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0. Introduction

Let X = G/K be a Riemannian symmetric space of non-compact type, and let
D(X) be the algebra of invariant differential operators on X. In a previous paper
[1] we developed a theory of asymptotic expansions for joint eigenfunctions of
D(X) of at most exponential growth. In the present paper we show that local
asymptotic data determine the eigenfunctions completely. We also develop a
theory of asymptotic expansions “along walls”. Both results are of importance for
the theory of the discrete series of a semisimple symmetric space.

Let a be a maximal abelian split subspace of the Lie algebra g of G, and denote
by a¥ its complexified dual. Let X be the restricted root system of a in g, and W
the associated Weyl group. Then Harish-Chandra’s isomorphism D(X) ~ S(a)¥
determines a bijection Ar>y, from a¥/W to the set D(X)" of algebra homo-
morphisms D (X)— C. Given Aea¥, let £,(X) denote the joint eigenspace of
functions fe C* (X) satisfying:

Df=y,(D)f (DeD(X)).

A function fon X is said to be of at most exponential growth if there exist re R and
C > 0 such that
[f(x)} < Ce"™ (xeX).

Here d(x) denotes the Riemannian distance of x to the origin. The space of
functions in &,(X ) of at most exponential growth is denoted by &¥(X). In [1] we
proved that every fe £%(X) admits an asymptotic expansion of the form

f(xexptH)~ Y pex, tH)e "™ 1
¢eX(4)

for xeG, Hea” as t—»co. Here X(A)={wi—p—u weW, pueNZ} and
Hw> p,(., H) is a polynomial function on a with values in the space 2'(G) of
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distributions on G. The expansion has to be interpreted in a distribution sense: after
testing both sides with a compactly supported C* function it becomes a genuine
asymptotic expansion. Let now U be a non-empty open subset of G and suppose
that p, = 0 on U x afor all £e WA — p. Then a main result of this paper is that f
must vanish identically on X (Corollary 4.10, see also Corollary 4.2). This unique-
ness result could be expected in view of the analogous result Theorem 4.4 in [10].
The nature of the theory in [10] is different however; boundary values are defined
by means of microlocal analysis a la [14] rather than by asymptotic methods. This
makes it difficult to compare the resuits in a direct way, especially for “degenerate”
values of the parameter .

Example. If G = SU(1, 1), K = S(U(1) x U(1)), then X is the unit disk D in C
endowed with the Poincaré metric. Moreover, &,(D) is the space of harmonic
functions on D. In this case the coefficients p,(x, H) are independent of H.
Moreover, for a function fe€ &7 (D) which extends smoothly to D, one can show that
the p.(x) depend smoothly on x, and that (1) holds pointwise. This gives rise to an
expansion

. 1 X .
f( ' tanh '2‘t> ~ ZO p"(elo)e—nt , (2)

for 0eR, as t — co. Here p, is a smooth function on dD. A formal computation
(which can be made rigorous) then shows that

Po(e®) =f(e?),

of
ar
where r denotes the Euclidean distance to the origin. Now suppose that p, and p,
vanish on a non-empty open subset U of 6D. Then our uniqueness theorem asserts
that f vanishes identically on D. In the present case this can also be seen as follows.
By the reflection principle f can be extended to a harmonic function on a
neighbourhood of U, and then it follows from the Cauchy-Kowalewski theorem
that /= 0 on a neighbourhood of U. By real analyticity this implies that f vanishes
on the entire disk D.

Sections 1-3 of this paper are devoted to the development of asymptotic
techniques needed for the proof in Sect. 4 of the uniqueness result. In Sect. 5 we
show that these techniques are also strong enough to replace the microlocal
analysis used in Oshima and Matsuki’s fundamental paper [11] on the discrete
series for semisimple symmetric spaces.

Let us finally say something about the nature of our proof of the uniqueness
result. The basic idea is to use induction on the rank of G/K. For the rank one case
the uniqueness result can be obtained by using the Poisson transformation. The
induction step is based on a property of transitivity of asymptotic expansions
(Theorem 3.1), resembling the transitivity of the constant term in Harish-Chandra’s
work [5].

Our result on transitivity essentially amounts to the following. An eigenfunc-
tion f which is a smooth vector for the left regular representation of G in %(X)

pi(e®) = —2-"(e"),
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admits an asymptotic expansion along a wall of type A (the usual notation for the
split component of a standard parabolic). Each coefficient p; , of this expansion is a
smooth function on G, and it is annihilated by an ideal in D(M /K ) with finite
codimension. By similar methods as in [1] we then obtain asymptotic expansions
for pp,, along open chambers in M. Again its coefficients are functions on G.
Theorem 3.1 relates these coefficients with the p, of (1).

We are grateful to Professor Oshima for suggesting the validity of Corollary 2.4, which led to a
significant simplification of our original arguments.

1. Asymptotics along the walls

Let G be a real reductive Lie group of Harish-Chandra’s class, K a maximal
compact subgroup, and 8 the associated Cartan involution. Let D(G/K) denote
the algebra of invariant differential operators on the Riemannian symmetric space
G /K. The purpose of this section is to derive asymptotic expansions along walls for
functions on G/ K which behave finitely under D(G/K). When comparing with [1],
we are thus generalizing in three directions: (1) The asymptotic theory is “along
walls”, (2) we deal with D(G /K )-finite functions instead of plain eigenfunctions and
(3) G is of Harish—Chandra’s class.

We adopt the usual notational conventions. Thus, Lie groups are denoted by
Roman capitals, and their Lie algebras by the corresponding lower case Gothic
letters. Moreover, g = T @ p is the Cartan decomposition defined by 6. We fix a
maximal abelian subspace a of p, and a choice £+ of positive roots for the restricted
root system 2 = X(g, a) of a in g; the associated fundamental system is denoted by
4. Finally, n denotes the sum of the positive root spaces, it = 8(n), N = exp(n),
N = exp(#t), and M denotes the centralizer of a in K.

