right)$. By passing to a subsequence we may arrange that the sequence already converges to a limit φ in $C\left(\mathbb{R}^{n}\right)$. By continuity of $e^{-\langle A D, D\rangle}$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ it follows that $\varphi=e^{-\langle A D, D\rangle} f$. The required estimate for φ now follows from the similar estimates for $e^{-\langle A D, D\rangle} f_{n}$ by passing to the limit for $n \rightarrow \infty$.

In the sequel we shall frequently refer to a principle that is made explicit in the following lemma.
Lemma 6.4.7. Let $L: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ be a continuous linear endomorphism. Let V, W be linear subspaces of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ equipped with locally convex topologies for which the inclusion maps are continuous. Assume that $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in V and that W is complete. If L maps $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ into W, and the restricted map $L_{0}: C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow W$ is continuous with respect to the V-topology on the first space, then $L(V) \subset W$.

Proof The restricted map L_{0} has a unique extension to a continuous linear map $L_{1}: V \rightarrow W$. Thus, it suffices to show that $L_{1}=L$ on V. Fix $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Then, the linear functional $\langle\cdot, \varphi\rangle$ is continuous on W. It follows that the linear functional μ on $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ given by $\mu(f)=\left\langle L_{1} f, \varphi\right\rangle$ is continuous linear for the V-topology.

From the assumption about the continuity of L is follows that the functional $\nu: f \mapsto\langle L f, \varphi\rangle$ is continuous for the $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ topology. In particular, this implies that ν is continuous for the V-topology.

As $\mu=\nu$ on $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in V it follows that $L_{1}=L$ on V.

If $p \in \mathbb{N}$ we denote by $C_{b}^{p}\left(\mathbb{R}^{n}\right)$ the Banach space of p times continuously differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ with $\max _{|\alpha| \leq p} \sup \left|D^{\alpha} f\right|<\infty$.
Proposition 6.4.8. Let $s>n / 2$ be an integer. Then there exists a constant $C>0$ with the following property. For each symmetric $A \in \mathrm{M}_{n}(\mathbb{C})$ with $\operatorname{Re} A \geq$ 0 and all $f \in C_{b}^{2 s}\left(\mathbb{R}^{n}\right)$ the distribution $e^{-\langle A D, D\rangle} f$ is continuous and

$$
\left|e^{-\langle A D, D\rangle} f(x)\right| \leq C\|A\|^{s} \max _{|\alpha| \leq 2 s} \sup \left|D^{\alpha} f\right| .
$$

For x with $d(x):=d(x, \operatorname{supp} f) \geq 1$ the stronger estimate (6.2) is valid.
Proof As in the proof of the previous corollary, we first prove the estimate for $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. By translation invariance we may as well assume that $x=0$.

We fix a function $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ which equals 1 on the unit ball and has support contained in $\mathcal{K}=B(0 ; 2)$ and such that $0 \leq \chi \leq 1$. Then the desired estimate follows from combining the estimate of Corollary 6.4.6 for χf with the estimate of Proposition 6.4.4 with $k=0$ for $(1-\chi) f$.

By density of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ in $C_{c}^{s}\left(\mathbb{R}^{n}\right)$ it follows that $e^{-\langle A D, D\rangle}$ maps $C_{c}^{s}\left(\mathbb{R}^{n}\right)$ continuously into $C_{b}\left(\mathbb{R}^{n}\right)$, with the desired estimate (apply Lemma 6.4.7). As $C_{c}^{s}\left(\mathbb{R}^{n}\right)$ is not dense in $C_{b}^{s}\left(\mathbb{R}^{n}\right)$ we need an additional argument to pass to the latter space.

Let χ be as above, and put $\chi_{n}(x)=\chi(x / n)$. Then it is readily seen that $\chi_{n} f \rightarrow f$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Hence $e^{-\langle A D, D\rangle} f_{n} \rightarrow e^{-\langle A D, D\rangle} f$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. It follows by application of Proposition 6.4.4 that for each compact subset $\mathcal{K} \subset \mathbb{R}^{n}$ the sequence $e^{-\langle A D, D\rangle} f_{n} \mid \mathcal{K}$ is Cauchy in $C(\mathcal{K})$. This implies that $e^{-\langle A D, D\rangle} f_{n}$ converges to a limit φ in the Fréchet space $C\left(\mathbb{R}^{n}\right)$. In particular, φ is also the limit in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ so that $e^{-\langle A D, D\rangle} f=\varphi$ is a continuous function.

