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Exercise 1. Let g be a complex semisimple Lie algebra. Let j be a Cartan subalgebra, R = R(g, j)
the associated root system, and R+ a positive system. Let S denote the associated set of simple roots
in R+, i.e., the set of roots α ∈ R+ that cannot be written as a sum of two positive roots. Let n be the
sum of the positive root spaces, and b = j⊕ n the associated Borel subalgebra.

(a) Show that b is solvable

(b) Show that the normalizer Ng(b) of b in g equals b.

(c) Assume that b ( q with q a subalgebra of g. Show that there exists a positive root β ∈ R+ such
that g−β ⊂ q. Show that q is not solvable.

Exercise 2. Flag manifold. Let K be one of the fields R or C. Let n ≥ 2 and let d = (d1, . . . , dk) be
a sequence of positive integers with

∑k
j=1 dj = n. We define a flag of type d in Kn to be an ordered

sequence F = (F0, F1, . . . , Fk−1, Fk) of linear subspaces of Kn with 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk =
Kn and with dim(Fj/Fj−1) = dj , for all 1 ≤ j ≤ k. The collection of all flags of type d, denoted by
F = Fd, is called a flag manifold.

LetG = GL(n,K) and let α : G×F → F be defined by α(g, F ) = g·F := (g(Fj) | 0 ≤ j ≤ k).

(a) Show that α is a transitive action of G on F .

Let the standard flag E of type d be defined by E0 = 0 and Ej = span {e1, . . . , ed1+···+dj}, for
1 ≤ j ≤ k. We define the map ϕ : G→ F by ϕ(g) = g · E.

(b) Determine the stabilizer P = Pd of E in G. Show that P is a closed subgroup of G.

(c) Show that ϕ : G → F induces a bijection ϕ̄ : G/P → F . Accordingly, we equip F with the
structure of a smooth manifold such that ϕ̄ is a diffeomorphism.

(d) Put K = O(n) if K = R and K = U(n) if K = C. In both cases show that ϕ(K) = F . Put
H = K ∩ P and show that F is diffeomorphic to K/H. Conclude that F is compact.

(e) With notation as in (d), show that m : K × P 7→ G, (k, p) 7→ kp is a surjective map. Hint: use
(d) and (b). Moreover, show that m is a smooth submersion. Hint: use homogeneity.

(f) Determine d such that Fd ' Pn−1(K). More generally, let 1 ≤ k < n. Determine d such that
Fd ' Gn,k(K).
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(g) Determine d such that P is a Borel subgroup (in case K = C) or a minimal parabolic subgroup
(in case K = R).

Exercise 3. We assume that G is a connected real semisimple Lie group with finite center, that
θ : g→ g is a Cartan involution, g = k⊕ s the associated Cartan decomposition and K the connected
Lie subgroup of G with algebra k. We use the derivative of the projection π : G → G/K at e to
identify g/k ' T[e](G/K) and we use the natural linear isomorphism s → g/k to identify these
spaces. Accordingly,

s ' T[e](G/K).

By the Cartan decomposition, the map ϕ : s×K → G given by

ϕ(X, k) = exp(X)k, (X ∈ s, k ∈ K)

is a diffeomorphism.
We denote by β the restriction of the Killing form B to s. Then β is a positive definite inner

product on s which is Ad (K)-invariant. We view this as an inner product on T[e](G/K). Given
x ∈ G we define the inner product βx on T[x](G/K) by

βx = dlx([e])−1∗β.

(a) Show that βx depends on x through its image [x] in G/K.

(b) Show that [x] 7→ βx defines a Riemannian structure on G/K which is invariant for the natural
left action by G. Thus, G acts by isometries.

(c) Show that Exp := π ◦ exp : s → G/K is a diffeomorphism, whose tangent map at 0 can be
identified with the identity on s. It can be shown that this map corresponds to the Riemannian
exponential map.

On a Riemannian manifold M, the local geodesic reflection Sa at a point a ∈ M is defined by
Sa(Expa(X)) = Expa(−X).

(d) The Cartan involution Θ on G is the unique involution with dΘ(e) = θ. It is usually denoted
by θ instead of Θ. Let θ̄ : G/K → G/K denote the map induced by θ. Show that θ̄ equals the
local geodesic reflection of G/K at [e].

(e) Show that θ̄ is an isometry.

(f) Show that G/K is a global Riemannian symmetric space.