Given a real Lie algebra |, we denote the universal enveloping algebra of its
complexification by # (1), and the latter’s centre by 2 (I). Elements of (1) will be
viewed as left invariant differential operators on any Lie group with Lie algebra |,
unless specified otherwise.

Let I < D{G/K) be a cofinite ideal {that is, an ideal of finite complex codimens-
ion). The infinitesimal right regular representation naturally induces an algebra
homomorphism g from %(g)¥ onto D(G/K). Let J be the left ideal of %(g)
generated by #(g)f and the preimage pu~ (1) of I in %(g)*. Then %, = %(g)/J is a
left (g, K)-module.

Fix a subset F of 4, and let P, denote the associated standard parabolic
subgroup with Langlands decomposition MpA; Ny (cf. [15], II, Ch. 6). We write
M,y = MzAp, N; = (Ny), and denote the centralizer of a in K by K. Then M,
is of Harish-Chandra’s class, and K is a maximal compact subgroup.

Lemma 1.1. The (m,p, Kg)-module % /7%, is finitely generated and admissible,
for every F < A. In particular, % is an admissible (g, K)-module.

Proof. By the Poincaré-Birkhoff-Witt theorem we have
U(g) = tpU(9) ®U(myp) + U(9)T .
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From this we see that 1+ #i;%, is a cyclic vector for the (m,r, Kg)-module
Y, [0
Now observe that

dime 2 (g)(1 + ;%)) < dimc%()*/(J N % (8)%)
= codime(I) < o0, (3)

and consider the algebra homomorphism y:Z(g)— Z(m,;) defined by
Z — y(Z)ew % (g). Since & (m, ) is a finite (& (g))-module (cf. [15] II p. 52), we
infer from (3) that

dime 2 (m,  )(1 + %) < o0 .

The result now follows by application of [16], Lemma 2.10. [

Consider the %(m,p)* =submodule (', Y') of %,/ %,, generated by
1 4 #i;%,. From Y! < (%,/f;% ¥~ we see that Y! is finite dimensional, hence its
set Sp(I) of ag-weights is finite. But Y generates the (m,,, Ky)-module %, /%,
and ay commutes with m,, and K. Therefore S;(I) is the set of ay-weights of
¥, /7%, as well. We write

X(F, Iy = Sg(I) — NdJag, 4
where N4 = {Zno;m,=0,1,2,... ando;ed}.

Lemma 1.2. For k> 1, the (m,z, Kp)-module % ,/is%, is finitely generated
and admissible. Its ap-weights are contained in X (F, I). The U (m,p)* =submodule
(t*, Y*) generated by 1 + ik % is finite dimensional. Moreover, for each ne X(F, I)
there exists d,e N such that the multiplicity of n in (%, Y*) is at most d, for every
k=12, ...

Proof. Consider, for k > 2, the short exact sequence of (m,,, Kp)-modules
0 — Ak~ ' (ip)/REU (p) @ Wy Tie W, —> W [TEHY, > H /RE1H, -0 (5)
and apply induction to infer the first two claims. Then, by admissibility,
dim¢(Y*) < dime( %, /¥ )5 F< oo .

Since the canonical map Y*— Y*~! is onto, the multiplicity of n in (¢, ¥*)
increases with k. However, it follows from the exactness of the sequence (5) that the
set of weights of the kernel of Y* — Y*~ ! is contained in

k
{/1 - Y ojlap; AeSp(),ay,. .. ,ockeZJ“\NF} ,
i=t

hence does not contain n for k sufficiently large. From this the final claim
follows. [J

In order to generalize the theory of [1] to groups of Harish-Chandra’s class, we
need to define a distance function || || on G, as in [1], Sect. 2. We equip g with a
Ad(K)-invariant inner product < .,. > for which f and p are orthogonal, and denote
the associated norm by |-|. Let °G be defined as in [15], 11, p. 20, and put

ar={Hea; a(H)=0 forall aeX}.
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Then G =~ °G x exp(az). We now define the function |- {|:G = R, by
I x exp H|| = || Ad(x)ll,, €',

for x€°G and Heay. Here || - ||, denotes the operator norm. One readily checks
that Lemma 2.1 in [1] is valid in the present situation as well.
For any function f: G — C and reR we define

1= sup Ix i~ ()]

A function f: G - R is said to increase at most exponentially if there exists re R
such that || 1], < oo. The Banach space of continuous functions f: G — R satisfying
Il £, < oo is denoted by C,(G). It is invariant under both the left regular action L
and the right regular action R of G.

As in [1] we denote the Banach space of C%-vectors, respectively the Fréchet
space of C *-vectors, for L on C,(G) by C¥(G), respectively C°(G). The norm on
C¥(G)is denoted || - ||, ,. It is straightforward to check that the estimates (2.2-7) of
[1] go through without change. Moreover, the crucial property that matrix
coeflicients of finite dimensional representations are of at most exponential growth
(cf. [1], Example 2.2 (ii)), also holds for groups of Harish-Chandra’s class.

Let &,(G/K) denote the Fréchet space of right K-invariant smooth functions
f:G — C annihilated by the cofinite ideal I of D(G/K) (we view this space as a
generalized joint eigenspace for D{G/K); when I is the ideal I, defined in [1], p. 119
(Lea¥), &£,(G/K) is the eigenspace &,(G/K) of [1]). For reR, and gqe N, we put

61.,(G/K) = CHG)n &6(G/K) .

Since I contains an elliptic differential operator, this intersection is a closed
subspace of C#(G), hence a Banach space. Moreover, the space

¢r(G/K) = C2(G)n &1(G/K)

is a closed subspace of C*(G), hence Fréchet.
Write

af ={Xeap; afX)>O0foraeA4\F},

and fix Hyeay and reR. The following is similar to [1], Proposition 6.1, but
“along the walls”.

