Exercises GQT School Lie groups and homogeneous spaces

Erik van den Ban

June 1, 2015

Exercise 1. Let \mathfrak{g} be a complex semisimple Lie algebra. Let \mathfrak{j} be a Cartan subalgebra, $R = R(\mathfrak{g}, \mathfrak{j})$ the associated root system, and R^+ a positive system. Let S denote the associated set of simple roots in R^+ , i.e., the set of roots $\alpha \in R^+$ that cannot be written as a sum of two positive roots. Let \mathfrak{n} be the sum of the positive root spaces, and $\mathfrak{b} = \mathfrak{j} \oplus \mathfrak{n}$ the associated Borel subalgebra.

- (a) Show that b is solvable
- (b) Show that the normalizer $\mathcal{N}_{\mathfrak{g}}(\mathfrak{b})$ of \mathfrak{b} in \mathfrak{g} equals \mathfrak{b} .
- (c) Assume that b ⊊ q with q a subalgebra of g. Show that there exists a positive root β ∈ R⁺ such that g_{-β} ⊂ q. Show that q is not solvable.

Exercise 2. Flag manifold. Let \mathbb{K} be one of the fields \mathbb{R} or \mathbb{C} . Let $n \ge 2$ and let $d = (d_1, \ldots, d_k)$ be a sequence of positive integers with $\sum_{j=1}^k d_j = n$. We define a *flag* of type d in \mathbb{K}^n to be an ordered sequence $F = (F_0, F_1, \ldots, F_{k-1}, F_k)$ of linear subspaces of \mathbb{K}^n with $0 = F_0 \subset F_1 \subset \cdots \subset F_k = \mathbb{K}^n$ and with $\dim(F_j/F_{j-1}) = d_j$, for all $1 \le j \le k$. The collection of all flags of type d, denoted by $\mathcal{F} = \mathcal{F}_d$, is called a flag manifold.

Let $G = \operatorname{GL}(n, \mathbb{K})$ and let $\alpha : G \times \mathcal{F} \to \mathcal{F}$ be defined by $\alpha(g, F) = g \cdot F := (g(F_j) \mid 0 \le j \le k)$.

(a) Show that α is a transitive action of G on \mathcal{F} .

Let the standard flag E of type d be defined by $E_0 = 0$ and $E_j = \text{span} \{e_1, \ldots, e_{d_1 + \cdots + d_j}\}$, for $1 \le j \le k$. We define the map $\varphi : G \to \mathcal{F}$ by $\varphi(g) = g \cdot E$.

- (b) Determine the stabilizer $P = P_d$ of E in G. Show that P is a closed subgroup of G.
- (c) Show that $\varphi : G \to \mathcal{F}$ induces a bijection $\overline{\varphi} : G/P \to \mathcal{F}$. Accordingly, we equip \mathcal{F} with the structure of a smooth manifold such that $\overline{\varphi}$ is a diffeomorphism.
- (d) Put K = O(n) if $\mathbb{K} = \mathbb{R}$ and K = U(n) if $\mathbb{K} = \mathbb{C}$. In both cases show that $\varphi(K) = \mathcal{F}$. Put $H = K \cap P$ and show that \mathcal{F} is diffeomorphic to K/H. Conclude that \mathcal{F} is compact.
- (e) With notation as in (d), show that $m: K \times P \mapsto G$, $(k, p) \mapsto kp$ is a surjective map. Hint: use (d) and (b). Moreover, show that m is a smooth submersion. Hint: use homogeneity.
- (f) Determine d such that $\mathcal{F}_d \simeq \mathbb{P}^{n-1}(\mathbb{K})$. More generally, let $1 \leq k < n$. Determine d such that $\mathcal{F}_d \simeq G_{n,k}(\mathbb{K})$.

(g) Determine d such that P is a Borel subgroup (in case $\mathbb{K} = \mathbb{C}$) or a minimal parabolic subgroup (in case $\mathbb{K} = \mathbb{R}$).

Exercise 3. We assume that G is a connected real semisimple Lie group with finite center, that $\theta: \mathfrak{g} \to \mathfrak{g}$ is a Cartan involution, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{s}$ the associated Cartan decomposition and K the connected Lie subgroup of G with algebra \mathfrak{k} . We use the derivative of the projection $\pi: G \to G/K$ at e to identify $\mathfrak{g}/\mathfrak{k} \simeq T_{[e]}(G/K)$ and we use the natural linear isomorphism $\mathfrak{s} \to \mathfrak{g}/\mathfrak{k}$ to identify these spaces. Accordingly,

$$\mathfrak{s} \simeq T_{[e]}(G/K).$$

By the Cartan decomposition, the map $\varphi : \mathfrak{s} \times K \to G$ given by

$$\varphi(X,k) = \exp(X)k, \qquad (X \in \mathfrak{s}, \ k \in K)$$

is a diffeomorphism.

