
and (c) follows.
Let W be the linear span of the vectors vk, for 0 ≤ k ≤ n. Then by definition of the vectors

vk, Y vk = vk+1. Therefore, Y leaves W invariant. By (c), H and X leave W invariant as well.
It follows that W is a non-trivial invariant subspace of V, hence V = W by irreducibility. The
vectors vk, for 0 ≤ k ≤ n, must be linear independent since they are eigenvectors for H for
distinct eigenvalues; hence (a).

Finally, we have established the second assertion of (c) for all k ≥ 0, in particular for k =
n+ 1. Now vn+1 = 0, hence 0 = (n+ 1)(λ− n)vn and since vn 6= 0 it follows that λ = n. This
establishes (b).

It follows from (a) and (c) that the only primitive vectors in V are non-zero multiples of v0.
�

Corollary 30.8 Let V and V ′ be two irreducible finite dimensional sl(2,C)-modules. Then
V ' V ′ if and only if dimV = dimV ′. Moreover, if v and v′ are primitive vectors of V and V ′,
respectively, then there is a unique isomorphism T : V → V ′ mapping v onto v′.

Proof: Clearly if V ' V ′ then V and V ′ have equal dimension. Conversely, assume that
dimV = dimV ′ = n and that v and v′ are primitive vectors of V and V ′ respectively. Then by
the above lemma, the vectors vk = Y kv, 0 ≤ k ≤ n form a basis of V. Similarly the vectors
v′k = Y kv′, 0 ≤ k ≤ n form a basis of V ′. Any intertwining operator T : V → V ′ that maps v
onto v′ must map the basis vk onto the basis v′k, hence is uniquely determined. Let T : V → V ′ be
the linear map determined by Tvk = v′k, for 0 ≤ k ≤ n. Then T is a linear bijection. Moreover,
by the above lemma we see that T intertwines the actions of H,X, Y on V and V ′. It follows
that T is equivariant, hence V ' V ′. �

Completion of the proof of Theorem 30.3: The space Pn(C2) is an irreducible sl(2,C)-
module, of dimension n+ 1. Hence if V is an irreducible sl(2,C)-module of dimension m ≥ 1,
then V ' Pn(C2), with n = m− 1. �

31 Roots and weights
Let t be a finite dimensional commutative real Lie algebra, and let (ρ, V ) be a representation of
t in a non-trivial complex linear space V (which we do not assume to be finite dimensional).

Let t∗C denote the space of complex linear functionals on tC. Note that t∗, the space of real
linear functionals on t may be identified with the space of λ ∈ t∗C that are real valued on t. Thus,
t∗ is viewed as a real linear subspace of t∗C. Accordingly it∗ equals the space of λ ∈ t∗C such that
λ|t has values in iR.

If λ ∈ t∗C, then we define the following subspace of V :

Vλ =
⋂
H∈t

ker(ρ(H)− λ(H)I). (43)
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In other words, Vλ equals the space of v ∈ V such that

ρ(H)v = λ(H)v for all H ∈ t.

If Vλ 6= 0, then λ is called a weight of t in V, and Vλ is called the associated weight space. The
set of weights of t in V is denoted by Λ(ρ).

Lemma 31.1 Let T ∈ End(V ) be a ρ-intertwining linear endomorphism, then T leaves Vλ
invariant, for every λ ∈ Λ(ρ).

Proof: Let λ ∈ Λ(ρ). The endomorphism T commutes with ρ(H) hence leaves the eigenspace
ker(ρ(H) − λ(H)) invariant, for every H ∈ t. Hence T leaves the intersection Vλ of all these
spaces invariant. �

Lemma 31.2 Let
V ′ :=

∑
λ∈Λ(ρ)

Vλ. (44)

Then for every t-invariant subspace W ⊂ V ′,

W =
⊕
λ∈Λ(ρ)

(W ∩ Vλ). (45)

In particular, the sum (44) is direct.