Proposition 1.3 There exist, for each NeR,

(@) an open neighbourhood U of H, in af

(b) constants k, geN, r' > r and C, e > 0,

(c) a continuous map ¥:U — B(C¥(G), Y*® C,.(G)), and
(d) a linear form ne(Y*)*,

such that

(1) Y(H) intertwines the left actions of G on C and C,, for all He U, and
(2) | Rexpin f— (noexp t*(tH) @ NI Y(H) f11, < Cl S, LN for  all
fe&4,(G/K), HeU and t > 0.
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If fe&(G/K) then the map %(g)— C*(G), y— R,f factorizes to a map
% - C®(G). For the proof of Proposition 1.3 it will be convenient to specify a
representative in %(g) for each element of #; = %(g)/1 as follows:

Recall from [1], Proposition 5.1, that the natural linear map

r:(m)® EQ@D(G/K)— «(g)/u(g)t
is an isomorphism of % (i1)-modules. Here F is a finite dimensional linear subspace
of % (a). The map I factorizes to an isomorphism of % (i#t)-modules
FaH)® EQD(G/K)/1-%,.
In particular we see that %, is a free % (i)-module of finite rank. Lete,,. .. ,e,bea
linear basis for E, and select finitely many elements u,, . . ., u, of #(g)* whose
canonical images #,, ..., #, constitute a linear basis for D(G/K)/I. By the
Poincaré-Birkhoff-Witt theorem, there exist v,e# (il @ m;z) such that o,
=y, mod #(g), for 1 <I<gq. Let
Ji% > U(np ® myp)
be the homomorphism of % (#t)-modules defined by
jol(1® e, ® i) = vy,

for all k, I. Then j followed by the canonical projection #(g)— %, yields the
identity of %, that is, j(y) is a representative in % (g) of y.

If fe£,(G/K), then yf=j(y)ffor ye#%,. We now define R, f, or yffor short,
for any fe C*(G) by:

yf=iy)f (ye¥,).

After the above we can formulate the analogue of [1], Lemma 6.2. Define
Braz - R by

Br(H) = min a(H) .
aeA\F

Lemma 14. Let keN, and put
Y(H) = |rlc;|H| — kBe(H),

for H eag, where c, is the constant of [1], Lemma 2.1 (iv).
For each ye %, there exist constants ge N, v’ > r, and C > 0 such that for all
Heaf we have:

” RepoRyf ”r’ < C”f”q,rewﬂ)
for fe C{G).

Proof. Using that yf=j(y)f and j(y)erkU(fi;)U(m;p), proceed as in {1],
Lemma 6.2. OJ

Proof of Proposition 1.3. Given N eR, select ke N such that y(Hy) < N, with y as
in Lemma 1.4. Fix elements x,, ..., x, of %, with x; = 1 4+ J, such that their
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canonical images in Y* constitute a basis of ¥* over C. For H e a;, let B(H) be the
matrix of T*(H) with respect to this basis. Then

p
yi(H) = Hx,; ~ z B(H)jiijﬁl;"@I s
i=1

for 1 <i < p, and y,(H) depends linearly on H. Hence the y,(H), Heap span a
finite dimensional subspace of itk %,. Now for Hea; , t > 0, define bounded linear
maps from C4(G) into C,.(G) as in [1], p. 126 by

F(H’ t)i = Rexp tH Rxl ]
G(H, T)i = Rexp tH Ry.(H) ’

for1 <i<p.
If fe£4,,(G/K) then as in [1], p. 127, one has the C, (G)-valued differential
equation:

%F(H, t)f=[B(H)F(H,t)+ G(H,t)]f.

The proof is now completed by the same arguments as in [1]. O
Let
EF(G/K)={) €7.(G/K).
reR
Then we have the following consequence of Proposition 1.3. It generalizes [1],
Theorem 3.5.

Theorem 1.5. (i) For each fe §F(G/K), xe G and ne X (F, I), there exists a unique
continuous function pg ,(f, x) on ag which is radially polynomial of degree at most d,
such that

fOxexptH) ~ 3 pr o (f x, tH)e™™  (t — a0) (6)

at every Heaf .

(i) LetreRandne X(F,I). Then for Hye af there exist an open neighbourhood
U of Hy in af and a constant ' €R such that (f, H)— pp ,(f, ., H) is a continuous
map from £, (G/K) x U into C¥(G), which is linear and G-equivariant in f.

Remarks. (a) That p. ,(f, x)is radially polynomial of degree at most d, means that
for each Heay, the map t—p; ,(f, x, tH) (teR ) extends to a polynomial of
degree < d, on R. Here d, refers to the constant given in Lemma 1.2. In Corollary
3.2 we shall see that p, ,(f, x) actually extends to a polynomial on ag.

(b) For the meaning of ~ in (6) we refer to [1], Sect. 3. The definition given
there is easily generalized to the present situation.

(c) By the definition of the topology of the spaces C,*(G), the continuity of the
map (f, H)+ pr ,(f, ., H) in (ii) amounts to the following: For each p there exists a
q such that the map has a continuous extension

&1.(G/K)x U—CE(G). 0
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Proof of Theorem 1.5. This follows from Proposition 1.3. The details present no
difficulties which go beyond those of [1]. The bound on the polynomial degree of
t+>pe o(f, x, tH) comes from (2) in Proposition 1.3 and Lemma 1.2. [J

2. Properties of the coefficients

The purpose of this section is to study properties of the coefficients pg , in the
asymptotic expansion (6) of Theorem 1.5. We first derive differential equations for
the pp ,(f, x, H) as functions of x.

