Harish-Chandra's philosophy of cusp forms for Whittaker functions

Erik van den Ban

Utrecht University

18th Discussion Meeting in Harmonic Analysis In honour of centenary year of Harish Chandra IIT Guwahati Guwahati, December 19, 2023

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Whittaker functions

Setting

- G real reductive group
- K maximal compact, $G = KAN_0$ lwasawa decomposition
- $\chi : N_0 \rightarrow U(1)$ unitary character, regular (!)

i.e.: $\forall \alpha \in \Sigma(\mathfrak{n}_0, \mathfrak{a})$ simple: $d\chi(e)|_{\mathfrak{g}_{\alpha}} \neq 0$.

Whittaker functions

$$L^{2}_{loc}(G/N_{0},\chi) := \{ f \in L^{2}_{loc}(G) \mid f(xn) = \chi(n)^{-1}f(x) \quad (x \in G, n \in N_{0}) \}$$
$$L^{2}(G/N_{0},\chi) := \{ f \in L^{2}_{loc}(G/N_{0},\chi) \mid |f| \in L^{2}(G/N_{0}) \}$$

• Left reg^r repⁿ: $L = \text{Ind}_{N_0}^G(\chi)$ is unitary

Abstractly

► $\operatorname{Ind}_{N_0}^G(\chi) = \int_{\widehat{G}}^{\oplus} m_{\pi} \pi d\mu(\pi).$

Concrete realization

Harish-Chandra, Announcement 1982.

Details in Collected Papers Vol 5 (posthumous), 141- 307, eds. R. Gangolli, V.S. Varadarajan, Springer 2018.

- HC's approach: philosophy of cusp forms, final step unclear.
- Today: HC's approach, and sketch of final step using results on Whittaker Fourier transform and Wave packets
- Important ref: Wallach, book RRG II: discrete part, cusp forms, and functional equation and holomorphic dependence of Whittaker vectors

Discrete part

 $\pi \in \widehat{G}$ (unitary dual) is said to appear discretely in $L^2(G/N_0, \chi)$ if it can be realized as a closed subrepresentation. The closed span of such π is denoted $L^2_d(G/N_0, \chi)$.

Theorem (HC, W)

If $\pi \in \widehat{G}$ appears in $L^2_d(G/N_0, \chi)$, then it appears in $L^2_d(G)$, i.e., π belongs to the discrete series of G.

Lemma $L^2_{d}(G/N_0,\chi)_{\mathcal{K}} \subset \mathcal{C}(G/N_0,\chi).$

Definition (Whittaker Schwartz space) $C(G/N_0, \chi) :=$ space of $f \in C^{\infty}(G/N_0, \chi)$ s.t. $\forall u \in U(\mathfrak{g}), N \in \mathbb{N}$,

$$|L_u f(kan)| \leq C_{u,N} \left(1 + |\log(a)|\right)^{-N} a^{-\rho} \qquad (kan \in KAN_0),$$

where $\rho \in \mathfrak{a}^*$ is defined by $\rho(X) := \frac{1}{2} \operatorname{tr}(\operatorname{ad}(X)|_{N_0})$.

Cusp forms

Property: $C(G/N_0, \chi)$ is left *G*-invariant and

 $C_c^{\infty}(G/N_0,\chi) \subset C(G/N_0,\chi) \subset L^2(G/N_0,\chi).$

 $\blacktriangleright P_0 := Z_{\mathcal{K}}(A)AN_0, \text{ minimal psg.}$

▶ \mathcal{P}_{st} : (finite) set of psg's P < G with $P \supset P_0$ (standard psg's).

For $P \in \mathcal{P}_{st}$, Langlands deco: $P = M_P A_P N_P$, $M_{1P} := M_P A_P$.

Lemma (HC, W)

If $f \in C(G/N_0; \chi)$ and $P \in \mathcal{P}_{st}$ then $\int_{\bar{N}_P} |f(\bar{n})| d\bar{n} < \infty$.

The map $f \mapsto \int_{\bar{N}_{P}} |f(\bar{n})| d\bar{n}$ is continuous.

Definition (Space of cusp forms)

 $^{\circ}\mathcal{C}(G/N_{0},\chi) := \text{space of } f \in \mathcal{C}(G/N_{0},\chi) \text{ s.t. } \forall P \in \mathcal{P}_{st} \setminus \{G\},$

$$\int_{\bar{N}_P} f(x\bar{n}) \ d\bar{n} = 0, \qquad (\forall \ x \in G)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Cusp forms and discrete part

Spherical functions Let (τ, V_{τ}) be a finite dimensional unitary rep^{*n*} of *K*. $L^{2}(\tau, G/N_{0}, \chi) := (L^{2}(G/N_{0}, \chi) \otimes V_{\tau})^{K}$ $\subset \{f \in L^{2}_{loc}(G, V_{\tau}) \mid f(kxn) = \chi(n)^{-1}\tau(k)f(x)\}$ $^{\circ}C(\tau, G/N_{0}, \chi) := (^{\circ}C(G/N_{0}, \chi) \otimes V_{\tau})^{K}.$

A D F A 同 F A E F A E F A Q A

Thm (HC,W) Suppose *G* has compact center ($\iff A_G = \{e\}$). Then ${}^{\circ}C(\tau, G/N_0, \chi) = L^2_d(\tau, G/N_0, \chi).$

The space is finite dimensional.