Exercise 4. Let G be a connected real semisimple Lie group with finite center and let σ : G→ G be
an involution of G, i.e., an automorphism of order 2. Let H = (Gσ)e. The purpose of this exercise is
to show that H is spherical. In a crucial way we will make use of the assumption that there exists a
Cartan involution θ : g→ g that commutes with σ. Let s be the −1 eigenspace of θ.

(a) Show that g = h ⊕ q, where q is the −1 eigenspace of σ∗ := dσ(e) in g. (From now on we
write σ for σ∗.)

2



Let aq ⊂ q be a maximal abelian subspace of s ∩ q (its elements will automatically be semisimple,
with real eigenvalues).

Let a ⊂ p be a maximal abelian subspace which contains aq.

(b) Show that a is σ-invariant, so that

a = (a ∩ h)⊕ (a ∩ q).

Show that the second summand equals aq.

We recall that since σ is an automorphism of g which leaves a invariant, it follows that the map
σ : a∗ → a∗ given by λ 7→ λ ◦σ−1 leaves the set of roots Σ = Σ(g, a) invariant. Furthermore, if
α ∈ Σ then

σ(gα) = gσα.

(c) Show that there exists an element X0 ∈ aiq such that for every α ∈ Σ we have α(X0) = 0 ⇒
α|aq = 0.

(d) Put Σq = {α ∈ Σ | α(X0) 6= 0} and Σ+
q := {α ∈ Σ | α(X0) > 0}. Show that there exists

Y ∈ a ∩ h such that for all α ∈ Σ, α(X0) = 0⇒ α(Y ) 6= 0.

(e) Let X0, Y be as above, take t > 0 sufficiently small, and put X = X0 + tY. Show that
Σ+ := {α ∈ Σ | α(X) = 0} is a positive system for Σ and that for all α ∈ Σ+ with α|aq 6= 0
we have α ∈ Σ+

q .

Let n be the sum of the root spaces gα with α ∈ Σ+ and and let

p := Zg(a) + n = m + a + n.

(f) Let α ∈ Σ+
q . Show that for X ∈ g−α we have

X = X + σ(X)− σ(X) ∈ h + n

(g) Let α ∈ Σ+ \ Σq and let X ∈ g−α. Show that U := X − σ(X) ∈ gα ∩ q. Show that
V := U − θU ∈ p ∩ q commutes with aq. Show that V = 0, that U = 0 and conclude that

g−α ⊂ h.

(h) Show that n̄ ⊂ h + p

(i) Show that H is spherical.

Exercise 5. Let g, j, R,R+, S, n and b be as in Exercise 1. The following two properties of root
systems will be important for this exercise.

• Every root α ∈ R+ can be written as a sum of roots from S.

• R+ \ S ⊆ S +R+.

We assume that q is a subalgebra of g containing b (thus, q is parabolic).
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(a) Show that there exists a subset T ⊂ R such that

q = j ⊕
⊕
α∈T

gα.

(b) Show that there exists a unique set F ⊂ S such that T = RF ∪ R+. Here RF denotes the
collection of roots from R that belong to the Z-span of F.

(c) If F ⊂ S show that
qF := j⊕

⊕
α∈RF∪R+

gα

is a subalgebra of g, containing b.

(d) Show that nilpotent radical (i.e., the maximal nilpotent ideal) of qF equals

nF :=
∑

α∈R+\RF

gα.

(e) Show that nF � qF and that qF = lF ⊕ nF , where

lF = j⊕
⊕
α∈RF

gα.

We recall that the real span of the elements Hα ∈ j is the real form a of j (sometimes written jR) given
by

a := {H ∈ j | α(H) ∈ R (∀α ∈ R)}.

For F ⊂ S we define
aF = a ∩

⋂
α∈F

kerα

and a+F = {H ∈ a+ | ∀α ∈ R+ \RF : α(H) > 0}.

(f) Show that a+ := a+∅ is the open positive chamber in a and that the closed positive chamber can
be written as the following disjoint union:

a+ =
⋃̇

F⊂S
a+F .

(g) Show that for ever X ∈ a the subspace

qX :=
⊕

s∈spec(ad (X)

ker(ad (X)− sIg)

is a parabolic subalgebra of g.

We define the equivalence relation ∼ on a by X ∼ Y ⇐⇒ qX = qY

(h) Show that the a+F defined above are equivalence classes for this relation.

Remark: Let S(a) be the unit sphere in a for a choice of Weyl group invariant inner product. Then
the closures of the equivalence classes for ∼ induce a simplicial complex on S(a), which is known as
the Coxeter complex for the root system R.
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