The Parseval identity for the Whittaker Fourier transform

Erik van den Ban

Utrecht University

Delorme's conference
Representation Theory, Harmonic Analysis
and Spherical Varieties
Porquerolles/Marseille
19-23 June, 2023

Whittaker functions

Setting

- G real reductive group
- K maximal compact, $G=K A N_{0}$ Iwasawa decomposition
- $\chi: N_{0} \rightarrow \mathrm{U}(1)$ unitary character, regular (!)

$$
\text { i.e.: } \forall \alpha \in \Sigma\left(\mathfrak{n}_{0}, \mathfrak{a}\right) \text { simple: }\left.d \chi(e)\right|_{\mathfrak{g}_{\alpha}} \neq 0
$$

Whittaker functions

$$
\begin{aligned}
& \mathcal{M}\left(G / N_{0}: \chi\right):=\left\{f: G \xrightarrow{\text { meas }} \mathbb{C} \mid f(x n)=\chi(n)^{-1} f(x) \quad\left(x \in G, n \in N_{0}\right)\right\} \\
& L^{2}\left(G / N_{0}: \chi\right) \quad:=\left\{f \in \mathcal{M}\left(G / N_{0}: \chi\right)| | f \mid \in L^{2}\left(G / N_{0}\right)\right\}
\end{aligned}
$$

- Left reg'r rep $^{n}: \quad L=\operatorname{Ind}_{N_{0}}^{G}(\chi)$ is unitary
- \exists : abstract Plancherel decomposition: $\operatorname{Ind}_{N_{0}}^{\mathcal{G}}(\chi) \simeq \int_{\widehat{G}}^{\oplus} m_{\pi} \pi d \mu(\pi)$.
- Realized by a unitary Fourier transform $f \mapsto \hat{f}$. abstract Parseval identity: $\|f\|_{L^{2}}^{2}=\int_{\widehat{G}}\|\hat{f}(\pi)\|_{\pi}^{2} d \mu(\pi)$.
- Today's goal: describe this as explicitly as possible

Whittaker Plancherel theory

Sources

- Harish-Chandra, Announcement AMS Toronto 1982.
details in Collected Papers Vol 5 (posthumous), 141-307, eds. R. Gangolli, V.S. Varadarajan, Springer 2018. Formulation of Parseval, proof incomplete.
- Wallach, RRG II, 1992: discrete part, cusp forms, holomorphic dependence of Jacquet integral, inversion formula, error addressed in [arXiv: 1705.06787]. No proof of Parseval.
- Today: complete proof of Parseval identity, based on [arXiv:2304.11044] and forthcoming paper.

Discrete part of Plancherel decomposition

Discrete part
$\pi \in \widehat{G}$ (unitary dual) is said to appear discretely in $L^{2}\left(G / N_{0}: \chi\right)$ if it can be realized as a closed subrepresentation.
The closed span of such π is denoted by $L_{d}^{2}\left(G / N_{0}: \chi\right)$.
Theorem (HC, W)
If $\pi \in \widehat{G}$ appears in $L_{d}^{2}\left(G / N_{0}: \chi\right)$, then it appears in $L_{d}^{2}(G)$, i.e., it belongs to the discrete series of G.
Spherical functions
Let $\left(\tau, V_{\tau}\right)$ be a finite dimensional unitary representation of K.

$$
\begin{aligned}
L_{d}^{2}(\tau & \left.: G / N_{0}: \chi\right):=\left(L_{d}^{2}\left(G / N_{0}: \chi\right) \otimes V_{\tau}\right)^{K} \\
& \hookrightarrow\left\{f \in \mathcal{M}\left(G, V_{\tau}\right) \mid f(k x n)=\chi(n)^{-1} \tau(k) f(x)\right\}
\end{aligned}
$$

Whittaker functions of Schwartz type

- Define $\rho \in \mathfrak{a}^{*}$ by $\rho(X)=\frac{1}{2} \operatorname{tr}\left(\left.\operatorname{ad}(X)\right|_{N_{0}}\right)$.

