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Whittaker functions

Setting

I G real reductive group
I K maximal compact, G = KAN0 Iwasawa decomposition
I χ : N0 → U(1) unitary character, regular (!)

i.e.: ∀α ∈ Σ(n0, a) simple: dχ(e)|gα 6= 0.

Whittaker functions

L2
loc(G/N0, χ) := {f ∈ L2

loc(G) | f (xn) = χ(n)−1f (x) (x ∈ G, n ∈ N0)}

L2(G/N0, χ) := {f ∈ L2
loc(G/N0, χ) | |f | ∈ L2(G/N0)}

I Left regr repn: L = IndG
N0

(χ) is unitary



Whittaker Plancherel formula

Abstractly
I IndG

N0
(χ) =

∫ ⊕
Ĝ

mππdµ(π).

Concrete realization

I Harish-Chandra, Announcement 1982.

Details in Collected Papers Vol 5 (posthumous), 141- 307,
eds. R. Gangolli, V.S. Varadarajan, Springer 2018.

I HC’s approach: philosophy of cusp forms, final step unclear.

I Today: HC’s approach, and sketch of final step using results on
Whittaker Fourier transform and Wave packets

I Important ref: Wallach, book RRG II: discrete part, cusp forms, and
functional equation and holomorphic dependence of Whittaker vectors



Discrete part of decomposition

Discrete part
π ∈ Ĝ (unitary dual) is said to appear discretely in L2(G/N0, χ) if it can be
realized as a closed subrepresentation.
The closed span of such π is denoted L2

d (G/N0, χ).

Theorem (HC, W)
If π ∈ Ĝ appears in L2

d (G/N0, χ), then it appears in L2
d (G), i.e., π belongs to

the discrete series of G.

Lemma L2
d (G/N0, χ)K ⊂ C(G/N0, χ).

Definition (Whittaker Schwartz space)
C(G/N0, χ) := space of f ∈ C∞(G/N0, χ) s.t. ∀u ∈ U(g),N ∈ N,

|Lu f (kan)| ≤ Cu,N (1 + | log(a)|)−Na−ρ (kan ∈ KAN0),

where ρ ∈ a∗ is defined by ρ(X ) := 1
2 tr(ad(X )|N0 ).



Cusp forms

Property: C(G/N0, χ) is left G-invariant and

C∞c (G/N0, χ) ⊂ C(G/N0, χ) ⊂ L2(G/N0, χ).

I P0 := ZK (A)A N0, minimal psg.

I Pst : (finite) set of psg’s P < G with P ⊃ P0 (standard psg’s).

I For P ∈ Pst , Langlands deco: P = MPAPNP , M1P := MPAP .

Lemma (HC, W)
If f ∈ C(G/N0;χ) and P ∈ Pst then

∫
N̄P
|f (n̄)| dn̄ <∞.

The map f 7→
∫

N̄P
|f (n̄)| dn̄ is continuous.

Definition (Space of cusp forms)
◦C(G/N0, χ) := space of f ∈ C(G/N0, χ) s.t. ∀P ∈ Pst \ {G},∫

N̄P

f (xn̄) dn̄ = 0, (∀ x ∈ G).



Cusp forms and discrete part

Spherical functions Let (τ,Vτ ) be a finite dimensional unitary repn of K .

L2(τ,G/N0, χ) := (L2(G/N0, χ)⊗ Vτ )K

⊂ {f ∈ L2
loc(G,Vτ ) | f (kxn) = χ(n)−1τ(k)f (x)}

◦C(τ,G/N0, χ) := (◦C(G/N0, χ)⊗ Vτ )K .

Thm (HC,W)
Suppose G has compact center (⇐⇒ AG = {e}). Then

◦C(τ,G/N0, χ) = L2
d (τ,G/N0, χ).

The space is finite dimensional.



Harish-Chandra descent transform

For P ∈ Pst define dP : P → R+ by dP(p) := | det Ad(p)|nP |
1/2.

Definition (HC transform)
For f ∈ C(τ,G/N0, χ) define f (P̄) : M1P → Vτ by

f (P̄)(m) := dP(m)−1
∫

N̄P

f (mn̄) dn̄.

Property
f (P̄) ∈ C∞(τP ,M1P/M1P ∩ N0, χP),

where τP := τ |M1P∩K , χP := χ|M1P∩N0 .

Thm (HC)
For a ∈ AP define Ra(f (P̄))|MP : MP → C, m 7→ f (P̄)(ma). Then

Ra(f (P̄))|MP ∈ C(τP ,MP/MP ∩ N0, χP).



Transitivity of descent

Let Q ∈ Pst .

Fact
If P ∈ Pst and P ⊂ Q then ∗P := P ∩M1Q is a standard parabolic subgroup of
M1Q . The assignment P 7→ ∗P is bijective

{P ∈ Pst (G) | P ⊂ Q} 1−1−→ Pst (M1Q).