For me Ky, we have f(xmexptH)=f(xexptH), hence by uniqueness of
asymptotics we see that

pF,n(f;xm’H)zpF,n(f;x9H) (mEKF)

Consequently the right action of #(mz)**on py ,(f, ., H) induces an action of
D(M,p/Ky) on pp ,(f, ., H).

If DeD(G/K), then D may be represented by some ue%#(g)* (determined
modulo % (g)I). By the Poincaré-Birkhoff-Witt theorem there exist up &% (m, )X*
and we ;% (it @ a) such that

ueuy +w+ %(g)t.

The image of up in D(M,;/K;) only depends on D and is denoted by 6.(D).
Moreover, w only depends on D and can be written as a finite sum w = Y ,w;, with
w; e (M @ a) such that ad(ay) acts on w; by a non-zero weight — y,, with
uieNAlaF.

In the following, it will be convenient to adopt the convention that py , = 0 if
ne X(F, I).

Proposition 2.1. Let Del. Then

6F(D)pF,n(f;-’H)= _ZwipF,r/+u,-(f;-aH)’ (8)

for all fe £ (G/K), neX(F,I), Hea; .

Proof. By equivariance it suffices to establish this identity of functions on G at the
identity element e. Let up represent 65(D) as above. Then uy commutes with ag,
hence

upf(exp tH) = L(ug) f(exp tH} ,

where L denotes the infinitesimal left regular representation, and u—# the
canonical anti-automorphism of %(g). By left equivariance of the map
S pe,,(f, ., tH) we now obtain:

upflexp tH) ~ . [8¢(D)pg, 4 (f; ., tH)] (e)e"™™ .
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Similarly:
wif (exp tH) ~ 3 [wipp (£, ., tH)](e)e! " w0 0H
]

and the identity follows by uniqueness of asymptotics. [
The following two lemmas are well known.

Lemma 2.2, Let [ be a cofinite ideal in D(G/K). Then dp(1) generates a cofinite ideal
in D(M¢/Kp).

Proof. See [4] Lemma 15. [

Notice, that if W is a (g, K }-module, then there is a natural action of D(G/K)
on the set WX of K-fixed vectors in W, defined via the canonical map
WU (g)* - D(G/K).

Lemma 2.3. Let I be a cofinite ideal in D(G/K), and let F be a finite dimensional
g-module. There exists a cofinite ideal 1' in D(G/K) with the following property:

Let W be any (g, K)-module which is generated by WX, and assume that W¥ is
annihilated by 1. Then I' annihilates (F® W)X,

Proof. This result follows from [8], Theorem 5.1, since the canonical image of 2'(g)
is cofinite in D(G/K). For completeness we give an independent proof.

Let I, be the ideal of codimension 1 defined in [1], p. 119. It is easily seen that
we can assume I = I, for some Aeaf (if I = (I;,)" n...n (I, )™, then by using a
suitable D(G/K)-stable filtration of WX it is seen that we can take
I' =" n...«(Iy,)™). Moreover, we may assume that dim WX = 1, and that
the real part of 1 is dominant. By a theorem of Kostant ([7]), W is equivalent to a
quotient of the space C(G/P, L_,), of K-finite vectors in the spherical principal
series C(G/P, L_,) induced from 1® e* (cf. [1], Remark 5.1). Hence we may
assume that W = C(G/P, L_,)g. It is now easily seen that F ® W has a filtration,
of length at most dim F, in which each subquotient is equivalent to a principal
series representation induced from d®e** where §® e’ occurs in the MA-
decomposition of F. Hence the intersection I° of the ideals I, , ,, where each v is an
a-weight of F M annihilates the K-fixed vectors in each of these subquotients. Let
['=(10)dimF_ |

Corollary 24. Let ne X(F, I). There exists a cofinite ideal I, in the algebra
D(M,;/Ky), which annihilates py_,(f, ., H) for all f and H.

Proof. Consider the partial ordering < ; on ay defined by
’71<F’Iz¢>’72_'I1ENA|aF\{O} . 9

We prove the corollary by downward induction along <. Fix ne X(F, I) and
Del, and assume the result holds for all elements in X (F, I') greater than #. Then
we claim that the right hand side of equation (8) is annihilated by a cofinite ideal
I’ « D(M,r/Kp). To see this, notice that the w; generate a finite dimensional
Ad(M, ;)-invariant subspace F of %(g), and that the p; ,, , (f,., H), which by the
induction hypothesis are annihilated by a cofinite ideal, generate a (m g, Ky )-
module W < C*(G). Then the right hand side of (8) lies in the image of (F @ W)*
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under the morphism of (m;p, Kp)-modules F® W — C*(G) given by
u® @ - R,p, and the claim follows from the previous lemma. Moreover, I’
depends only on n and D, but since [ is finitely generated, we can actually choose I’
independently of D. Let I, be the product of the cofinite ideals /' and (1), then it
follows from (8) that I, annihilates py ,(f, ., H). [

Corollary 2.5. For every fe £ (G/K), ne X(F, I), Heaf and xe G, the function
mes pp (f, xm, H) is real analytic on M.

Proof. In view of Corollary 2.4 the above function is annihilated by the cofinite
ideal I, in D(M,r/K;), which contains an elliptic differential operator with real
analytic coefficients. Now apply the elliptic regularity theorem. [

We shall now see that this real analytic function on M, has at most exponen-
tial growth. For this purpose, we need some lemmas. Let | - || denote the distance
function on M as defined in the previous section.

Lemma 2.6. There exists a constant ¢ > 1, such that
[mlFe < |ml| < |m|g meM .