Definition (Schwartz space, HC, W)
$\mathcal{C}\left(G / N_{0}: \chi\right)$: the space of $f \in C^{\infty}\left(G / N_{0}: \chi\right)$ s.t. $\forall u \in U(\mathfrak{g}), N \in \mathbb{N}$,

$$
\exists C_{u, N}>0: \quad\left|L_{u} f(k a n)\right| \leq C_{u, N}(1+|\log (a)|)^{-N} a^{-\rho} \quad\left(k a n \in K A N_{0}\right)
$$

Put $\mathfrak{Z}:=$ center $U(\mathfrak{g})$. For $\left(\tau, V_{\tau}\right)$ a finite $\operatorname{dim}^{\ell}$ unitary representation of K,

$$
\mathcal{A}_{2}\left(\tau: G / N_{0}: \chi\right):=\left\{f \in \mathcal{C}\left(\tau: G / N_{0}: \chi\right) \mid \operatorname{dim} \mathfrak{Z} f<\infty\right\}
$$

Thm (HC, W)
(a) $L_{d}^{2}\left(\tau: G / N_{0}: \chi\right)=\mathcal{A}_{2}\left(\tau: G / N_{0}: \chi\right)$.
(b) The space is finite dimensional.
(c) $\mathcal{A}_{2}\left(\tau: G / N_{0}: \chi\right)=\oplus_{\sigma \in \widehat{G}_{\mathrm{ds}}} \mathcal{A}_{2}\left(\tau: G / N_{0}: \chi\right)_{\sigma}$.

Parabolic induction and Whittaker integral

- $P_{0}:=Z_{K}(A) A N_{0}$, minimal psg.
- $\mathcal{P}_{\text {st }}$: (finite) set of psg's $P=M_{P} A_{P} N_{P}<G$ with $P \supset P_{0} \quad$ (standard psg's).

For $P \in \mathcal{P}_{\mathrm{st}}$,

- $\chi_{P}:=\left.\chi\right|_{M_{P} \cap N_{0}}$ is regular for $M_{P} /\left(M_{P} \cap N_{0}\right)$.
- $K_{P}:=M_{P} \cap K, \tau_{P}:=\left.\tau\right|_{K_{P}}$.
- $\mathcal{A}_{2, P}:=\mathcal{A}_{2}\left(\tau_{P}: M_{P} / M_{P} \cap N_{0}: \chi_{P}\right)$.

Let $\psi \in \mathcal{A}_{2, P}$. For $\nu \in \mathfrak{a}_{P \mathbb{C}}^{*}$ define $\psi_{\nu}: G \rightarrow V_{\tau}$ by

$$
\psi_{\nu}(k m a \bar{n}):=a^{\nu+\rho_{\rho}} \tau(k) \psi(m) \quad((k, \operatorname{man}) \in K \times \bar{P}) .
$$

Lemma For $\operatorname{Re} \nu_{>_{P}} 0$, the integral

$$
\mathrm{Wh}(P, \psi, \nu, x):=\int_{N_{P}} \chi(n) \psi_{\nu}(x n) d n \quad(x \in G)
$$

is abs^{y} conv t and defines $\operatorname{Wh}(P, \psi, \nu) \in C^{\infty}\left(\tau: G / N_{0}: \chi\right)$.

Holomorphic extension

Remark For $\sigma \in \widehat{M}_{P_{\text {ds }}}, \psi \in \mathcal{A}_{2, P, \sigma}$,
$\mathrm{Wh}(P, \psi, \nu) \in C^{\infty}\left(\tau: G / N_{0}: \chi\right)$ is essentially a finite sum of generalized matrix coefficients (defined by Jacquet integrals) of $\operatorname{Ind} \frac{G}{P}(\sigma \otimes-\nu \otimes 1)$ (analogue of Eisenstein integral for groups and symmetric spaces).

Theorem (W)
$\mathrm{Wh}(P, \psi, \nu)$, initially defined for $\operatorname{Re} \nu>_{p} 0$, extends to entire holom ${ }^{c}$ function of $\nu \in \mathfrak{a}_{P \mathbb{C}}^{*}$ with values in $C^{\infty}\left(\tau: G / N_{0}: \chi\right)$.
Remark HC: there exists a merom ${ }^{c}$ extension, regular on i_{p}^{*}.
Theorem (Uniformly tempered estimates, \sim)
Let $\varepsilon>0$ be sufftly small. If $u \in U(\mathfrak{g})$ then $\exists C, N, r>0$ s.t.

$$
|\mathrm{Wh}(P, \psi, \nu, u: k a)| \leq C(1+|\nu|)^{N}(1+|\log a|)^{N} e^{r|\operatorname{Re} \nu||\log a|} a^{-\rho},
$$

for all $k \in K, a \in A, \nu \in \mathfrak{a}_{P \mathbb{C}}^{*}$ with $|\operatorname{Re} \nu|<\varepsilon$.

