Exercises GQT School Lie groups and homogeneous spaces

Erik van den Ban

June 1, 2015

Exercise 1. Let \mathfrak{g} be a complex semisimple Lie algebra. Let \mathfrak{j} be a Cartan subalgebra, $R=R(\mathfrak{g}, \mathfrak{j})$ the associated root system, and R^{+}a positive system. Let S denote the associated set of simple roots in R^{+}, i.e., the set of roots $\alpha \in R^{+}$that cannot be written as a sum of two positive roots. Let \mathfrak{n} be the sum of the positive root spaces, and $\mathfrak{b}=\mathfrak{j} \oplus \mathfrak{n}$ the associated Borel subalgebra.
(a) Show that \mathfrak{b} is solvable
(b) Show that the normalizer $\mathcal{N}_{\mathfrak{g}}(\mathfrak{b})$ of \mathfrak{b} in \mathfrak{g} equals \mathfrak{b}.
(c) Assume that $\mathfrak{b} \subsetneq \mathfrak{q}$ with \mathfrak{q} a subalgebra of \mathfrak{g}. Show that there exists a positive root $\beta \in R^{+}$such that $\mathfrak{g}_{-\beta} \subset \mathfrak{q}$. Show that \mathfrak{q} is not solvable.

Exercise 2. Flag manifold. Let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C}. Let $n \geq 2$ and let $d=\left(d_{1}, \ldots, d_{k}\right)$ be a sequence of positive integers with $\sum_{j=1}^{k} d_{j}=n$. We define a flag of type d in \mathbb{K}^{n} to be an ordered sequence $F=\left(F_{0}, F_{1}, \ldots, F_{k-1}, F_{k}\right)$ of linear subspaces of \mathbb{K}^{n} with $0=F_{0} \subset F_{1} \subset \cdots \subset F_{k}=$ \mathbb{K}^{n} and with $\operatorname{dim}\left(F_{j} / F_{j-1}\right)=d_{j}$, for all $1 \leq j \leq k$. The collection of all flags of type d, denoted by $\mathcal{F}=\mathcal{F}_{d}$, is called a flag manifold.

Let $G=\operatorname{GL}(n, \mathbb{K})$ and let $\alpha: G \times \mathcal{F} \rightarrow \mathcal{F}$ be defined by $\alpha(g, F)=g \cdot F:=\left(g\left(F_{j}\right) \mid 0 \leq j \leq k\right)$.
(a) Show that α is a transitive action of G on \mathcal{F}.

Let the standard flag E of type d be defined by $E_{0}=0$ and $E_{j}=\operatorname{span}\left\{e_{1}, \ldots, e_{d_{1}+\cdots+d_{j}}\right\}$, for $1 \leq j \leq k$. We define the map $\varphi: G \rightarrow \mathcal{F}$ by $\varphi(g)=g \cdot E$.
(b) Determine the stabilizer $P=P_{d}$ of E in G. Show that P is a closed subgroup of G.
(c) Show that $\varphi: G \rightarrow \mathcal{F}$ induces a bijection $\bar{\varphi}: G / P \rightarrow \mathcal{F}$. Accordingly, we equip \mathcal{F} with the structure of a smooth manifold such that $\bar{\varphi}$ is a diffeomorphism.
(d) Put $K=\mathrm{O}(n)$ if $\mathbb{K}=\mathbb{R}$ and $K=\mathrm{U}(n)$ if $\mathbb{K}=\mathbb{C}$. In both cases show that $\varphi(K)=\mathcal{F}$. Put $H=K \cap P$ and show that \mathcal{F} is diffeomorphic to K / H. Conclude that \mathcal{F} is compact.
(e) With notation as in (d), show that $m: K \times P \mapsto G,(k, p) \mapsto k p$ is a surjective map. Hint: use (d) and (b). Moreover, show that m is a smooth submersion. Hint: use homogeneity.
(f) Determine d such that $\mathcal{F}_{d} \simeq \mathbb{P}^{n-1}(\mathbb{K})$. More generally, let $1 \leq k<n$. Determine d such that $\mathcal{F}_{d} \simeq G_{n, k}(\mathbb{K})$.
(g) Determine d such that P is a Borel subgroup (in case $\mathbb{K}=\mathbb{C}$) or a minimal parabolic subgroup (in case $\mathbb{K}=\mathbb{R}$).