We now note that by application of the Leibniz rule,

$$
\sup \left|D^{\alpha} f_{n}\right| \leq \sup \left|D^{\alpha} f\right|+\mathcal{O}(1 / n)
$$

Hence the desired estimate for f follows from the similar estimate for f_{n} by passing to the limit.

Theorem 6.4.9. Let $s>n / 2$ be an integer and let $k \in \mathbb{N}$. Then there exists a constant $C_{k}>0$ with the following property. For each symmetric $A \in \mathrm{M}_{n}(\mathbb{C})$ with $\operatorname{Re} A \geq 0$ and all $f \in C_{b}^{2 s+2 k}\left(\mathbb{R}^{n}\right)$ the function $e^{-\langle A D, D\rangle} f$ is continuous, and

$$
\left|e^{-\langle A D, D\rangle} f(x)-\sum_{j<k} \frac{1}{j!}(-\langle A D, D\rangle)^{j} f(x)\right| \leq C_{k}\|A\|^{s} \max _{|\alpha| \leq 2 s} \sup \left|D^{\alpha}\langle A D, D\rangle^{k} f\right| .
$$

Proof Let $R_{k}(A) f(x)$ denote the expression between absolute value signs on the left-hand side of the above estimate. We first prove the estimate for a function $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. The function

$$
f_{t}(x):=e^{-\langle t A D, D\rangle}(x)
$$

is smooth in $(t, x) \in[0, \infty) \times \mathbb{R}^{n}$ and satisfies the differential equation

$$
\partial_{t} f_{t}(x)=-\langle A D, D\rangle f_{t}(x) .
$$

By application of Taylor's formula with remainder term with respect to the variable t at $t=0$, we find that

$$
f_{1}(x)=\sum_{j<k} \partial_{t}^{j} f_{t}(x)-\frac{1}{(k-1)!} \int_{0}^{1}(1-t)^{k-1} \partial_{t}^{k} f_{t}(x) d t
$$

This leads to

$$
\begin{aligned}
R_{k}(A) f(x) & =\frac{1}{(k-1)!} \int_{0}^{1}(1-t)^{k-1}(-\langle A D, D\rangle)^{k} f_{t}(x) d t \\
& =\frac{1}{(k-1)!} \int_{0}^{1}(1-t)^{k-1} e^{-t\langle A D, D\rangle}(-\langle A D, D\rangle)^{k} f(x) d t
\end{aligned}
$$

By estimation under the integral sign, making use of Proposition 6.4.8, we now obtain the desired estimate for $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. For the extension of the estimate to $C_{c}^{2 s+2 k}\left(\mathbb{R}^{n}\right)$ and finally to $C_{b}^{2 s+2 k}\left(\mathbb{R}^{n}\right)$ we proceed as in the proof of Proposition 6.4.8.

6.5. The exponential of a differential operator in symbol space

Let \mathcal{K} be a compact subset of \mathbb{R}^{n} and let $d \in \mathbb{R}$. Then the space of symbols $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$ is a subspace of the space of tempered distributions $\mathcal{S}^{\prime}\left(\mathbb{R}^{2 n}\right)$ with continuous inclusion map. Indeed, if $p \in S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$, then for all $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{aligned}
\langle p, \varphi\rangle & =\int_{\mathbb{R}^{2 n}} p(x, \xi) \varphi(x, \xi) d x d \xi \\
& \leq \int_{R^{2 n}}(1+\|\xi\|)^{-d-n-1}|p(x, \xi)|(1+|(x, \xi)|)^{|d|+n+1}|\varphi(x, \xi)| d x d \xi \\
& \leq C \mu_{\mathcal{K}, 0}^{d}(p) \nu_{|d|+n+1,0}(\varphi)
\end{aligned}
$$

with $C>0$ only depending on n, \mathcal{K} and d.
We consider the second order differential operator

$$
\left\langle D_{x}, \partial_{\xi}\right\rangle=i \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial \xi_{j}} .
$$

Thus, with notation as in the previous section, $\left\langle D_{x}, \partial_{\xi}\right\rangle=-\langle A D, D\rangle$, where

$$
A=i\left(\begin{array}{cc}
0 & I_{n} \\
I_{n} & 0
\end{array}\right)
$$

with I_{n} the $n \times n$ identity matrix. The matrix A is complex, symmetric, and has real part equal to zero, hence fulfills all conditions of the previous section. Moreover, its operator norm $\|A\|$ equals 1.