Proof of uniform temperedness

Theorem (Uniformly tempered estimates, \sim)
Let $\varepsilon>0$ be sufftly small. If $u \in U(\mathfrak{g})$ then $\exists C, N, r>0$ s.t.

$$
|\mathrm{Wh}(P, \psi, \nu, u: k a)| \leq C(1+|\nu|)^{N}(1+|\log a|)^{N} e^{r|\operatorname{Re} \nu||\log a|} a^{-\rho},
$$

for all $k \in K, a \in A, \nu \in \mathfrak{a}_{P C}^{*}$ with $|\operatorname{Re} \nu|<\varepsilon$.
Steps in proof

- Bernstein-Sato type functional equation for Jacquet integrals (viewed as generalized vectors of principal series reps)
- Uniformly moderate estimates.
- Wallach's method of improving estimates of matrix coefficients along max psg's, with uniformity in parameters.
Strong analogy with the theory of reductive symmetric spaces (\sim, Delorme, Carmona)

C-function, Normalized Whittaker integral

- $\mathrm{Wh}(P, \psi, \nu)$ is finite under $\mathfrak{Z}:=\operatorname{center}(U(\mathfrak{g}))$,
- top order asymptotic behavior of $\exp ^{\prime}$ type along $\operatorname{cl}\left(A^{+}\right)$,
- very rapid decay outside $\operatorname{cl}\left(A^{+}\right)$.

Lemma

Let $P \in \mathcal{P}_{\text {st }}$. For $\psi \in \mathcal{A}_{2, P}, \operatorname{Re} \nu \in \mathfrak{a}_{P}^{*+}, m \in M_{P}, a \rightarrow \infty$ in A_{P}^{+},

$$
\mathrm{Wh}(P, \psi, \nu)(m a) \sim a^{\nu-\rho_{P}}\left[C_{P}(\nu) \psi\right](m)
$$

with $C_{P}(\nu) \in \operatorname{End}\left(\mathcal{A}_{2, P}\right)$, merom c in $\nu \in \mathfrak{a}_{P \mathbb{C}}^{*}\left(\right.$ reg r for $\left.\operatorname{Re} \nu \in \mathfrak{a}_{P}^{*+}\right)$.
Definition (HC)

$$
\mathrm{Wh}^{\circ}(P, \psi, \nu):=\mathrm{Wh}\left(P, C_{P}(\nu)^{-1} \psi, \lambda\right) \quad\left(\text { merom }^{c} \text { in } \nu\right)
$$

- $P \sim Q: \Longleftrightarrow \exists w \in W(\mathfrak{a}): w\left(\mathfrak{a}_{P}\right)=\mathfrak{a}_{Q} \quad$ (associated).
- $W\left(\mathfrak{a}_{Q} \mid \mathfrak{a}_{P}\right):=\left\{s \in \operatorname{Hom}\left(\mathfrak{a}_{P}, \mathfrak{a}_{Q}\right)|\exists w \in W(a): s=w|_{\mathfrak{a}_{P}}\right\}$.

C-functions, Maass-Selberg relations

Asymptotic behavior Let $P, Q \in \mathcal{P}_{\text {st }}$.
There exist unique merom ${ }^{c}$ functions $C_{Q \mid P}^{\circ}(s, \cdot): \mathfrak{a}_{P \mathbb{C}}^{*} \rightarrow \operatorname{Hom}\left(\mathcal{A}_{2, P}, \mathcal{A}_{2, Q}\right)$, for $s \in W\left(\mathfrak{a}_{Q} \mid \mathfrak{a}_{P}\right)$, such that for generic $\nu \in \mathfrak{i} \mathfrak{a}_{P}^{*}$ and $a \rightarrow \infty$ in A_{Q}^{+}.

$$
\mathrm{Wh}^{\circ}(P, \psi, \nu)(m a) \sim \sum_{s \in W\left(\mathrm{a}_{Q} \mid a_{P}\right)} a^{s \nu-\rho_{Q}}\left[C_{Q \mid P}^{\circ}(s, \nu) \psi\right](m), \quad\left(m \in M_{Q}\right) .
$$

Maass-Selberg relations (HC)