Exercise 3. We assume that G is a connected real semisimple Lie group with finite center, that $\theta: \mathfrak{g} \rightarrow \mathfrak{g}$ is a Cartan involution, $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{s}$ the associated Cartan decomposition and K the connected Lie subgroup of G with algebra \mathfrak{k}. We use the derivative of the projection $\pi: G \rightarrow G / K$ at e to identify $\mathfrak{g} / \mathfrak{k} \simeq T_{[e]}(G / K)$ and we use the natural linear isomorphism $\mathfrak{s} \rightarrow \mathfrak{g} / \mathfrak{k}$ to identify these spaces. Accordingly,

$$
\mathfrak{s} \simeq T_{[e]}(G / K)
$$

By the Cartan decomposition, the map $\varphi: \mathfrak{s} \times K \rightarrow G$ given by

$$
\varphi(X, k)=\exp (X) k, \quad(X \in \mathfrak{s}, k \in K)
$$

is a diffeomorphism.
We denote by β the restriction of the Killing form B to \mathfrak{s}. Then β is a positive definite inner product on \mathfrak{s} which is $\operatorname{Ad}(K)$-invariant. We view this as an inner product on $T_{[e]}(G / K)$. Given $x \in G$ we define the inner product β_{x} on $T_{[x]}(G / K)$ by

$$
\beta_{x}=d l_{x}([e])^{-1 *} \beta
$$

(a) Show that β_{x} depends on x through its image $[x]$ in G / K.
(b) Show that $[x] \mapsto \beta_{x}$ defines a Riemannian structure on G / K which is invariant for the natural left action by G. Thus, G acts by isometries.
(c) Show that $\operatorname{Exp}:=\pi \circ \exp : \mathfrak{s} \rightarrow G / K$ is a diffeomorphism, whose tangent map at 0 can be identified with the identity on \mathfrak{s}. It can be shown that this map corresponds to the Riemannian exponential map.

On a Riemannian manifold M, the local geodesic reflection S_{a} at a point $a \in M$ is defined by $S_{a}\left(\operatorname{Exp}_{a}(X)\right)=\operatorname{Exp}_{a}(-X)$.
(d) The Cartan involution Θ on G is the unique involution with $d \Theta(e)=\theta$. It is usually denoted by θ instead of Θ. Let $\bar{\theta}: G / K \rightarrow G / K$ denote the map induced by θ. Show that $\bar{\theta}$ equals the local geodesic reflection of G / K at $[e]$.
(e) Show that $\bar{\theta}$ is an isometry.
(f) Show that G / K is a global Riemannian symmetric space.

Exercise 4. Let G be a connected real semisimple Lie group with finite center and let $\sigma: G \rightarrow G$ be an involution of G, i.e., an automorphism of order 2. Let $H=\left(G^{\sigma}\right)_{e}$. The purpose of this exercise is to show that H is spherical. In a crucial way we will make use of the assumption that there exists a Cartan involution $\theta: \mathfrak{g} \rightarrow \mathfrak{g}$ that commutes with σ. Let \mathfrak{s} be the -1 eigenspace of θ.
(a) Show that $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{q}$, where \mathfrak{q} is the -1 eigenspace of $\sigma_{*}:=d \sigma(e)$ in \mathfrak{g}. (From now on we write σ for σ_{*}.)