In the rest of this section we will discuss the action of $e^{\left\langle D_{x}, \partial_{\xi}\right\rangle}$ on $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$. The following lemma is obvious.

Lemma 6.5.1. For each $k \in \mathbb{N}$,

$$
\frac{1}{k!}\left\langle D_{x}, \partial_{\xi}\right\rangle=\sum_{|\alpha|=k} \frac{1}{\alpha!} D_{x}^{\alpha} \partial_{\xi}^{\alpha}
$$

In particular, $\left\langle D_{x}, \partial_{\xi}\right\rangle$ defines a continuous linear map $S^{d}\left(\mathbb{R}^{n}\right) \rightarrow S^{d-k}\left(\mathbb{R}^{n}\right)$, preserving supports.

Theorem 6.5.2. Let $k \in \mathbb{N}$. Then

$$
\begin{equation*}
e^{\left\langle D_{x}, \partial_{\xi}\right\rangle}-\sum_{|\alpha|<k} \frac{1}{\alpha!} D_{x}^{\alpha} \partial_{\xi}^{\alpha} \tag{6.3}
\end{equation*}
$$

originally defined as an endomorphism of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, maps $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$ continuous linearly into $S^{d-k}\left(\mathbb{R}^{n}\right)$. In particular, $e^{\left\langle D_{x}, \partial_{\xi}\right\rangle}$ restricts to a continuous linear $\operatorname{map} S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right) \rightarrow S^{d}\left(\mathbb{R}^{n}\right)$.

Before turning to the proof of the theorem, we list a corollary that will be important for applications.
Corollary 6.5.3. Let $p \in S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$. Then $e^{\left\langle D_{x}, \partial_{\xi}\right\rangle} p \in S^{d}\left(\mathbb{R}^{n}\right)$ and

$$
e^{\left\langle D_{x}, \partial_{\xi}\right\rangle} p \sim \sum_{\alpha \in \mathbb{N}^{n}} \frac{1}{\alpha!} D_{x}^{\alpha} \partial_{\xi}^{\alpha} p
$$

We will prove Theorem 6.5.2 through a number of lemmas of a technical nature. The next lemma will be used frequently for extension purposes.
Lemma 6.5.4. Let $\mathcal{K} \subset U$ be compact and let $d<d^{\prime}$. Then the space $C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $S_{\mathcal{K}}^{d}(U)$ for the topology of $S_{\mathcal{K}}^{d^{\prime}}(U)$.
Proof Let $p \in S_{\mathcal{K}}^{d}(U)$. Select $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\psi=1$ on a neighborhood of 0 . Put $\psi_{n}(\xi)=\psi(\xi / n)$ and

$$
p_{n}(x, \xi)=\psi_{n}(\xi) p(x, \xi) .
$$

Then by an application of the Leibniz rule in a similar fashion as in the proof of Lemma 4.1.9, it follows that $\nu_{\mathcal{K}, k}^{d^{\prime}}\left(p_{n}-r\right) \rightarrow 0$ as $n \rightarrow \infty$, for each $k \in \mathbb{N}$.

The expression (6.3) is abbreviated by $R_{k}(D)$. It will be convenient to use the notation

$$
C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{2 n}\right):=\left\{f \in C_{c}^{\infty}\left(\mathbb{R}^{2 n}\right) \mid \operatorname{supp} f \subset \mathcal{K} \times \mathbb{R}^{n}\right\} .
$$