For $P, Q \in \mathcal{P}_{\text {st }}$ and $s \in W\left(\mathfrak{a}_{Q} \mid \mathfrak{a}_{P}\right)$,

$$
C_{Q \mid P}^{\circ}(s,-\bar{\nu})^{*} C_{Q \mid P}^{\circ}(s, \nu)=I, \quad\left(\nu \in \mathfrak{a}_{P \mathbb{C}}^{*}\right) .
$$

Remark Equivalently: $C_{Q \mid P}^{\circ}(s: \nu) \in \mathrm{U}\left(\mathcal{A}_{2, P}, \mathcal{A}_{2, Q}\right)$ for $s \in \mathfrak{i a}_{P}^{*}$.
Corollary $\quad \nu \mapsto \mathrm{Wh}^{\circ}(P, \psi, \nu) \in C^{\infty}\left(\tau: G / N_{0}: \chi\right)$ is meromorphic, regular on $i a_{\rho}^{*}$. Satisfies uniform tempered estimates.

Fourier transform, functional equation

For $f \in \mathcal{C}\left(\tau: G / N_{0}: \chi\right), P \in \mathcal{P}_{s t}, \nu \in i_{P}^{*}$, the Fourier transform $\mathcal{F}_{P} f(\nu) \in \mathcal{A}_{2, P}$ is defined by

$$
\left\langle\mathcal{F}_{P} f(\nu), \psi\right\rangle:=\int_{G / N_{0}}\left\langle f(x), \mathrm{Wh}^{\circ}(P, \psi, \nu, x)\right\rangle_{v_{\tau}} d x, \quad\left(\psi \in \mathcal{A}_{2, P}\right) .
$$

Theorem ($\sim)_{\mathcal{F}}: \mathcal{C}\left(\tau: G / N_{0}: \chi\right) \rightarrow \mathcal{S}\left(i_{P}^{*}\right) \otimes \mathcal{A}_{2, P}, \quad$ cont ${ }^{f}$ linearly.
Proof this follows from the uniformly tempered estimates.
Remark HC proves this for \mathcal{F}_{P} restricted to $C_{c}^{\infty}\left(\tau: G / N_{0}: \chi\right)$.
Remark $\mathcal{F}_{G}=L^{2}$-orth ${ }^{\prime} \operatorname{proj}^{n} \quad \mathcal{C}\left(\tau: G / N_{0}: \chi\right) \rightarrow \mathcal{A}_{2}\left(\tau: G / N_{0}: \chi\right)$.
Lemma (Functional equations, HC)
Let $P, Q \in \mathcal{P}_{\mathrm{st}}, P \sim Q$. Then for all $s \in W\left(\mathfrak{a}_{Q} \mid \mathfrak{a}_{P}\right)$,

$$
\mathrm{Wh}^{\circ}\left(Q, C_{Q \mid P}^{\circ}(s, \nu) \psi, s \nu\right)=\mathrm{Wh}^{\circ}(P, \psi, \nu), \quad\left(\nu \in \mathfrak{a}_{P \mathrm{C}}^{*}\right) .
$$

Corollary $\mathcal{F}_{Q}(f)(s \nu)=C_{Q \mid P}^{\circ}(s, \nu) \mathcal{F}_{P} f(\nu)$

Wave packets

Definition For $P \in \mathcal{P}_{\mathrm{st}}, \psi \in \mathcal{S}\left(\mathrm{ia}_{P}^{*}\right) \otimes \mathcal{A}_{2, P}, x \in G$,

$$
\mathcal{W}_{P}(\psi)(x):=\int_{i a_{P}^{*}} W^{\circ}(P, \psi(\nu), \nu, x) d \nu .
$$

Theorem (~)

$$
\mathcal{W}_{P}: \mathcal{S}\left(i \mathfrak{i a}_{P}^{*}\right) \otimes \mathcal{A}_{2, P} \rightarrow \mathcal{C}\left(\tau: G / N_{0}: \chi\right)
$$

is continuous linear.
Remark HC proves this for \mathcal{W}_{P} restricted to dense subspace.
Proof requires

- the uniformly tempered estimates
- theory of constant term with parameter
- families of type $\mathrm{I}_{\mathrm{hol}}(\Lambda)$ (as in previous joint work with Carmona and Delorme for reductive symmetric space $G / H)$.