Let $\mathfrak{a}_{\mathrm{q}} \subset \mathfrak{q}$ be a maximal abelian subspace of $\mathfrak{s} \cap \mathfrak{q}$ (its elements will automatically be semisimple, with real eigenvalues).

Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal abelian subspace which contains $\mathfrak{a}_{\mathrm{q}}$.
(b) Show that \mathfrak{a} is σ-invariant, so that

$$
\mathfrak{a}=(\mathfrak{a} \cap \mathfrak{h}) \oplus(\mathfrak{a} \cap \mathfrak{q})
$$

Show that the second summand equals $\mathfrak{a}_{\mathrm{q}}$.
We recall that since σ is an automorphism of \mathfrak{g} which leaves \mathfrak{a} invariant, it follows that the map $\sigma: \mathfrak{a}^{*} \rightarrow \mathfrak{a}^{*}$ given by $\lambda \mapsto \lambda \circ \sigma^{-1}$ leaves the set of roots $\Sigma=\Sigma(\mathfrak{g}, \mathfrak{a})$ invariant. Furthermore, if $\alpha \in \Sigma$ then

$$
\sigma\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{\sigma \alpha}
$$

(c) Show that there exists an element $X_{0} \in \mathfrak{a}_{i} q$ such that for every $\alpha \in \Sigma$ we have $\alpha\left(X_{0}\right)=0 \Rightarrow$ $\left.\alpha\right|_{\mathfrak{a}_{\mathrm{q}}}=0$.
(d) Put $\Sigma_{\mathrm{q}}=\left\{\alpha \in \Sigma \mid \alpha\left(X_{0}\right) \neq 0\right\}$ and $\Sigma_{\mathrm{q}}^{+}:=\left\{\alpha \in \Sigma \mid \alpha\left(X_{0}\right)>0\right\}$. Show that there exists $Y \in \mathfrak{a} \cap \mathfrak{h}$ such that for all $\alpha \in \Sigma, \alpha\left(X_{0}\right)=0 \Rightarrow \alpha(Y) \neq 0$.
(e) Let X_{0}, Y be as above, take $t>0$ sufficiently small, and put $X=X_{0}+t Y$. Show that $\Sigma^{+}:=\{\alpha \in \Sigma \mid \alpha(X)=0\}$ is a positive system for Σ and that for all $\alpha \in \Sigma^{+}$with $\left.\alpha\right|_{\mathfrak{a}_{q}} \neq 0$ we have $\alpha \in \Sigma_{\mathrm{q}}^{+}$.

Let \mathfrak{n} be the sum of the root spaces \mathfrak{g}_{α} with $\alpha \in \Sigma^{+}$and and let

$$
\mathfrak{p}:=\mathcal{Z}_{\mathfrak{g}}(\mathfrak{a})+\mathfrak{n}=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}
$$

(f) Let $\alpha \in \Sigma_{\mathrm{q}}^{+}$. Show that for $X \in \mathfrak{g}_{-\alpha}$ we have

$$
X=X+\sigma(X)-\sigma(X) \in \mathfrak{h}+\mathfrak{n}
$$

(g) Let $\alpha \in \Sigma^{+} \backslash \Sigma_{\mathfrak{q}}$ and let $X \in \mathfrak{g}_{-\alpha}$. Show that $U:=X-\sigma(X) \in \mathfrak{g}_{\alpha} \cap \mathfrak{q}$. Show that $V:=U-\theta U \in \mathfrak{p} \cap \mathfrak{q}$ commutes with $\mathfrak{a}_{\mathrm{q}}$. Show that $V=0$, that $U=0$ and conclude that

$$
\mathfrak{g}_{-\alpha} \subset \mathfrak{h}
$$

(h) Show that $\overline{\mathfrak{n}} \subset \mathfrak{h}+\mathfrak{p}$
(i) Show that H is spherical.

Exercise 5. Let $\mathfrak{g}, \mathfrak{j}, R, R^{+}, S, \mathfrak{n}$ and \mathfrak{b} be as in Exercise 1. The following two properties of root systems will be important for this exercise.