Lemma 6.5.5. Let $k \in \mathbb{N}$. Then for each $d<k$ the map $R_{k}(D)$ maps $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$ continuous linearly into $C_{b}\left(\mathbb{R}^{2 n}\right)$.
Proof Let $s>n / 2$ be an integer. Let $f \in C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{2 n}\right)$. Then by Theorem 6.4.9,

$$
\begin{aligned}
\left|R_{k}(D) f(x, \xi)\right| & \leq C_{k} \max _{|\alpha|+|\beta| \leq 2 s} \sup _{\mathcal{K} \times \mathbb{R}^{n}}\left|D_{x}^{\alpha} \partial_{\xi}^{\beta}\left\langle D_{x}, \partial_{\xi}\right\rangle^{k} f(x, \xi)\right| \\
& \leq C_{k}^{\prime} \max _{|\alpha|+|\beta| \leq 2 s,|\gamma|=k} \sup _{\mathcal{K} \times \mathbb{R}^{n}}\left|D_{x}^{\alpha+\gamma} \partial_{\xi}^{\beta+\gamma} f(x, \xi)\right| \\
& \leq C_{k}^{\prime} \max _{|\alpha|| | \beta|\leq 2 s,|\gamma|=k} \sup _{\mathcal{K} \times \mathbb{R}^{n}}(1+\|\xi\|)^{d-k} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f) \\
& \leq C_{k}^{\prime} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f) .
\end{aligned}
$$

It follows that the map $R_{k}(D)$ is continuous $C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{2 n}\right) \rightarrow C_{b}\left(\mathbb{R}^{2 n}\right)$, with respect to the $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$-topology on the first space, for each $d<k$.

Let now $d<k$ and fix d^{\prime} with $d<d^{\prime}<k$. Then by density of $C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{2 n}\right)$ in $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{2 n}\right)$ for the $S_{\mathcal{K}}^{d^{\prime}}\left(\mathbb{R}^{2 n}\right)$-topology, it follows by application of Lemma 6.4.7 that $R_{k}(D)$ maps $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$ to $C_{b}\left(\mathbb{R}^{n}\right)$ with continuity relative to the $S_{\mathcal{K}}^{d^{\prime}}\left(\mathbb{R}^{n}\right)$ topology on the domain. As this topology is weaker than the original topology on $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$, the result follows.

Lemma 6.5.6. Let $d \in \mathbb{R}$ and assume that $k>|d|$. Let s be an integer $>n / 2$. Then there exists a constant $C>0$ such that for all $f \in C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$ and all $(x, \xi) \in \mathbb{R}^{2 n}$ with $\|\xi\| \geq 4$ we have

$$
\begin{equation*}
\left|R_{k}(D) f(x, \xi)\right| \leq C(1+\|\xi\|)^{|d|-k} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f) . \tag{6.4}
\end{equation*}
$$

Proof Let $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ be a smooth function which is identically 1 on the unit ball of \mathbb{R}^{n}, and has support inside the ball $B(0 ; 2)$. For $t>0$ we define the function $\chi_{t} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ by $\chi_{t}(\xi)=\chi\left(t^{-1} \xi\right)$. Then $\chi_{t}(\xi)$ is identically 1 on $B(0 ; t)$ and has support inside the ball $B(0 ; 2 t)$. We agree to write $\psi=1-\chi$ and $\psi_{t}(\xi)=\psi\left(t^{-1} \xi\right)$. In the following we will frequently use the obvious equalities

$$
\sup \left|\partial_{\xi}^{\alpha} \chi_{t}\right|=t^{-|\alpha|} \sup \left|\partial_{\xi}^{\alpha} \chi\right|, \quad \sup \left|\partial_{\xi}^{\alpha} \psi_{t}\right|=t^{-|\alpha|} \sup \left|\partial_{\xi}^{\alpha} \psi\right| .
$$

Let $f \in C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$. Then f is a Schwartz function, hence $e^{\left\langle D_{x}, \partial_{\xi}\right\rangle} f$ is a Schwartz function as well, and therefore, so is $R_{k}(D) f$. For $t>0$ we agree to write $f_{t}(x, \xi)=\chi_{t}(\xi) f(x, t)$ and $\left.g_{t}(x, \xi)=\psi_{t}(\xi)\right) f(x, \xi)$. Then $f=f_{t}+g_{t}$. From now on we assume that $(x, \xi) \in \mathbb{R}^{2 n}$, that $\|\xi\| \geq 4$ and $t=\frac{1}{4}\|\xi\|$.