Fourier transform of a wave packet

Lemma (adjoints)
$\left\langle\mathcal{W}_{p} \psi, f\right\rangle=\left\langle\psi, \mathcal{F}_{P} f\right\rangle \quad\left(\psi \in \mathcal{S}\left(i_{\mathrm{a}}^{\mathrm{P}}\right) \otimes \mathcal{A}_{2, P}, f \in \mathcal{C}\left(\tau: G / N_{0}: \chi\right)\right)$.
Let $P \in \mathcal{P}_{\text {st }}$ and put $C_{P}=\left[W(\mathfrak{a}): N_{W(\mathfrak{a})}\left(\mathfrak{a}_{P}\right)\right]$.
Lemma (projection)
(a) If $Q \in \mathcal{P}_{\mathrm{st}}, Q \nsim P$ then $\mathcal{F}_{Q} \mathcal{W}_{P}=0$.
(b) $\Pi_{P}:=c_{P} \mathcal{F}_{P} \mathcal{W}_{P}$ defines a projection operator in $\mathcal{S}\left(i a_{P}^{*}\right) \otimes \mathcal{A}_{2, P}$. Moreover,

$$
\Pi_{P} \circ \mathcal{F}_{P}=\mathcal{F}_{P}
$$

Proof: Put $\mathcal{T}=\mathcal{F}_{Q} \mathcal{W}_{P}$ and use that $\mathcal{T} \circ \mu_{P}(Z)=\mu_{Q}(Z) \circ \mathcal{T}$ for all $Z \in \mathfrak{Z} . \mathcal{T}$ must be of the form

$$
\mathcal{T}(\psi)(\nu)=\sum_{s \in W\left(a_{Q} \mid a_{P}\right)} T_{s}(\nu) \psi\left(s^{-1} \nu\right),
$$

where $T_{s}(\nu) \in \operatorname{Hom}\left(\mathcal{A}_{2, P}, \mathcal{A}_{2, Q}\right)$.
Next, use the asympt ${ }^{c s}$ of the Whittaker integrals and the MS rel ${ }^{s}$.

The kernel of \mathcal{F}

Lemma Let $P \in \mathcal{P}_{\text {st }}$. Then $c_{P} \mathcal{W}_{P} \mathcal{F}_{P} \in \operatorname{End}\left(\mathcal{C}\left(\tau: G / N_{0}: \chi\right)\right)$ depends on P through its class $[P]$ in $\mathcal{P}_{\text {st }} / \sim$.
Proof This follows from the MS relations.
Lemma Let $P, Q \in \mathcal{P}_{\text {st }}$. Then $\mathcal{F}_{Q} C_{P} \mathcal{W}_{P} \mathcal{F}_{P}=\delta_{[Q],[P]} \mathcal{F}_{Q}$.
Proof If $[P] \neq[Q]$, use Lemma (projection) (a). If $P \sim Q$, then by (b),

$$
\mathcal{F}_{Q} C_{P} \mathcal{W}_{P} \mathcal{F}_{P}=\mathcal{F}_{Q} c_{Q} \mathcal{W}_{Q} \mathcal{F}_{Q}=\Pi_{Q} \circ \mathcal{F}_{Q}=\mathcal{F}_{Q}
$$

Define

$$
\operatorname{ker} \mathcal{F}:=\bigcap_{P \in \mathcal{P}_{\text {st }}} \operatorname{ker} \mathcal{F}_{P} \subset \mathcal{C}\left(\tau: G / N_{0}: \chi\right)
$$

Thm For all $f \in \mathcal{C}\left(\tau: G / N_{0}: \chi\right)$,

$$
f-\sum_{[P] \in \mathcal{P}_{\mathrm{st}} / \sim} c_{P} \mathcal{W}_{P} \mathcal{F}_{P} f \in \operatorname{ker} \mathcal{F} .
$$

Proof Fix $Q \in \mathcal{P}_{\text {st }}$. Then

$$
\mathcal{F}_{Q} \sum_{[P] \in \mathcal{P}_{\mathrm{st}} / \sim} c_{P} \mathcal{W}_{P} \mathcal{F}_{P} f=\sum_{[P] \in \mathcal{P}_{\mathrm{st}} / \sim} \delta_{[P],[Q]} \mathcal{F}_{Q} f=\mathcal{F}_{Q} f
$$