Lemma (transitivity)
Let P ∈ Pst , P ⊂ Q, then for f ∈ C(τ,G/N0, χ),

f (P̄) = (f (Q̄))(∗P̄).

Proof
Use N̄P = N̄∗PN̄Q and Fubini.



Role of the descent transform

I For P ∈ Pst put ◦CP,τ := ◦C(τP ,MP/MP ∩ N0, χP).

Def (HC)
Let f ∈ C(τ,G/N0, χ). Then

f (P̄) ∼ 0 :⇐⇒ Ra(f (P̄))|MP ⊥
◦CP,τ (∀a ∈ AP).

More explicitly, the assertion on the right means that for all a ∈ AP and all
ψ ∈ ◦CP,τ , ∫

MP/MP∩N0

〈 f (P̄)(ma), ψ(m) 〉Vτ dm = 0.

Thm (HC’s completeness theorem)
Let f ∈ C(τ,G/N0, χ). If f (P̄) ∼ 0 for each P ∈ Pst , then f = 0.



Proof of HC’s completeness

Thm (HC’s completeness theorem)
Let f ∈ C(τ,G/N0, χ). If f (P̄) ∼ 0 for each P ∈ Pst then f = 0.

Sketch of proof
Assume f (P̄) ∼ 0 for all P ∈ Pst .

(1) Transitivity of descent Let Q ∈ Pst , then for all ∗P ∈ Pst (M1Q),

(f (Q̄))(∗P̄)(= f (P̄)) ∼ 0.

(2) Induction on rkRG = dim a. If Q 6= G then rkRMQ < rkRG hence by
induction

f (Q̄) = 0.

(3) Assertion (2) for all Q ∈ Pst \ {G} implies ∀a ∈ AG : (Raf )|MG ∈
◦CG,τ .

(4) Note that f (Ḡ) = f . Thus, f (Ḡ) ∼ 0 means ∀a ∈ AG : (Raf )|MG ⊥
◦CG,τ .

From (3) it follows that ∀a ∈ AG : (Raf )|MG = 0.
Hence f = 0 on MGAG = G.



Parabolic induction and Whittaker integrals

Let P = MPAPNP ∈ Pst and ψ ∈ ◦CP,τ . For ν ∈ a∗PC define ψν : G→ Vτ by

ψν(kman̄) = aν+ρP τ(k)ψ(m).

For Re(ν) >P 0, the integral

Wh(P, ψ, ν, x) :=

∫
NP

χ(n)ψν(xn) dn (x ∈ G)

is absy convt and defines a function Wh(P, ψ, ν) ∈ C∞(τ,G/N0, χ) which
depends holomorphically on ν in the indicated region.

Remark
The above Whittaker integral is essentially a finite sum of generalized matrix
coefficients (defined by Jacquet integrals) of IndG

P̄ (σ ⊗−ν ⊗ 1), with σ ∈ M̂P,ds

appearing in ◦CP,τ . (Analogue of Eisenstein integral.)



Holomorphic extension

Theorem (W)
Wh(P, ψ, ν), initially defined for Reν >P 0, extends to entire holomc function
of ν ∈ a∗PC with values in C∞(τ,G/N0, χ).

Remark: HC: there exists a meromc extension, regular on ia∗P .

Theorem (∼): Uniformly tempered estimates
Let ε > 0 be suff tly small. If u ∈ U(g) then ∃C,N, r > 0 s.t.

|Wh(P, ψ, ν, u; ka)| ≤ C(1 + |ν|)N(1 + | log a|)Ner|Reν|| log a|a−ρ,

for all k ∈ K , a ∈ A, ν ∈ a∗PC with |Reν| < ε.

Ingredients of proof
I Bernstein-Sato type functional equation for Jacquet integrals.
I Uniformly moderate estimates.
I Wallach’s method of improving estimates along max psg’s, with

parameters.



Fourier transform

Fourier transform
For f ∈ C(τ,G/N0, χ), P ∈ Pst , ν ∈ ia∗P , the Fourier transform 8FP f (ν) ∈ ◦CP,τ

is defined by

〈 8FP f (ν), ψ 〉 :=

∫
G/N0

〈 f (x),Wh(P, ψ, ν, x) 〉Vτ dx , (ψ ∈ ◦CP,τ ).

Theorem (∼)

8FP : C(τ,G/N0, χ)→ S(ia∗P)⊗ ◦CP,τ ,

continuous linearly.

Remark: HC proves this for 8FP restricted to C∞c (τ,G/N0, χ).

Proof
This follows from the uniformly tempered estimates.

Remark: Suppose G has compact center. Then:
8FG = L2− orth` projn: C(τ,G/N0, χ)→ ◦C(τ,G/N0, χ).



Relation Fourier transform and HC descent transform

Let Fe denote the Euclidean Fourier transform S(AP)→ S(ia∗P).

Thm (∼)
If f ∈ C(τ,G/N0, χ) and ψ ∈ ◦CP,τ , define

f (P̄)
ψ : a 7→

∫
MP/MP∩N0

〈 f (P̄)(ma), ψ(m) 〉Vτ dm.