We will complete the proof by showing that both the values $\left|R_{k}(D) f_{t}(x, \xi)\right|$ and $\left|R_{k}(D) g_{t}(x, \xi)\right|$ can be estimated by $C^{\prime} \nu_{\mathcal{K}, 2 s+k}^{d}(f)$ with $C^{\prime}>0$ a constant independent of f, x, ξ. We start with the first of these functions. As f_{t} has support inside $B(0 ; 2 t)=B(0 ;\|\xi\| / 2)$, it follows that $d\left(\xi, \operatorname{supp} f_{t}\right) \geq\|\xi\| / 2 \geq 2$. In view of Proposition 6.4.4 it follows that there exists a constant $C_{k}>0$, only depending on k, such that

$$
\begin{aligned}
\left|R_{k}(D) f(x, \xi)\right| & =\left|e^{\left\langle D_{x}, \partial_{\xi}\right\rangle} f(x, \xi)\right| \\
& \leq C_{k}(\|\xi\| / 2)^{-k} \max _{|\alpha|+|\beta| \leq 2 s+k} \sup \left|D_{x}^{\alpha} \partial_{\xi}^{\beta}\left(\chi_{t} f\right)\right| \\
& \leq C_{k}^{\prime}(1+\|\xi\|)^{-k} \max _{|\alpha|+\left|\beta_{1}+\beta_{2}\right| \leq 2 s+k} \sup \left|\partial_{\xi}^{\beta_{1}} \chi_{t} D_{x}^{\alpha} \partial_{\xi}^{\beta_{2}} f\right|,
\end{aligned}
$$

with $C_{k}^{\prime}>0$ independent of f, x and ξ. For $\eta \in \operatorname{supp} \chi_{t}$ we have $\|\eta\| \leq\|\xi\| / 2$, so that

$$
\begin{aligned}
\left|\partial_{\xi}^{\beta_{1}} \chi_{t}(\eta) D_{x}^{\alpha} \partial_{\xi}^{\beta_{2}} f(y, \eta)\right| & \leq C_{k}^{\prime \prime} t^{-\left|\beta_{1}\right|}(1+\|\eta\|)^{d-\left|\beta_{2}\right|} \nu_{\mathcal{K}, 2 s+k}^{d}(f) \\
& \leq C_{k}^{\prime \prime}(1+\|\xi\| / 2)^{|d|} \nu_{\mathcal{K}, 2 s+k}^{d}(f) \\
& \leq C_{k}^{\prime \prime \prime}(1+\|\xi\|)^{|d|} \nu_{\mathcal{K}, 2 s+k}^{d}(f) .
\end{aligned}
$$

It follows that

$$
\left|R_{k}(D) f_{t}(x, \xi)\right| \leq C^{\prime}(1+\|\xi\|)^{|d|-k} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f)
$$

We now turn to g_{t}. By application of Theorem 6.4.9 it follows that

$$
\begin{aligned}
& \left|R_{k}(D)\left(g_{t}\right)(x, \xi)\right| \\
& \quad \leq D_{k} \max _{|\alpha|+|\beta| \leq 2 s} \sup \left|D_{x}^{\alpha} \partial_{\xi}^{\beta}\left\langle D_{x}, \partial_{\xi}\right\rangle^{k}\left(\psi_{t} f\right)\right| \\
& \quad \leq D_{k}^{\prime} \max _{|\alpha|+||\beta \| \leq 2 s,|\gamma|=k} \sup \left|\partial_{\xi}^{\gamma+\beta}\left(\psi_{t} D_{x}^{\alpha+\gamma} f\right)\right|
\end{aligned}
$$

To estimate the latter expression, we concentrate on

$$
\begin{equation*}
\left|\partial_{\xi}^{\gamma+\beta}\left(\psi_{t} D_{x}^{\alpha+\gamma} f\right)(y, \eta)\right|, \tag{6.5}
\end{equation*}
$$

for $y \in \mathcal{K}$ and $\eta \in \mathbb{R}^{n}$. Since $\psi_{t}(\eta)$ equals zero for $\|\eta\| \leq t=\|\xi\| / 4$ and equals 1 for $\|\eta\| \geq 2 t=\|\xi\| / 2$, we distinguish two cases: (a) $\|\xi\| / 4 \leq\|\eta\| \leq\|\xi\| / 2$ and (b) $\|\eta\| \geq\|\xi\| / 2$.