Proof. In view of [1], Lemma 2.1 (iii), it suffices to prove the inequalities for
m=-exp Y, with Yempnp. Both inequalities then follow from [1], Lemma
2.1 (v). O

Lemma 2.7. Fix constantsr > 0 and pe N, and let s = or (where o is given in Lemma
2.6). There exist constants §eR and C > 0 such that for all € C?(G) and x € G, the
Sfunction m> @{xm) belongs to CE(M ) with the following bound on the norm

To(x ), cllps < Clx ¥l
Proof. 1t suffices to prove the bound on the norm. By [1], equation (2.4) we may
assume x = e. Fix a basis Y,, ..., ¥, for m,;, and write
Y =Y. .. Y]

for y = (y,, . .., yx)€NF Then by the definition of | - I, s0on Mg

[ @lm, ellp, s = max sup [[m{lz*|L(Y")@(m)|,

lyl<spmeMF

and hence by the definition of |- ||, , on G

1@la, el p,s < C sup [mlg*ml o], .

meM;

Now the result follows from Lemma 2.6. I

Fix ne X(F, I), a relatively compact open subset U of a7 and a constant r > 0.
Then by Theorem 1.5 (see also (7)) there exists a constant v’ > 0, and for each peN
a number ge N and a constant C > 0 such that p,,(f, ., H) belongs to C2(G) for
all He U and fe &9 ,(G/K), with the following bound on the norm:

”pF,q(f"’H)”p,r' < C“f“q,r .

Combining this with Lemma 2.7, we obtain the following result:
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Proposition 2.8. Fix n, U and r, and let s = or as above. For each pe N there exist
geN, 5eR and C >0 such that the function mw—pg (f, xm, H) belongs to
Cl(Mp/Ky) for all He U, xe G and fe £, ,(G/K), with the following bound on the
norm:

Ipe, o fox o H)lag, pll s < CUXIFI S, -

in conclusion, we have:

Theorem 2.9. Fix neX(F,1). There exists a cofinite ideal I, in the algebra
D(M,/Ky) such that the function m— py ,(f, xm, H) belongs to (a@ (M 1F/K,p)for
all fe £ (G/K), xeG and H e af . Moreover, for each reR and U c af relatively
compact there exists seR such that (f, H) pg ,(f, x -, H)|u, .maps

&P (G/K) x U continuously into (“’ (Mp/KFy) for all xeG.

3. Expansions for the coefficients

Consider a function fe £ 7(G/K). From Theorem 1.5 with F = ¢ we know that f
has an asymptotic expansion along a™:

f(xexptH)~ Z pq(fx tH)e*™ ) (1 > ), (10)

for Hea™, xe G (when the spemal choice of the empty set for F is made, we
suppress the symbol &5 in our notations, thus X(I) = X (&, I) = § — N4 where
S =Sx())

On the other hand, for any F we have the following expansion along af:

fixexptHy) ~ Z pe. o1 X, tHy)em o) (f - o), (n
neXtF, 1)

for Hyeay , xeG.
Let Xp = 2 n ZF be the restricted root system of a in m, ;. The positive system
X7 = 2N X" determines a positive Weyl chamber in a:

at(F)={Xea, a(X)>0 for acF}.

Now let ye X(F, I), Hyeaj, and xe G. Then by Theorem 2.9 the function
m— pg (f, xm, Ho) on M is annihilated by a cofinite ideal I, in D(MlF/KF) and
hence by Theorem 1.5 it has asymptotic expansions a]ong rays in a*(F). The
following theorem determines the coefficients of these expansions in terms of the
coefficients p; of (10). Put

X(Ln)={&eXU)&l,, =n}.
Theorem 3.1. Let fe&£7(G/K), xe G, and ne X(F, I).

() For every Hyeaf and H e a” (F) the following asymptotic expansion holds:

pr.o(f,xexptH,, Ho) ~ S pefix, Ho + tH)e*™) (1> o0). (12)

ZeX (I, n)
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(B) For all £€ X(I) with élaretX(F, I) we have p.(f, x) = 0.

Notice that if the set X (I, ) contains some element &, then it contains the set
¢ — NF, so that (12) is actually an infinite expansion. On the other hand if X (I, ) is
empty, we define the right hand side of (12) to be the trivial expansion with all
coefficients vanishing,

Proof. Since both py , and p, are equivariant for the left G-action we may assume
that x = e.

By Theorem 1.5 there exists a finite set T(n) = S(I,) < a¥, and for each
(peé",“:(MIF/KF), meM,p and {€T(n) — NF a continuous function g,(¢, m) on
a* (F) such that we have the asymptotic expansion

@(mexptH;) ~ ) q(o,m tH)e" ) (t > w0).
5

We apply this result to the function ¢ = pp,(f, ., Ho)|m, .at m = e, and denote the
coefficients q,(¢, e, tH,) by qr, . (f, Ho, tH,):

pr.o(fiexptHy, Ho) ~ 3 qp g ((f,Ho, tH,)e* ™Y (t>00).  (13)

{eT(n) ~NF
To establish part («) of the theorem, it suffices to prove the following:

(i) If Ee X (I, H\(T(n) — NF), then p<(f, e) = 0.
(ii) If {e(T(n) — NF)\X(L, n), then gg , (f) = 0.
(iii) If {e(T(y) — NF)Yn X(I,n), then

qr,q,(fs Ho, tH{) = p(f, e, Hy + tH,) ,

for all Hyea*, Hyca*(F)and t > 0.

We will concentrate on proving (i)-(iii); part (§) of the theorem will be obtained
along the way.

Since pg ,(f, ., Ho) and q,(¢, e, tH,) depend continuously and linearly on f'and
o, respectively, the coefficient g , .(f, Hy, tH, ) depends continuously and linearly
on f. Similarly for every £€ X(I), and Hea™, p(f, e, H) depends continuously and
linearly on f. Hence by density we may assume that fis K-finite. This assumption
will allow us to apply the results of [3].

For Hea* we define z(H)e C4 by

z(H),=e *® (aed).