- Every root $\alpha \in R^{+}$can be written as a sum of roots from S.
- $R^{+} \backslash S \subseteq S+R^{+}$.

We assume that \mathfrak{q} is a subalgebra of \mathfrak{g} containing \mathfrak{b} (thus, \mathfrak{q} is parabolic).
(a) Show that there exists a subset $T \subset R$ such that

$$
\mathfrak{q}=\mathfrak{j} \oplus \bigoplus_{\alpha \in T} \mathfrak{g}_{\alpha}
$$

(b) Show that there exists a unique set $F \subset S$ such that $T=R_{F} \cup R^{+}$. Here R_{F} denotes the collection of roots from R that belong to the \mathbb{Z}-span of F.
(c) If $F \subset S$ show that

$$
\mathfrak{q}_{F}:=\mathfrak{j} \oplus \bigoplus_{\alpha \in R_{F} \cup R^{+}} \mathfrak{g}_{\alpha}
$$

is a subalgebra of \mathfrak{g}, containing \mathfrak{b}.
(d) Show that nilpotent radical (i.e., the maximal nilpotent ideal) of \mathfrak{q}_{F} equals

$$
\mathfrak{n}_{F}:=\sum_{\alpha \in R^{+} \backslash R_{F}} \mathfrak{g}_{\alpha} .
$$

(e) Show that $\mathfrak{n}_{F} \triangleleft \mathfrak{q}_{F}$ and that $\mathfrak{q}_{F}=\mathfrak{l}_{F} \oplus \mathfrak{n}_{F}$, where

$$
\mathfrak{l}_{F}=\mathfrak{j} \oplus \bigoplus_{\alpha \in R_{F}} \mathfrak{g}_{\alpha}
$$

We recall that the real span of the elements $H_{\alpha} \in \mathfrak{j}$ is the real form \mathfrak{a} of \mathfrak{j} (sometimes written $\mathfrak{j}_{\mathbb{R}}$) given by

$$
\mathfrak{a}:=\{H \in \mathfrak{j} \mid \alpha(H) \in \mathbb{R} \quad(\forall \alpha \in R)\}
$$

For $F \subset S$ we define

$$
\mathfrak{a}_{F}=\mathfrak{a} \cap \bigcap_{\alpha \in F} \operatorname{ker} \alpha
$$

and $\mathfrak{a}_{F}^{+}=\left\{H \in \mathfrak{a}^{+} \mid \forall \alpha \in R^{+} \backslash R_{F}: \alpha(H)>0\right\}$.
(f) Show that $\mathfrak{a}^{+}:=\mathfrak{a}_{\emptyset}^{+}$is the open positive chamber in \mathfrak{a} and that the closed positive chamber can be written as the following disjoint union:

$$
\overline{\mathfrak{a}^{+}}=\bigcup_{F \subset S} \mathfrak{a}_{F}^{+} .
$$

(g) Show that for ever $X \in \mathfrak{a}$ the subspace

$$
\mathfrak{q}_{X}:=\bigoplus_{s \in \operatorname{spec}(\operatorname{ad}(X)} \operatorname{ker}\left(\operatorname{ad}(X)-s I_{\mathfrak{g}}\right)
$$

is a parabolic subalgebra of \mathfrak{g}.
We define the equivalence relation \sim on \mathfrak{a} by $X \sim Y \Longleftrightarrow \mathfrak{q}_{X}=\mathfrak{q}_{Y}$
(h) Show that the \mathfrak{a}_{F}^{+}defined above are equivalence classes for this relation.

Remark: Let $S(\mathfrak{a})$ be the unit sphere in \mathfrak{a} for a choice of Weyl group invariant inner product. Then the closures of the equivalence classes for \sim induce a simplicial complex on $S(\mathfrak{a})$, which is known as the Coxeter complex for the root system R.