Case (a): the expression (6.5) can be estimated by a sum of derivatives of the form

$$
\left|\left(\partial_{\xi}^{\gamma_{1}} \psi_{t}\right) D_{x}^{\alpha+\gamma} \partial_{\xi}^{\gamma_{2}} f(y, \eta)\right|, \quad\left(\gamma_{1}+\gamma_{2}=\gamma+\beta\right)
$$

with suitable binomial coefficients. Now

$$
\begin{aligned}
\left|\left(\partial_{\xi}^{\gamma_{1}} \psi_{t}\right) D_{x}^{\alpha+\gamma} \partial_{\xi}^{\gamma_{2}} f(y, \eta)\right| & \leq D_{k}^{\prime \prime} t^{-\left|\gamma_{1}\right|}(1+\|\eta\|)^{d-\left\|\gamma_{2}\right\|} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f) \\
& \leq D_{k}^{\prime \prime \prime}(1+\|\xi\|)^{-\left|\gamma_{1}\right|}(1+\|\xi\|)^{d-\left|\gamma_{2}\right|} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f) \\
& \leq D_{k}^{\prime \prime \prime}(1+\|\xi\|)^{d-k} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f)
\end{aligned}
$$

Case (b): we now have that (6.5) equals $\left|D_{x}^{\alpha+\gamma} \partial_{\xi}^{\gamma+\beta} f(y, \eta)\right|$, and can be estimated by

$$
\begin{aligned}
\left.\mid D_{x}^{\alpha+\gamma} \partial_{\xi}^{\gamma+\beta} f\right)(y, \eta) \mid & \leq(1+\|\eta\|)^{d-|\gamma+\beta|} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f) \\
& \leq(1+\|\eta\|)^{|d|-k} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f) \\
& \leq(1+\|\xi\| / 2)^{d-k} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f) \\
& \leq D(1+\|\xi\|)^{d-k} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f)
\end{aligned}
$$

Collecting these estimates we see that

$$
\left|R_{k}(D) g_{t}(x, \xi)\right| \leq D^{\prime}(1+\|\xi\|)^{|d|-k} \nu_{2 s+2 k}^{d}(f)
$$

with $D^{\prime}>0$ a constant independent of f, x and ξ.

Corollary 6.5.7. Let d, k and s be as in the above lemma. With a suitable adaptation of the constant $C>0$, the estimate (6.4) holds for all $(x, \xi) \in \mathbb{R}^{2 n}$.
Proof It follows from Lemma 6.5.5 and its proof that there exists a constant $C_{1}>0$ such that $\left|R_{k}(D) f(x, \xi)\right| \leq C_{1} \nu_{\mathcal{K}, 2 s+2 k}^{d}(f)$. We now use that

$$
(1+\|\xi\|)^{|d|-k} \geq 5^{|d|-k}
$$

for all ξ with $\mid \xi \| \leq 4$. Hence, the estimate (6.4) holds with $C=5^{k-|d|} C_{1}$ for $\|\xi\| \leq 4$.

Corollary 6.5.8. Let $d \in \mathbb{R}$ and $m \in \mathbb{N}$. Then there exist constants $C>0$ and $l \in \mathbb{N}$ such that for all $f \in C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$ and all $(x, \xi) \in \mathbb{R}^{2 n}$ we have

$$
\begin{equation*}
\left|R_{m}(D) f(x, \xi)\right| \leq C(1+\|\xi\|)^{d-m} \nu_{\mathcal{K}, l}^{d}(f) \tag{6.6}
\end{equation*}
$$

Proof Let s be as in the previous corollary. Fix $k \in \mathbb{N}$ such that $|d|-k<$ $d-m$. Let now $C^{\prime}>0$ be constant as in the previous corollary. Then for all $f \in C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$ we have

$$
\left|R_{k}(D) f(x, \xi)\right| \leq C^{\prime}(1+\|\xi\|)^{|d|-k} \nu_{\mathcal{K}, 2 s+2 m}^{d}(f), \quad\left((x, \xi) \in \mathbb{R}^{2 n}\right)
$$