Proof: We will first show that the sum (44) is direct. Let λ1, . . . , λn be a collection of distinct
weights in Λ(ρ) and assume that vj ∈ Vλj are given such that

∑n
j=1 vj = 0. Then it suffices to

show that vj = 0 for all 1 ≤ j ≤ n. Since the weights are distinct, the sets Kij := ker(λi − λj),
for i 6= j are hyperplanes in tC. The union ∪i 6=jKij is strictly contained in tC, hence we may
select H ∈ tC in the complement of this union. It follows that sj := λj(H), for 1 ≤ j ≤ n, is a
sequence of distinct complex numbers. Applying H repeatedly to the sum v1 + · · ·+ vn we find
that

n∑
j=1

sljvj = 0, (l ≥ 0).

Let T : Cn → V be the unique linear map sending the j-th standard basis vector ej to vj. Then
it follows from the above that

T (
n∑
j=1

sljej) = 0, (l ≥ 0).

LetA be the linear map Cn → Cn which sends ek to
∑n

j=1 s
k−1
j ej for 1 ≤ k ≤ n. Then it follows

that TA = 0. By the Vandermone determinant formula, detA =
∏

i<j(sj − si) =6= 0, hence A
is invertible. Therefore, T = 0 and we conclude that indeed vj = 0 for all 1 ≤ j ≤ n.
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To complete the proof we note that W is a t-module, hence so is the quotient space V ′/W.
Let w ∈ W. Then w = v1 + · · ·+ vn for certain vj ∈ Vλj with λ1, . . . , λn a collection of distinct
weights in Λ(ρ). Each canonical image v̄j in V ′/W is a weight vector of weights λj in V ′/W.
Furthermore,

∑n
j=1 v̄j = w̄ = 0. By the first result, applied to V ′/W in place of V, it follows

that v̄j = 0 hence vj ∈ W for all 1 ≤ j ≤ n.
It follows from the above that W =

∑
λ∈Λ(ρ) W ∩ Vλ. By the first result, applied to W in

place of V, it follows that the sum is direct. �

The action of t on V (or the representation ρ) is said to be semisimple if for every X ∈ t the
action of ρ(X) is diagonalizable. The latter means that V decomposes as a direct sum of eigen
spaces for ρ(X).

Lemma 31.3 If ρ is semisimple, then

V =
⊕
λ∈Λ(ρ)

Vλ. (46)

Proof: We will prove the lemma by induction on the dimension of t. First assume dim t < 1.
Fix a non-zero elementX ∈ t. Let S denote the set of eigenvalues of ρ(X). Then by the assumed
semisimplicity, V is the direct sum of the eigen spaces Vs = ker(ρ(X) − sI), for s ∈ S. For
s ∈ S we define λs ∈ t∗C by λs(X) = s. Then for each s ∈ Σ we have Vλs = Vs and we see that
Λ(ρ) = {λs | s ∈ S} and (46) follows.

Let now d > 1 and assume the result has been established for t of dimension smaller than d.
We will then prove the result for t of dimension d.We fix an elementX ∈ t and a complementary
subspace t0 such that t = t0 ⊕ RX. By the induction hypothesis, the space V decomposes
as a direct sum of weight spaces Vµ for ρ0 := ρ|t0 , with µ ∈ Λ(ρ0) ⊂ t∗0C. Furthermore, V
decomposes as the direct sum of the weight spaces Vs, for s ∈ S, defined as in first part of the
proof. By commutativity of t, the operator ρ(X) ∈ End(V ) is intertwining. By Lemma 31.1
each weight space Vµ is ρ(X)-invariant hence by Lemma 31.2 it decomposes as the direct sum
of the spaces Vµ ∩ Vs, for s ∈ S. It follows that

V =
⊕

µ∈Λ(ρ0),s∈S

Vµ ∩ Vs.

Let λµ,s ∈ t∗C be defined by λµ,s|t0 = µ and λµ,s(X) = s, then

Vλµ,s = Vµ ∩ Vs,

and we see that Λ(V, t) equals the set of λµ,s ∈ t∗C, (µ ∈ Λ(ρ0), s ∈ S), for which the above
intersection is non-zero. Furthermore, V is the direct sum of the corresponding weight spaces.