Let D denote the unit disk in C, centred at the origin. Then by [3] there exists a
finite set S’ < a* such that the canonical map S’ — a*/ZA is injective, and
moreover an integer d > 0 and finitely many holomorphic functions &, ,: D4 - C
such that:

flexpH)= ) H"e®o, . (2(H)), (14)
seS',im| <d

for Hea*. Here the summation involves me N4 with {m| =3, , m, < d, and we
have used the notation H™ = [[,., a(H)" Being holomorphic, &, ,(z) has a
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power series expansion

¢s‘m(z) = z cs—u,mzu (ZEDA) y
#eNA
where z* = [],.,(z,)%. For convenience, let ¢, ,, = 0 whenever {¢ S’ — N4.
By uniqueness of the coefficients in (10) we draw the following two conclusions:
(a) f £e X(I) = S — N4 then

p(fie, H) = ché‘mH'”. (15)

|m| <

(b) If £e(S" — N4)\(S — N4), then c; ,, = 0 for all m.
Now fix H,; ea™(F) for the moment. If R > 0 we put

of (R)={Hyeap;a(Hy) > R for all e A\ F } .
We may fix R > 0 such that
Hoea;(R)=>H1 + H0€a+ .

For Hyeaf (R) we write H = H, + H,. Then in view of conclusion (b) above, the
expansion (14) for f can be rewritten as follows:

flexpH)= 3 cqpH"etD
3

l: Cé_u,me—ﬂ(Hx)}Hmeé(Hl)eé(HD)' (16)
£eS — N(4\F) L peNF
[m{<d

Since the functions &, ,, are holomorphic on D4, the series between brackets in (16)
converges absolutely. Moreover, again by holomorphy we obtain an asymptotic
expansion

f(exp H, exp tH,) ~ cg_,‘,,,,e““””](H1 + tH )" et H 1) gf(Ho)

£eS —N(4 \F)|: peNF
Imj<d

ast— oo.
Now put

X(n)={LeS — N(4\F). &l =n}. (17)

By uniqueness of the coeflicients in (11) we infer the following.
(c) For all Hyeaf (R) one has

Pp,n(f’ exp H,, Hp) = Z I: Z Cg—u,m‘?_“("”](Hl + Ho)meéml) . (18)
geXtn) L ueNF
(d) If Ee X(I)= S — N4 and &|, ¢ X(F, I) then ¢, , = 0 for all m.
In view of (15) part () of the theorem now follows from (d).
Clearly (17) is a finite set, so that the summation in (18) over the {’s is finite.
Since p,(f, exp H, Ho) is continuous and radially polynomial in the variable H,
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it follows that (18) holds for all H, ea™ (F) and all H,ca; . Moreover, we have an
asymptotic expansion:

Pr q(fiexp tH,, Ho) ~ Z Cr miHo + tH ym et Ho | (19)

|m|<d
teX(n)—NF
as t— oo, for Hyeaf, Hyea* (F).
Finally uniqueness of asymptotics, this time in (13), allows us to conclude:

(1) If ¢e(X(n) — NF)\(T(n) — NF) then c; ,, = 0 for all m. Hence p; = 0 by (15).
(2) H{e(T(n) — NF)\(X(n) — NF), then g; , (f) =0.
3 If {e( T(n) —NF)n(X(y) — NF), then

Qra, (s Ho, tHY) =ch,m(H0 +tH)™,

for Hyeof ,H,ca” (F). Hence g, , .(f, Hy, tH,) = p(f, e, Hy + tH,) by (15).
Since X(n) — NF = X (I, n), this finishes the proof of (1), (i) and (iii)). [

Corollary 3.2. Let fe 8§7(G/K),xe G and ne X(F, I). The function pg_,(f, x) on a;f
extends to a polynomial on ay of degree at most d,,, where d, is the constant of Lemma
1.2. Moreover, if né X (I )l“r’ this polynomial vanishes identically.

Proof. By equivariance we may as well assume that x = e. For K-finite f we know
already that p; ,(f, e) is polynomial (see (18)), but also that it is radially poly-
nomial of degree at most d, (cf. Theorem 1.5, (i) ). Therefore p, , (f, ) belongs to the
finite dimensional linear space P of polynomial functions on a, of degree at most
d,. It follows by density that py ,(f, e) belongs to P for f arbitrary.

Ifne X(I)laF, then the set (17) is empty so that (18) vanishes for every K-finite
function . Now we again apply density. [J

4. Local boundary data

This section contains the main result about asymptotics. As in [1] Sect. 8, we define
the set of exponents of fe£°(G/K) at xe G along xA* by

E(f,x)={leX(I) xesupppf.)}- (20)

Here we have regarded p.(f) as a function on G with values in a finite
dimensional space of polynomials (cf. Corollary 3.2 with F = J).

Theorem 4.1. There exists a finite set R(1) = X (I) such that the following holds: Let
fe&F(G/K). If E(f, x)nR(1) = & for some xeG, then = 0. In particular, if I
= [, for some e a¥, then we can take R(I) = Wi — p.

Corollary 4.2. Let fe £°(G/K) and assume that there exists an open nonempty set
U < G such that pe(f, x) = 0 for all (e X(I) and xe U. Then [ = 0.

The corollary is an immediate consequence of the theorem. Thus a function in
& (G/K) is uniquely determined by its asymptotic coefficients on any fixed
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nontrivial open subset of G. This uniqueness result is of a similar nature as
Proposition 2.15 in [12] and Theorem 4.4 in [10], the proofs of which are based on
Holmgren’s uniqueness principle for hyperfunctions as formulated in [14], Ch. 111,
Theorem 2.2.1.

The proof of Theorem 4.1 proceeds by induction on the rank of the root system
Z, but first we construct R(I) and show that it suffices to prove the result for I = I,
that is, for simultaneous eigenfunctions of D(G/K).