We denote by β the restriction of the Killing form B to \mathfrak{s} . Then β is a positive definite inner product on \mathfrak{s} which is $\operatorname{Ad}(K)$ -invariant. We view this as an inner product on $T_{[e]}(G/K)$. Given $x \in G$ we define the inner product β_x on $T_{[x]}(G/K)$ by

$$\beta_x = dl_x([e])^{-1*}\beta.$$

- (a) Show that β_x depends on x through its image [x] in G/K.
- (b) Show that [x] → β_x defines a Riemannian structure on G/K which is invariant for the natural left action by G. Thus, G acts by isometries.
- (c) Show that $\text{Exp} := \pi \circ \exp : \mathfrak{s} \to G/K$ is a diffeomorphism, whose tangent map at 0 can be identified with the identity on \mathfrak{s} . It can be shown that this map corresponds to the Riemannian exponential map.

On a Riemannian manifold M, the local geodesic reflection S_a at a point $a \in M$ is defined by $S_a(\operatorname{Exp}_a(X)) = \operatorname{Exp}_a(-X)$.

- (d) The Cartan involution Θ on G is the unique involution with dΘ(e) = θ. It is usually denoted by θ instead of Θ. Let θ
 = G/K → G/K denote the map induced by θ. Show that θ
 equals the local geodesic reflection of G/K at [e].
- (e) Show that $\overline{\theta}$ is an isometry.
- (f) Show that G/K is a global Riemannian symmetric space.

Exercise 4. Let G be a connected real semisimple Lie group with finite center and let $\sigma : G \to G$ be an involution of G, i.e., an automorphism of order 2. Let $H = (G^{\sigma})_e$. The purpose of this exercise is to show that H is spherical. In a crucial way we will make use of the assumption that there exists a Cartan involution $\theta : \mathfrak{g} \to \mathfrak{g}$ that commutes with σ . Let \mathfrak{s} be the -1 eigenspace of θ .

(a) Show that g = h ⊕ q, where q is the −1 eigenspace of σ_{*} := dσ(e) in g. (From now on we write σ for σ_{*}.)

Let $\mathfrak{a}_q \subset \mathfrak{q}$ be a maximal abelian subspace of $\mathfrak{s} \cap \mathfrak{q}$ (its elements will automatically be semisimple, with real eigenvalues).

Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal abelian subspace which contains \mathfrak{a}_q .

(b) Show that \mathfrak{a} is σ -invariant, so that

$$\mathfrak{a} = (\mathfrak{a} \cap \mathfrak{h}) \oplus (\mathfrak{a} \cap \mathfrak{q}).$$

Show that the second summand equals \mathfrak{a}_{q} .

We recall that since σ is an automorphism of \mathfrak{g} which leaves \mathfrak{a} invariant, it follows that the map $\sigma : \mathfrak{a}^* \to \mathfrak{a}^*$ given by $\lambda \mapsto \lambda \circ \sigma^{-1}$ leaves the set of roots $\Sigma = \Sigma(\mathfrak{g}, \mathfrak{a})$ invariant. Furthermore, if $\alpha \in \Sigma$ then

$$\sigma(\mathfrak{g}_{\alpha})=\mathfrak{g}_{\sigma\alpha}.$$

- (c) Show that there exists an element $X_0 \in \mathfrak{a}_i q$ such that for every $\alpha \in \Sigma$ we have $\alpha(X_0) = 0 \Rightarrow \alpha|_{\mathfrak{a}_q} = 0$.
- (d) Put $\Sigma_q = \{ \alpha \in \Sigma \mid \alpha(X_0) \neq 0 \}$ and $\Sigma_q^+ := \{ \alpha \in \Sigma \mid \alpha(X_0) > 0 \}$. Show that there exists $Y \in \mathfrak{a} \cap \mathfrak{h}$ such that for all $\alpha \in \Sigma$, $\alpha(X_0) = 0 \Rightarrow \alpha(Y) \neq 0$.
- (e) Let X_0, Y be as above, take t > 0 sufficiently small, and put $X = X_0 + tY$. Show that $\Sigma^+ := \{ \alpha \in \Sigma \mid \alpha(X) = 0 \}$ is a positive system for Σ and that for all $\alpha \in \Sigma^+$ with $\alpha |_{\mathfrak{a}_q} \neq 0$ we have $\alpha \in \Sigma_q^+$.