Lemma 31.4 Let (ρ, V ) be finite dimensional representation of t. Then Λ(ρ) is a finite non-
empty subset of t∗C.
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Proof: In view of Lemma 31.2 it follows that Λ(ρ) has at most dimV elements.
Thus it remains to be shown that Λ(ρ) is non-empty. For this we proceed by induction on the

dimension of t.
First, assume dim t = 1. Then t = RX for X ∈ t \ {0}. The map ρ(X) has at least one

eigenvalue s. Let λ ∈ t∗C be defined by λ(X) = s. Then Vλ 6= 0 hence λ ∈ Λ(ρ).
Next, assume that dim t > 1. Then we fix a decomposition t = t0⊕RX with t0 is a subspace

of codimension 1 andX ∈ t\{0}. By the induction hypothesis, ρ0 := ρ|t0 has a weight λ0 ∈ t∗0C.
The associated weight space Vλ0 is ρ(X)-invariant and finite dimensional, hence contains an
eigenvector v 6= 0. It follows that ρ(t)v ⊂ Cv, from which we infer that v is contained in a
weight space for ρ. �

Assumption: In the rest of this section we assume that G is a compact Lie group, with Lie
algebra g.

Definition 31.5 A torus in g is by definition a commutative subalgebra of g. A torus t ⊂ g is
called maximal if there exists no torus of g that properly contains t.

From now on we assume that t is a fixed maximal torus in g.

Lemma 31.6 The centralizer of t in g equals t.

Proof: Since t is abelian, it is contained in its centralizer. Conversely, assume that X ∈ g
centralizes t. Then t′ = t + RX is a torus which contains t. Hence t′ = t by maximality, and we
see that X ∈ t. �

Let (π, V ) be a finite dimensional representation of gC, the complexification of the Lie al-
gebra g; i.e., π is a complex Lie algebra homomorphism from gC into End(V ) (the latter is the
space of complex linear endomorphisms equipped with the commutator Lie bracket). Alterna-
tively we will also say that V is a finite dimensional gC-module. We denote by Λ(π) = Λ(π, t)
the set of weights of the representation ρ = π|t of t in V. If λ ∈ t∗C, then as before, Vλ is defined
as in (43), with π|t in place of ρ. Thus

Vλ = {v ∈ V | π(H)v = λ(H)v for all H ∈ t}.

From Lemma 31.4 we see that Λ(π) is a finite non-empty subset of t∗C.
Let (π, V ) be a finite dimensional continuous representation of G. Then the map π : G →

GL(V ) is a homomorphism of Lie groups. Let π∗ = Teπ. Then π∗ : g → End(V ) is a Lie
algebra homomorphism, or, differently said, a representation of g in V. The homomorphism
π∗ has a unique extension to a complex Lie algebra homomorphism from gC into End(V ) (we
recall that V is a complex linear space by assumption). This extension is called the induced
infinitesimal representation of gC in V.

Lemma 31.7 Let π be a finite dimensional continuous representation of G. Then Λ(π∗) is a
finite subset of it∗. Moreover,

V =
⊕

λ∈Λ(π∗)

Vλ.
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If V is equipped with a G-invariant inner product, then for all λ, µ ∈ Λ(π∗) with λ 6= µ we have
Vλ ⊥ Vµ.

Proof: There exists a G-invariant inner product on V ; assume such an inner product 〈· , ·〉 to
be fixed. Then π maps G into U(V ), the associated group of unitary transformations. It follows
that π∗ maps g into the Lie algebra u(V ) of U(V ), which is the subalgebra of anti-Hermitian en-
domorphisms in End(V ). It follows that for X ∈ g the endomorphism π∗(X) is anti-Hermitian,
hence diagonalizable with imaginary eigenvalues. The direct sum decomposition now follows
from Lemma 31.3. It remains to establish orthogonality of the summands. Let λ, µ be distinct
weights in Λ(π∗). Then there exists H ∈ t such that λ(H) 6= µ(H). For v ∈ Vλ and w ∈ Vµ we
have

λ(H)〈v , w〉 = 〈π∗(H)v , w〉 = −〈v , π∗(H)w〉 = −µ(H)〈v , w〉 = µ(H)〈v , w〉.