The Parseval identity

Thm If $f \perp \operatorname{ker} \mathcal{F}$ then

$$
\|f\|_{2}^{2}=\sum_{P \in \mathcal{P}_{\mathrm{st}} / \sim} c_{P} \int_{i \mathrm{a}_{P}^{*}}\left\|\mathcal{F}_{P} f(\nu)\right\|^{2} d \nu
$$

Proof From $f \perp \operatorname{ker} \mathcal{F}$ it follows that

$$
\langle f, f\rangle=\sum_{P \in \mathcal{P}_{\mathrm{s} t} / \sim}\left\langle c_{P} \mathcal{W}_{P} \mathcal{F}_{P} f, f\right\rangle=\sum_{P \in \mathcal{P}_{\mathrm{s}} / \sim}\left\langle c_{P} \mathcal{F}_{P} f, \mathcal{F}_{P} f\right\rangle .
$$

In order to establish Parseval it is now sufficient to prove
Thm ker $\mathcal{F}=0$.
Proofs There are three proofs.

Three proofs of injectivity of \mathcal{F}

HC's philosophy of cusp forms
Let $f \in \operatorname{ker} \mathcal{F}$ and $P \in \mathcal{P}_{\text {st }}$.

- From $\mathcal{F}_{P} f=0$ it follows that $f^{(\bar{P})} \sim 0$ where $f^{(\bar{P})}$ indicates the descent transformation.
- By a result of HC it now follows that $f=0$.

Starting with Plancherel for the group
Wallach's Whittaker inversion formula implies $\operatorname{ker} \mathcal{F}=0$.

Residue method

The residue method for semisimple symmetric spaces (\sim \& Schlichtkrull) can be adapted to the present Whittaker setting.
It starts with an inversion formula for $f \in C_{c}^{\infty}\left(\tau: G / N_{0}: \chi\right)$, from $\mathcal{F}_{P_{0}} f \in \mathcal{M}\left(\mathfrak{a}_{\mathbb{C}}^{*}\right) \otimes \mathcal{A}_{2, P_{0}}$, where $P_{0}=M A N_{0}$. Note that $\mathcal{A}_{2, P_{0}}=C^{\infty}\left(\tau_{0}: M\right)$.

The residue method

Lemma $\exists!\mathrm{Wh}_{+}\left(P_{0}, \nu\right) \in C^{\infty}\left(\tau: G / N_{0}: \chi\right) \otimes \mathcal{A}_{2, P_{0}}^{*}$, meromorphic in ν, finite under the action of \mathfrak{Z}, such that

$$
\mathrm{Wh}_{+}\left(P_{0}, \nu\right)(m a) \psi=\tau(m) a^{\nu-\rho_{0}} \sum_{\xi \in \mathbb{N} \Delta} \mathrm{a}^{-\xi} \Gamma_{\xi}(\nu)(\psi)(e)
$$

with $\Gamma_{\xi}(\nu) \in \operatorname{End}\left(\mathcal{A}_{2, P_{0}}\right), \Gamma_{0}(\nu)=I_{\mathcal{A}_{2, P_{0}}}$. The series is convergent for all $a \in A$. Fourier inversion theorem For all $f \in C_{c}^{\infty}\left(\tau: G / N_{0}: \chi\right)$ and for $\eta \in \mathfrak{a}^{*}$ sufficiently \bar{P}_{0}-dominant

$$
f(x)=\int_{\eta+i a^{*}} \mathrm{~Wh}_{+}\left(P_{0}, \nu\right)(x) \mathcal{F}_{P_{0}} f(\nu) d \nu, \quad(x \in G) .
$$

Proof uses a PW-technique and Holmgren's uniqueness thm for PDE. Shifting $\eta \rightarrow 0$ and organizing the residues, the integral may be rewritten as

$$
\sum_{[P] \in \mathcal{P}_{\mathrm{s}} / \sim} C_{P} \int_{i_{a_{P}^{*}}} \mathrm{~Wh}^{\circ}\left(P, \mathcal{F}_{P} f(\nu), x\right) d \nu
$$

hence $f=\sum_{[P]} C_{P} \mathcal{W}_{P} \mathcal{F}_{P}(f), \quad\left(f \in C_{c}^{\infty}\left(\tau: G / N_{0}: \chi\right)\right)$.
By continuity and density, formula extends to $f \in \mathcal{C}\left(\tau: G / N_{0}: \chi\right)$.

Cher Patrick

Mes félicitations!