On the other hand,

$$
R_{m}(D)-R_{k}(D)=\sum_{k \leq j \leq m}\left\langle D_{x}, \partial_{\xi}\right\rangle^{j}
$$

is a continuous linear operator $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right) \rightarrow S_{\mathcal{K}}^{d-k}\left(\mathbb{R}^{n}\right)$. In fact, there exists a constant $C^{\prime \prime}>0$ such that

$$
\mid R_{m}(D) f\left(f(x, \xi)-R_{k}(D) f(x, \xi) \mid \leq C^{\prime \prime}(1+\|\xi\|)^{d-k} \nu_{\mathcal{K}, 2 m-2}^{d}(f)\right.
$$

for all $f \in S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$ and $(x, \xi) \in \mathbb{R}^{2 n}$. The result now follows with $C=C^{\prime}+C^{\prime \prime}$ and with $l=\max (2 s+2 m, 2 m-2)$.

After these technicalities we can now finally complete the proof of the main theorem of this section.

Completion of the proof of Theorem 6.5.2 Let $k \in \mathbb{N}$, let $\alpha, \beta \in \mathbb{N}^{n}$ and put $m=k-|\beta|$. Then by the previous corollary, applied with $d-|\beta|$ in place of d there exist constants $C>0$ and $l \in \mathbb{N}$ such that for all $f \in C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$ and all $(x, \xi) \in \mathbb{R}^{2 n}$,

$$
\left|R_{k}(D) f(x, \xi)\right| \leq(1+\|\xi\|)^{d-|\beta|} \nu_{\mathcal{K}, l}^{d-|\beta|}(f)
$$

Moreover, by definition of the seminorms,

$$
\nu_{\mathcal{K}, l}^{d-|\beta|}\left(D_{x}^{\alpha} \partial_{\xi}^{\beta} f\right) \leq \nu_{\mathcal{K}, l+|\alpha|+|\beta|}^{d}(f)
$$

for all $f \in C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$. Combining these estimates and using that $R_{k}(D)$ commutes with $D_{x}^{\alpha} \partial_{\xi}^{\beta}$, we find that

$$
\begin{aligned}
\left|D_{x}^{\alpha} \partial_{\xi}^{\beta} R_{k}(D) f(x, \xi)\right| & =R_{k}(D)\left[D_{x}^{\alpha} \partial_{\xi}^{\beta} f\right](x, \xi) \\
& \leq C \nu_{\mathcal{K}, l+|\alpha|+|\beta|}^{d}(f)
\end{aligned}
$$

for all $f \in C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$ and $(x, \xi) \in \mathbb{R}^{2 n}$.
It follows from the above that for each $d^{\prime} \in \mathbb{R}$ the map

$$
R_{k+1}(D): C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow S^{d^{\prime}-(k+1)}\left(\mathbb{R}^{n}\right)
$$

is continuous with respect to the $S_{\mathcal{K}}^{d^{\prime}}\left(\mathbb{R}^{n}\right)$-topology on $C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$. In particular, this is valid for $d^{\prime}=d+1$. As $C_{\mathcal{K}, c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$ with respect to the topology of $S_{\mathcal{K}}^{d+1}\left(\mathbb{R}^{n}\right)$, it follows by application of Lemma 6.4.7 that $R_{k+1}(D)$ maps $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right)$ into $S^{d-k}\left(\mathbb{R}^{n}\right)$ with continuity relative to the $S_{\mathcal{K}}^{d+1}\left(\mathbb{R}^{n}\right)$-topology on the first space. As this topology is weaker than the usual one, we conclude that $R_{k+1}(D): S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right) \rightarrow S^{d-k}\left(\mathbb{R}^{n}\right)$ is continuous. Now

$$
R_{k+1}(D)-R_{k}(D)=\left\langle D_{x}, \partial_{\xi}\right\rangle^{k}
$$

is continuous $S_{\mathcal{K}}^{d}\left(\mathbb{R}^{n}\right) \rightarrow S^{d-k}\left(\mathbb{R}^{n}\right)$ as well, and the result follows.

[^0]: 1
 E-mail address: 2.

 E-mail address:
 Received by the editors September, 2009.