It follows that 〈v , w〉 = 0. �

If A ∈ End(g), then we denote by AC the complex linear extension of A to gC. Obviously
the map A 7→ AC induces a real linear embedding of End(g) into End(gC) := EndC(gC).
Accordingly we shall view End(g) as a real linear subspace of the complex linear space End(gC)
from now on. Thus, we may view Ad as a representation of G in the complexification gC of
g. The associated infinitesimal representation is the adjoint representation ad of gC in gC. The
associated collection Λ(ad) of weights contains the weight 0. Indeed the associated weight space
gC0 equals the centralizer of t in gC, which in turn equals tC, by Lemma 31.6. Hence:

gC0 = tC.

Definition 31.8 The weights of ad in gC different from 0 are called the roots of t in gC; the set
of these is denoted by R = R(gC, t). Given α ∈ R, the associated weight space gCα is called a
root space.

It follows from the definitions that

gCα = {X ∈ gC | [H,X] = α(H)X for all H ∈ t}.

From Lemma 31.7 we now obtain the so called root space decomposition of gC, relative to the
torus t.

Corollary 31.9 The collection R = R(gC, t) of roots is a finite subset of it∗. Moreover, we have
the following direct sum of vector spaces:

gC = tC ⊕
⊕
α∈R

gCα. (47)

Example 31.10 The Lie algebra g = su(2) has complexification sl(2, C), consisting of all com-
plex 2× 2 matrices with trace zero. Let H,X, Y be the standard basis of sl(2, C); i.e.

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.
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Now t = iRH is a maximal torus in su(2). We recall that [H,X] = 2X, [H,Y ] = −2Y,
[X, Y ] = H. Thus, if we define α ∈ t∗C by α(H) = 2, then R = R(gC, t) equals {α,−α}.
Moreover, gCα = CX and gC(−α) = CY.

We recall that, by definition, the center z = zg of g is the ideal ker ad; i.e., it is the space of
X ∈ g that commute with all Y ∈ g.

Lemma 31.11 The center of g is contained in t and equals the intersection of the root hyper-
planes:

zg =
⋂
α∈R

kerα.

In particular, if zg = 0, then R spans the real linear space it∗.

Proof: The center of g centralizes t in particular, hence is contained in t, by Lemma 31.6. Let
H ∈ t and assume thatH centralizes g; thenH centralizes gC, hence every root space of gC. This
implies that α(H) = 0 for all α ∈ R. Conversely, if H ∈ t is in the intersection of all the root
hyperplanes, then H centralizes tC and every root space gCα. By the root space decomposition it
then follows that H ∈ z. This establishes the characterization of the center.

If z = 0, then the root hyperplanes kerα (α ∈ R) have a zero intersection in t. This implies
that the set R ⊂ it∗ spans the real linear space it∗. �

Lemma 31.12 Let (π, V ) be a finite dimensional representation of gC. Then for all λ ∈ Λ(π)
and all α ∈ R ∪ {0} we have:

π(gCα)Vλ ⊂ Vλ+α.

In particular, if λ+ α /∈ Λ(π), then π(gCα) anihilates Vλ.

Proof: Let X ∈ gCα and v ∈ Vλ. Then, for H ∈ t,

π(H)π(X)v = π(X)π(H)v + [π(H), π(X)]v

= λ(H)π(X)v + π([H,X])v = [λ(H) + α(H)]π(X)v.

Hence π(X)v ∈ Vλ+α. If λ+α is not a weight of π, then Vλ+α = 0 and it follows that π(X)v = 0.
�

Corollary 31.13 If α, β ∈ R ∪ {0}, then

[gCα, gCβ] ⊂ gC(α+β).

In particular, if α + β /∈ R ∪ {0}, then gCα and gCβ commute.

Proof: This follows from the previous lemma applied to the adjoint representation. �
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We shall write ZR for the Z-linear span of R, i.e., the Z-module of elements of the form∑
α∈R nαα, with nα ∈ Z.
In the following corollary we do not assume that π comes from a representation of G.