Lemma 4.3. ForeachDeD(G/K)andfe &5 (G/K) we have Dfe £ (G/K). More-
over, there exists a finite set T < NA such that

E(Df,x)={{—w Ce€E(f,x),ueT} 21
for all DeD(G/K), feEFP(G/K) and xeG.
Proof. Let fe £7 (G/K). Since D(G/K) fis of finite dimension, it is contained in
67 +(G/K)forsomes’ > sby[1], formula (2.7). Let g = Df where De D(G/K). We

can represent D by a finite sum Z§=1 v; in %(g), where each v;e % (it @a) is a
weight vector for ad(a) with weight — u;e — NA. It follows that

x

g(exp tH) = Z e UDLL(E;) f1(exp tH)

J

~ Y 2 PLL(3)f] e tH)e ™ (1 c0)

Jj=1 &eX(I)

= |
-

and since p(L(®;) f,e) = L(9;) [p:(f)](e) = [R(v;)p:(f)](e) we get by uniqueness
of asymptotics that p.(g, €) = Y ;[ R(v;)p; + w ()] (e) By left equivariance we now
infer that

Pe(9, x) = Z[R e+, (N](x) (x€G),

whence
E(g.e) = {&—uj; E€E(fie), j=1,...,k}.

Since [ is cofinite, it suffices to consider finitely many D’s and the lemma
follows. U

Since [ is cofinite, D(G/K)/I is a finite dimensional module for the algebra
D(G/K). Let Y (I) be the finite set of all homomorphisms D(G/K) — C to which
there corresponds a simultaneous eigenvector in D(G/K)/1. Via Harish-Chandra’s
isomorphism, Y(I) corresponds to a W-invariant subset A(f)of a*. Let T < N4 be
as described in Lemma 4.3 and let

RD={A-p+mwieA(l),ueT} .

Notice that if I = I,, then A(I) = W4, and we can take T = (J in Lemma 4.3.
Hence R(1) = WA — p.

The reduction to eigenfunctions will now be a consequence of the following
lemmas.
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Lemma 4.4. Let feé°(G/K), xeG and suppose that E(f, x)nR(I)=. If
geD(G/K)fn &L (G/K), Aea¥, then there exists an open neighbourhood U of x
such that E(g, y) = J for all ye U.

Proof. If g = O there is nothing to prove. Assume g + 0. Then Ae A(I), and by
definition of R(I) we have WA — p + T < R(I). Hence E(f, x)n (WA —p + T)
= (¥, and it follows from Lemma 4.3 that E(g, x)n (Wi —p) = .

Since WA — p is finite, E(g, y) n (WA — p) = & for all y in a neighbourhood U
of x, and the result now follows from [1], Corollary 8.2. [

Lemma 4.5. Let fe £P(G/K). If D(G/K}fnET(G/K) =0 for every Aea¥, then
f=0.

Proof. If f= 0, then the finitely generated commutative algebra D(G/K) has a
non-trivial joint eigenvector in the finite dimensional space D(G/K)f. 0O

As a corollary we can now obtain a ‘global’ version of Theorem 4.1.

Corollary 4.6. Let fe &1 (G/K). If p.(f, x) =0 for all e R(I) and all xe G, then
f=0.

Proof. Let ge D(G/K)fn &L (G/K), where Aea¥, Re A dominant. According to
Lemma 4.5 it suffices to show that g = 0. By Lemma 4.4 we have that E(g, x) =0
for all xe G. Hence the boundary value B,(f) (cf. [1], p. 136) vanishes identically,
and the result follows from [1], Theorem 10.1. [

Proof of Theorem 4.1 (induction step). Let n = rank(2) > 1, and assume that the
theorem holds for all spaces whose root system is of strictly smaller rank. By the
same reasoning as in the proof of Corollary 4.6 we may reduce to the case that
fe&F(G/K)for some A€ a¥, and that the set { ye G: E(f, y) = &} has a non-empty
interior U.

Let F be a proper subset of A, and fix x, € U. Select an open subset V of M
such that x,V < U. Now let e X (). Then p.(f, xom) = 0 for me V. We claim that
actually p,(f, xom) = 0 for all me M. Put n = £|, . By Theorem 3.1 part (B) we
may as well assume that ne X(F, I). By Theorem 3.1 part («) the function
m— pr ,(f, xom, Hy)on M has an asymptotic expansion in which all coefficients
vanish on V, for all Hyeaf . By the induction hypothesis (apply Corollary 4.2 to
the space & /'( M, :/Kp)) it now follows that

pF,t](f; x0m9 Ho) = 0

for all me M. Applying Theorem 3.1 part (x) again, we obtain our claim by
uniqueness of asymptotics. Thus we infer that U = UM ;. In view of { 1], Theorem
8.4, it even follows that U = UM P = UP,.

Since F was an arbitrary proper subset of 4, it follows from the lemma below
that U = G, and then the theorem follows from Corollary 4.6 [

Lemma 4.7. Let F,, F, < A be such that F, UF, = A. Then G is the closure of the
set

Q={x,...x; keNx,,...,x,€PpUPp,}.
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Proof. The closure € of Q is a closed subgroup of G containing the minimal
parabolic subgroup P. Therefore it equals a standard parabolic subgroup Pg,
E c A We must have F,c Efori= 1, 2, hence E = 4. OJ

To prove Theorem 4.1 it remains to deal with the case of rank(X) = 1. Before
doing this, we prove the following result, which actually holds for arbitrary rank.
Let x: G — K and H: G — a denote the maps defined by the formula

xex(x)exp(H(x))N ,

for x € G. Fix a representative we Ng(a) for the longest element in the Weyl group
W of X. Define ¢:4 — C4 by ¢(a) = (a™% aed), and for ¢ > 0 let D(¢) = {zeC;
[z| < ¢} and A(e) = {ae A; a(a)e D(c) }. Fix Aea}, and let 2, denote the Poisson
transform C(K/M) - &,(G/K) (cf. 1], (1.8)).