Then f (P̄)
ψ belongs to S(AP) and

Fe(f (P̄)
ψ )(ν) = 〈 8FP f (ν), ψ 〉, (ν ∈ ia∗P).

Corollary (injectivity FT)
Let f ∈ C(τ,G/N0, χ). If 8FP(f ) = 0 for all P ∈ Pst then f = 0.

Proof

1. 8FP f = 0 implies that f (P̄)
ψ = 0 for all ψ ∈ ◦CP,τ . Hence f (P̄) ∼ 0.

2. f = 0 by HC’s completeness thm.



C-function, Normalized Whittaker integral

I Wh(P, ψ, ν) is finite under Z := center(U(g)),

I top order asymptotic behavior of expl type
along cl(A+),

I very rapid decay outside cl(A+).

 

At

decay

Lemma Let P ∈ Pst . For ψ ∈ ◦CP,τ , Re ν ∈ a∗+
P , m ∈ MP ,

Wh(P, ψ, ν)(ma) ∼ aν−ρP [CP(ν)ψ](m), (a→∞ in A+
P ),

with CP(ν) ∈ End(◦CP,τ ), meromc in ν ∈ a∗PC (regr for Reν ∈ a∗+
P ).

Definition (HC)

Wh◦(P, ψ, ν) := Wh(P,CP(ν)−1ψ, ν) (meroc in ν)

I P ∼ Q :⇐⇒ ∃w ∈ W (a) : w(aP) = aQ (associated).
I W (aQ |aP) := {s ∈ Hom(aP , aQ) | ∃w ∈ W (a) : s = w |aP}.



Functional equations, Maass-Selberg relations

Lemma (Functional equations: HC)
Let P,Q ∈ Pst , P ∼ Q. Then for all s ∈ W (aQ |aP),

Wh◦(Q,C◦Q|P(s, ν)ψ, sν) = Wh◦(P, ψ, ν), (ν ∈ a∗PC),

with C◦Q|P(s, ν) ∈ Hom(◦CP,τ ,
◦CQ,τ ) a uniquely determined meromc function

of ν ∈ a∗PC.

Thm (Maass-Selberg relations, HC)
For all s ∈ W (aQ |aP), ν ∈ a∗PC,

C◦Q|P(s,−ν̄)∗ ◦ C◦Q|P(s, ν) = id ◦CP,τ .

In particular, for ν ∈ ia∗P , the map C◦Q|P(s, ν) is unitary.

Theorem (HC)
ν 7→ Wh◦(P, ψ, ν) is regular on ia∗P .



Wave packets

Definition
For P ∈ Pst , ψ ∈ S(ia∗P)⊗ ◦CP,τ , x ∈ G,

WP(ψ)(x) :=

∫
ia∗P

Wh◦(P, ψ(ν), ν, x) dν.

Theorem (∼)
WP : S(ia∗P)⊗ ◦CP,τ → C(τ,G/N0, χ)

is continuous linear.

Remark: HC proves this forWP restricted to a subspace of S(ia∗P)⊗ ◦CP,τ .

Proof requires

I the uniformly tempered estimates
I theory of constant term with parameter
I families of type IIhol(Λ) (as in previous joint work with Carmona and

Delorme for reductive symmetric space G/H).



Normalized Fourier transform

Normalized Fourier transform
For f ∈ C(τ,G/N0, χ) define FP f : ia∗P → ◦CP,τ as 8FP f , but with Wh◦(P, · ) in
place of Wh(P, · ).
Then FP : C(τ,G/N0, χ)→ S(ia∗P)⊗ ◦CP,τ is continuous linear.

Lemma
WPFP ∈ End(C(τ,G/N0, χ)) only depends on [P] ∈ Pst/ ∼ .

Proof
This follows from the Maass-Selberg relations.

Lemma (projection)

(a) If Q ∈ Pst , Q 6∼ P then FQWP = 0.

(b) (∃!cP > 0) : ΠP = cPFPWP is a projection operator in S(ia∗P)⊗ ◦CP,τ .
Moreover,

ΠP ◦ FP = FP .



Plancherel Theorem for Whittaker functions

Lemma Let P,Q ∈ Pst . Then

FQcPWPFP = δ[Q],[P]FQ . (∗)

Proof If [P] 6= [Q], use Lemma (projection) (a). If P ∼ Q, then by Lemma
(projection) (b),

FQcPWPFP = FQcQWQFQ = ΠQ ◦ FQ = FQ .

Plancherel theorem
If f ∈ C(τ,G/N0, χ), then

f =
∑

[P]∈Pst/∼

cPWPFP f .

Proof
Put g = f −

∑
WPFP f . Then g ∈ C(τ,G/N0, χ) and by (*):

FQg = FQ f −FQ f = 0.

From this, 8FQ(g) = 0 for all Q ∈ Pst , hence g = 0 (injectivity FT).