Corollary 31.14 Let (π, V ) be a finite dimensional representation of gC. Then

W :=
⊕
λ∈Λ(π)

Vλ (48)

is a non-trivial gC-submodule. If π is irreducible, then W = V. Moreover, if λ, µ ∈ Λ(π), then
λ− µ ∈ ZR.

Proof: By Lemma 31.4 the set Λ(π) is non-empty and finite, and therefore W is a non-trivial
subspace of V. From Lemma 31.12 we see that W is gC-invariant. If π is irreducible, then
W = V. To establish the last assertion we define an equivalence relation on Λ(π) by λ ∼ µ ⇐⇒
λ−µ ∈ ZR. If S is a class for ∼, then VS = ⊕λ∈SVλ is a non-trivial gC-invariant subspace of V,
by Lemma 31.12. Hence VS = V and it follows that S = Λ(π). �

Remark 31.15 If g has trivial center, then the above result actually holds for every finite dimen-
sional V -module. To see that a condition like this is necessary, consider g = R, the Lie algebra
of the circle. Define a representation of g in V = C2 by

π(x) =

(
0 x
0 0

)
.

Then Λ(π) = {0}, but V0 = C× {0} is not all of V.
Note that this does not contradict the conclusion of Lemma 31.7, since π is not associated

with a continuous representation of the circle group in C2.

Lemma 31.16 Let t be a maximal torus in g, and R the associated collection of roots. If α ∈ R
then −α ∈ R.

Proof: Let τ be the conjugation of gC with respect to the real form g. That is: τ(X + iY ) =
X − iY for all X, Y ∈ g. One readily checks that τ is an automorphism of gC, considered as a
real Lie algebra (by forgetting the complex linear structure). Let α ∈ R, and let X ∈ gCα. Then
for every H ∈ t,

[H, τ(X)] = τ [H,X] = τ(α(H)X) = α(H)τ(X) = −α(H)τ(X).

For the latter equation we used that α has imaginary values on t. It follows that −α ∈ R and that
τ maps gCα into gC−α (in fact is a bijection between these root spaces; why?). �
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We recall that we identify it∗ with the real linear subspace of t∗C consisting of λ such that λ|t
has values in iR; the latter condition is equivalent to saying that λ|it is real valued. One readily
verifies that the restriction map λ 7→ λ|it defines a real linear isomorphism from it∗ onto the real
linear dual (it)∗. In the following we shall use this isomorphism to identify it∗ with (it)∗. Now R
is a finite subset of (it)∗ \ {0}. Hence the complement of the hyperplanes kerα ⊂ it, for α ∈ R
is a finite union of connected components, which are all convex. These components are called
the Weyl chambers associated with R. Let C be a fixed chamber. By definition every root is either
positive or negative on C. We define the system of positive roots R+ := R+(C) associated with C
by

R+ = {α ∈ R | α > 0 on C}.

By what we said above, for every α ∈ R, we have that either α or −α belongs to R+, but not
both. It follows that

R = R+ ∪ (−R+) (disjoint union). (49)

We write NR+ for the subset of ZR consisting of the elements that can be written as a sum
of the form

∑
α∈R+ nαα, with nα ∈ N.

Lemma 31.17 NR+ ∩ (−NR+) = 0.

Proof: Let µ ∈ NR+. Then µ ≥ 0 on C, the chamber corresponding to R+. If also −µ ∈ NR+,
then µ ≤ 0 on C as well. Hence µ = 0 on C. Since C is a non-empty open subset of it∗, this
implies that µ = 0. �

Lemma 31.18 The spaces

g+
C :=

∑
α∈R+

gCα, g−C :=
∑

β∈−R+

gCβ

are ad(t)-stable subalgebras of gC. Moreover,

gC = g+
C ⊕ tC ⊕ g−C .