Theorem 4.8. Let o C(K/M) and assume that supp ¢ < wx(N)M. Then there
exists € > 0 and a holomorphic function y : D(e)4 — C such that for ae A(e) we have

(Z10)(a) = a* " *Y(a(a)) .
Proof. We have

P, o(a) = | eC—4=pHE kD (k) dk

K

= j e<_)~_PyH(a» twii) — H{A)) (g’)(WK(fZ))é’f 1pH(A) an
N

=g A r j e —A—p,H(@ra" ') p(A ~ p,H(i1)> p(wk(n))dn , (22)
T
where d = (a”) ™. Since supp¢ < wrx(N)M, the function A~ @(wi (7)) is sup-
ported by a compact subset C of N. Fix a bounded open subset Q of N containing
C. From a straightforward calculation of the action of Ad(d) on ft involving the
root space decomposition, one sees that there exists an ¢ > O and a real analytic
function y:D(g)? x Q — C, holomorphic in the D(g)4-variable such that

e{TAmp HER) = y(g(a), 7).
This implies the result. O

Proof of Theorem 4.1 (start of the induction). Let rank(2) = 1. By the same
reasoning as in the proof of Corollary 4.6 we can reduce to the case that
fe&P(G/K) for some A€ a} with Re 1 dominant and that E(f, x) = ¢ for all x in
an open nonempty set U = G.

We will prove that x e U implies f(x) = 0. Since f is real analytic it will then
follow that f = 0. It suffices to prove our claim for x = e, because by equivariance
we can then apply it to L,-1f Thus we assume ee U.

By [1], Theorem 10.1, f = 2,¢, where @€ C*(K/M) is a constant times the
boundary value f,(f). Identifying K/M =~ G/P canonically it follows from the
definition of §,(f) that suppon UP = (.

The crucial feature of the rank 1 case needed here is the two cell Bruhat
decomposition G = P u wNP. This allows us to conclude that supp ¢ < wi(N)M.



656 E.P. van den Ban and H. Schlichtkruli

From Theorem 4.8 it now follows that the function ¢+ f(exp tH) has an exponen-
tial asymptotic expansion, which actually converges to f(exp tH) for t sufficiently
big. By uniqueness of asymptotics this must be the zero expansion. Hence
f(exptH) =0 for t sufficiently big. Since f is real analytic it follows that
fley=0. O

Remark 4.9. Instead of using the above argument to prove Theorem 4.1 for the
rank one case, we could also have referred to [2]. In the rank one case there is
essentially only one differential equation, which comes from the Casimir operator.
From [13], Sect. 4.2, it follows that this equation is such that Theorem 4 of [2] is
applicabie.
Let
€1(G/K) = L%@@I(G/K)ﬁcr(G) .
re

By the same arguments as in [1], Sect. 13, for the case I = I, the functions in
&¥(G/K) have distributional asymptotic expansions. For fe £¥(G/K) we also
define the set of exponents at xe G by (20).

Corollary 4.10. Let fe £F(G/K) and assume E(f, x)R(I) = (& for some x€G.
Then f=0.

Proof. Since R(I) is finite there is an open neighborhood U of x such that
E(f, y)nR(I) = for all yeU. Choose a non-empty open subset U, of U
and a neighbourhood ¥ of ¢ in G such that VU, c U. Let ¢eC2?(G) with
suppo < V, and let LY(¢)f be the function obtained by left convolution of f
with ¢:

LY (@) f(x) = i @(y)f(yx)dy

Then LY(¢)f is contained in &7 (G/K) (cf. [1] Lemma 11.1) and satisfies
suppp(L” (@) f)n U, = & for all {eR(I). From Corollary 4.2 it then follows
that LY (@) f = 0. This implies that f=0. [

5. Existence of certain exponents

Let fe £¥(G/K), xe G and assume that E(f, x) % ¢J. Hence f 4 0 and it follows
from Corollary 4.10 that E(f, y) + ¢ for any ye G. The following Proposition is a
generalization of this statement.

Proposition 5.1. Let (€ E(f, x), F = 4 and mye M. Then there exists an element
(e E(f, xmg) such that C|0F = éla,‘

Proof. Let U, be a fundamental system of neighbourhoods at e in G. For each i
there exists a function ¢;e C°(U,) such that

P(L¥(9)f,x) + 0. (23)

Let n = ¢|, , and put ¥, (m) = pp ,(L"(9;) f, xm) (me M ). By Theorem 2.9 the
function W; belongs to & °°(M 17/ Kg). Hence this function has an asymptotic
expansion along a* (F) at every me M, ;. According to Theorem 3.1 its exponents
are contained in the set X(I, n)={{eX(I); {|, =n} and its coefficients are
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p LY (@;) f, xm). In view of (23} the expansion for ¥, is non-vanishing at m = e.
Hence y; & 0. Let R(/,) be the set of Theorem 4.1 applied to & [*(M,;/Ky). Then
we conclude that E(y;, my) n R(I,) = . Hence '

xmg esupp p, (LY (¢:)f)

for some {;e R(I,}n X(I,n). The latter being a finite set, we may pass to a
subsequence and assume that the {; are all equal to a fixed (€ X({, 5). It follows
that xmg esupp p,(f). U

Remark 5.2. Proposition 5.1 is similar to Lemma 1 in [11], p. 354. By combining it
with [1] Corollary 17.5 and the purely geometrical Lemma 3 of [11], p. 360 (see
also [9], Lemma 1.2), one obtains a proof of Theorem 1 of {117, p. 359 which is
independent of the microlocal analysis of [ 14, 6] and [ 10]. In particular this gives a
proof of the necessity of the rank condition “rk(G/H) = rk(K/K n H)” for the
existence of the discrete series for a semisimple symmetric space.
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