Let \mathfrak{n} be the sum of the root spaces \mathfrak{g}_{α} with $\alpha \in \Sigma^+$ and and let

$$\mathfrak{p} := \mathcal{Z}_\mathfrak{g}(\mathfrak{a}) + \mathfrak{n} = \mathfrak{m} + \mathfrak{a} + \mathfrak{n}$$

(f) Let $\alpha \in \Sigma_{\mathfrak{a}}^+$. Show that for $X \in \mathfrak{g}_{-\alpha}$ we have

$$X = X + \sigma(X) - \sigma(X) \in \mathfrak{h} + \mathfrak{n}$$

(g) Let $\alpha \in \Sigma^+ \setminus \Sigma_q$ and let $X \in \mathfrak{g}_{-\alpha}$. Show that $U := X - \sigma(X) \in \mathfrak{g}_{\alpha} \cap \mathfrak{q}$. Show that $V := U - \theta U \in \mathfrak{p} \cap \mathfrak{q}$ commutes with \mathfrak{a}_q . Show that V = 0, that U = 0 and conclude that

$$\mathfrak{g}_{-\alpha} \subset \mathfrak{h}.$$

- (h) Show that $\overline{\mathfrak{n}} \subset \mathfrak{h} + \mathfrak{p}$
- (i) Show that H is spherical.

Exercise 5. Let $\mathfrak{g}, \mathfrak{j}, R, R^+, S, \mathfrak{n}$ and \mathfrak{b} be as in Exercise 1. The following two properties of root systems will be important for this exercise.

- Every root $\alpha \in R^+$ can be written as a sum of roots from S.
- $R^+ \setminus S \subseteq S + R^+$.

We assume that q is a subalgebra of g containing b (thus, q is parabolic).

(a) Show that there exists a subset $T \subset R$ such that

$$\mathfrak{q} = \mathfrak{j} \oplus \bigoplus_{\alpha \in T} \mathfrak{g}_{\alpha}.$$

- (b) Show that there exists a unique set $F \subset S$ such that $T = R_F \cup R^+$. Here R_F denotes the collection of roots from R that belong to the \mathbb{Z} -span of F.
- (c) If $F \subset S$ show that

$$\mathfrak{q}_F := \mathfrak{j} \oplus igoplus_{lpha \in R_F \cup R^+} \mathfrak{g}_lpha$$

is a subalgebra of \mathfrak{g} , containing \mathfrak{b} .

(d) Show that nilpotent radical (i.e., the maximal nilpotent ideal) of q_F equals

$$\mathfrak{n}_F := \sum_{\alpha \in R^+ \setminus R_F} \mathfrak{g}_\alpha$$

(e) Show that $\mathfrak{n}_F \lhd \mathfrak{q}_F$ and that $\mathfrak{q}_F = \mathfrak{l}_F \oplus \mathfrak{n}_F$, where

$$\mathfrak{l}_F = \mathfrak{j} \oplus \bigoplus_{\alpha \in R_F} \mathfrak{g}_\alpha.$$

We recall that the real span of the elements $H_{\alpha} \in \mathfrak{j}$ is the real form \mathfrak{a} of \mathfrak{j} (sometimes written $\mathfrak{j}_{\mathbb{R}}$) given by

$$\mathfrak{a} := \{ H \in \mathfrak{j} \mid \alpha(H) \in \mathbb{R} \ (\forall \alpha \in R) \}.$$

For $F \subset S$ we define

$$\mathfrak{a}_F = \mathfrak{a} \cap \bigcap_{\alpha \in F} \ker \alpha$$

and $\mathfrak{a}_F^+ = \{ H \in \mathfrak{a}^+ \mid \forall \alpha \in R^+ \setminus R_F : \alpha(H) > 0 \}.$

(f) Show that $a^+ := a^+_{\emptyset}$ is the open positive chamber in a and that the closed positive chamber can be written as the following disjoint union:

$$\overline{\mathfrak{a}^+} = \bigcup\nolimits_{F \subset S} \, \mathfrak{a}_F^+$$

(g) Show that for ever $X \in \mathfrak{a}$ the subspace

$$\mathfrak{q}_X := \bigoplus_{s \in \operatorname{spec}(\operatorname{ad}(X)} \ker(\operatorname{ad}(X) - sI_{\mathfrak{g}}))$$

is a parabolic subalgebra of \mathfrak{g} .

We define the equivalence relation \sim on \mathfrak{a} by $X \sim Y \iff \mathfrak{q}_X = \mathfrak{q}_Y$

(h) Show that the \mathfrak{a}_F^+ defined above are equivalence classes for this relation.

Remark: Let $S(\mathfrak{a})$ be the unit sphere in \mathfrak{a} for a choice of Weyl group invariant inner product. Then the closures of the equivalence classes for \sim induce a simplicial complex on $S(\mathfrak{a})$, which is known as the Coxeter complex for the root system R.