Proof: Let α, β ∈ R+ and assume that [gCα, gCβ] 6= 0. Then α + β ∈ R ∪ {0}, and α + β > 0
on C. This implies that α+ β ∈ R+, hence gC(α+β) ⊂ g+

C . It follows that g+
C is a subalgebra. For

similar reasons g−C is a subalgebra. Both subalgebras are ad(t) stable, since root spaces are. The
direct sum decomposition is an immediate consequence of (47) and (49). �

We are now able to define the notion of a highest weight vector for a finite dimensional gC-
module, relative to the system of positive roots R+. This is the appropriate generalization of the
notion of a primitive vector for sl(2,C).

Definition 31.19 Let V be a (not necessarily finite dimensional) gC-module. Then a highest
weight vector of V is by definition a non-trivial vector v ∈ V such that

(a) tCv ⊂ Cv;
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(b) Xv = 0 for all X ∈ g+
C .

Lemma 31.20 Any finite dimensional gC-module has a highest weight vector.

Proof: We define the gC-submodule W of V as the sum of the tC-weight spaces, see Corollary
31.14.

Let C be the positive chamber determining R+. Fix X ∈ C. Then α(X) > 0 for all α ∈ R+.
We may select λ0 ∈ Λ(π) such that the real part of λ(X) is maximal. Then λ0 + α /∈ Λ(π) for
all α ∈ R+. By Lemma 31.12 this implies that π∗(gCα)Vλ ⊂ Vλ0+α = 0 for all α ∈ R+. Hence
g+
C annihilates Vλ0 . Thus, every non-zero vector of Vλ0 is a highest weight vector. �

Definition 31.21 Let V be a (not necessarily finite dimensional) gC-module. A vector v ∈ V is
said to be cyclic if it generates the gC-module V, i.e., V is the smallest gC-submodule containing
v.

Obviously, if V is irreducible, then every non-trivial vector is cyclic.

Proposition 31.22 Let V be a gC-module and v ∈ V a cyclic highest weight vector.

(a) There exists a (unique) λ ∈ Λ(V ) such that v ∈ Vλ. Moreover, Vλ = Cv.

(b) The space V is equal to the span of the vectors v and π(X1) · · · π(Xn)v, with n ∈ N and
Xj ∈ g−C , for 1 ≤ j ≤ n.

(c) Every weight µ ∈ Λ(V ) is of the form λ− ν, with ν ∈ NR+.

(d) The module V has a unique maximal proper submodule W.

(e) The module V has a unique non-trivial irreducible quotient.

Proof: The first assertion of (a) follows from the definition of highest weight vector. We define
an increasing sequence of linear subspaces of V inductively by V0 = Cv and Vn+1 = Vn +
π(g−C)Vn. Let W be the union of the spaces Vn. We claim that W is an invariant subspace of
V. To establish the claim, we note that by definition we have π(g−C)Vn ⊂ Vn+1; hence W is g−C
invariant. The space V0 is t- and g+

C -invariant; by induction we will show that the same holds for
Vn. Assume that Vn is t- and g+

C -invariant, and let v ∈ Vn, Y ∈ g−C . Then for H in t we have
HY v = Y Hv + [H,Y ]v. Now v ∈ Vn and by the inductive hypothesis it follows that Hv ∈ Vn.
Hence Y Hv ∈ Vn+1. Also [H,Y ] ∈ g−C and it follows that [H, Y ]v ∈ Vn+1. We conclude that
HY v ∈ Vn+1. It follows from this that

π(t)π(g−C)Vn ⊂ Vn+1.

Hence Vn+1 is t-invariant.
Let now v ∈ Vn, Y ∈ g−C and X ∈ g+

C . Then XY v = Y Xv + [X, Y ]v. Now Xv ∈ Vn by
the induction hypothesis and we see that Y Xv ∈ Vn+1. Also, [X, Y ] ∈ gC. By the induction
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hypothesis it follows that gCVn ⊂ Vn+1. Hence [X, Y ]v ∈ Vn+1. We conclude that XY v ∈ Vn+1.
It follows from this that

π(g+
C)π(g−C)Vn ⊂ Vn+1.

Hence Vn+1 is g+
C -invariant. This establishes the claim that W is a gC-invariant subspace of V.

Since W contains the cyclic vector v, it follows that W = V. In view of the definition of the
spaces Vk assertion (b) follows.

Let w = π(Y1) · · · π(Yn)v, with n ∈ N, Yj ∈ gC(−αj), αj ∈ R+. Then w belongs to the
weight space Vλ−ν , where ν = α1 + · · ·+αn ∈ NR+. Since v and such elements w span W = V,
we conclude that every weight µ in Λ(V ) is of the form λ − ν with ν ∈ NR+. This establishes
(c).

It follows from the above description that V equals the vector sum of Cv and V−, where V−
denotes the sum of the weight spaces Vµ with µ ∈ Λ(V ) \ {λ}. This implies that Vλ = Cv,
whence the second assertion of (a).

We now turn to assertion (d). Let U be a submodule of V. In particular, U is a tC-invariant
subspace. Let Λ(U) be the collection of µ ∈ Λ(V ) for which Uµ := U ∩ Vµ 6= 0. In view of
Lemma 31.2, U is the direct sum of the spaces Uµ, for µ ∈ Λ(U). If U is a proper submodule,
then Uλ = 0, hence Λ(U) ⊂ Λ(V ) \ {λ} and we see that U ⊂ V−. It follows that the vector
sum W of all proper submodules satisfies W ⊂ V− hence is still proper. Therefore, V has W as
unique maximal proper submodule.

The final assertion (e) is equivalent to (d). To see this, let p : V → V ′ be a surjective gC-
module homomorphism onto a non-trivial gC-module. Then U 7→ p−1(U) defines a bijection
from the collection of proper submodules of V ′ onto the collection of proper submodules of
V containing ker p. It follows that V ′ is irreducible if and only if ker p is a proper maximal
submodule of V. The equivalence of (d) and (e) now readily follows. �

Corollary 31.23 Let V be a finite dimensional irreducible gC-module. Then V has a highest
weight vector v, which is unique up to a scalar factor. Let λ be the weight of v. Then all
assertions of Proposition 31.22 are valid.

Proof: It follows from Lemma 31.20 that V has a highest weight vector. Let v be any highest
weight vector in V and let λ be its weight. By irreducibility of V, the vector v is cyclic. Hence
all assertions of Proposition 31.22 are valid. Note that W = {0} is the unique maximal proper
submodule.

Let w be a second highest weight vector and let µ be its weight. Then all assertions of
Proposition 31.22 are valid. Hence µ ∈ λ − NR+ and λ ∈ µ − NR+, from which µ − λ ∈
NR+ ∩ (−NR+) = {0}. It follows that µ = λ; hence w ∈ Vλ = Cv. �

Remark 31.24 For obvious reasons the above weight λ is called the highest weight of the irre-
ducible gC-module V, relative to the choice R+ of positive roots.

The following theorem is the first step towards the classification of all finite dimensional
irreducible representations of gC.
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Theorem 31.25 Let V and V ′ be irreducible gC-modules. If V and V ′ have the same highest
weight (relative to R+), then V and V ′ are isomorphic (i.e., the associated gC-representations
are equivalent).

Proof: We denote the highest weight by λ and fix associated highest weight vectors v ∈ Vλ\{0}
and v′ ∈ V ′λ \ {0}. We consider the direct sum gC-module V ⊕ V ′ and denote by W the smallest
gC-submodule containing the vector w := (v, v′). Then w is a cyclic weight vector of W, of
weight λ.

Let p : V ⊕ V ′ → V be the projection onto the first component, and p′ : V ⊕ V ′ → V ′ the
projection onto the second. Then p and p′ are gC-module homomorphisms. Since p(w) = v, it
follows that p|W is surjective onto V. Similarly, p′|W is surjective onto V ′. It follows that V, V ′

are both irreducible quotients of W, hence isomorphic by Proposition 31.22 (e). �

Remark 31.26 In the above proof it is easy to deduce that in fact W is irreducible, and p|W and
p′|W are isomorphisms from W onto V and V ′, respectively.
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