Harish-Chandra descent transform

For $P \in \mathcal{P}_{st}$ define $d_P : P \to \mathbb{R}^+$ by $d_P(p) := |\det \operatorname{Ad}(p)|_{\mathfrak{n}_P}|^{1/2}$.

Definition (HC transform) For $f \in \mathcal{C}(\tau, G/N_0, \chi)$ define $f^{(\bar{P})} : M_{1P} \to V_{\tau}$ by $f^{(\bar{P})}(\tau_{T}) = f^{(-1)}(\tau_{T}) = f^{(-1)}(\tau_{T})$

$$f^{(\bar{P})}(m) := d_P(m)^{-1} \int_{\bar{N}_P} f(m\bar{n}) d\bar{n}$$

Property

$$f^{(\bar{P})} \in \mathcal{C}^{\infty}(au_{P}, \mathcal{M}_{1P}/\mathcal{M}_{1P} \cap \mathcal{N}_{0}, \chi_{P}),$$

where $\tau_P := \tau|_{M_{1P} \cap K}, \quad \chi_P := \chi|_{M_{1P} \cap N_0}.$

Thm (HC)

For $a \in A_P$ define $R_a(f^{(\bar{P})})|_{M_P} : M_P \to \mathbb{C}, m \mapsto f^{(\bar{P})}(ma)$. Then

 $R_a(f^{(\tilde{P})})|_{M_P} \in \mathcal{C}(\tau_P, M_P/M_P \cap N_0, \chi_P).$

Transitivity of descent

Let $Q \in \mathcal{P}_{st}$.

Fact

If $P \in \mathcal{P}_{st}$ and $P \subset Q$ then $*P := P \cap M_{1Q}$ is a standard parabolic subgroup of M_{1Q} . The assignment $P \mapsto *P$ is bijective

$$\{P \in \mathcal{P}_{st}(G) \mid P \subset Q\} \xrightarrow{1-1} \mathcal{P}_{st}(M_{1Q}).$$

Lemma (transitivity)

Let $P \in \mathcal{P}_{st}$, $P \subset Q$, then for $f \in \mathcal{C}(\tau, G/N_0, \chi)$,

 $f^{(\bar{P})} = (f^{(\bar{Q})})^{(*\bar{P})}.$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof

Use $\bar{N}_P = \bar{N}_{*P}\bar{N}_Q$ and Fubini.

Role of the descent transform

For
$$P \in \mathcal{P}_{st}$$
 put $^{\circ}\mathcal{C}_{P,\tau} := {^{\circ}\mathcal{C}(\tau_P, M_P \cap N_0, \chi_P)}$.

Def (HC)

Let $f \in C(\tau, G/N_0, \chi)$. Then

$$f^{(\check{P})} \sim 0 \quad : \iff \quad R_a(f^{(\check{P})})|_{M_P} \perp {}^\circ \mathcal{C}_{P,\tau} \; (\forall a \in A_P).$$

More explicitly, the assertion on the right means that for all $a \in A_P$ and all $\psi \in {}^{\circ}C_{P,\tau}$,

$$\int_{M_P/M_P\cap N_0} \langle f^{(\bar{P})}(ma), \psi(m) \rangle_{V_\tau} dm = 0.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Thm (HC's completeness theorem)

Let $f \in C(\tau, G/N_0, \chi)$. If $f^{(\overline{P})} \sim 0$ for each $P \in \mathcal{P}_{st}$, then f = 0.

Thm (HC's completeness theorem) Let $f \in C(\tau, G/N_0, \chi)$. If $f^{(\bar{P})} \sim 0$ for each $P \in \mathcal{P}_{st}$ then f = 0.

Sketch of proof

Assume $f^{(\bar{P})} \sim 0$ for all $P \in \mathcal{P}_{st}$.

(1) Transitivity of descent Let $Q \in \mathcal{P}_{st}$, then for all $*P \in \mathcal{P}_{st}(M_{1Q})$,

$$(f^{(\bar{Q})})^{(*\bar{P})} (= f^{(\bar{P})}) \sim 0.$$

(2) Induction on rk_ℝG = dim a. If Q ≠ G then rk_ℝM_Q < rk_ℝG hence by induction

$$f^{(\bar{Q})}=0.$$

- (3) Assertion (2) for all $Q \in \mathcal{P}_{st} \setminus \{G\}$ implies $\forall a \in A_G : (R_a f)|_{M_G} \in {}^{\circ}\mathcal{C}_{G,\tau}$.
- (4) Note that $f^{(\bar{G})} = f$. Thus, $f^{(\bar{G})} \sim 0$ means $\forall a \in A_G : (R_a f)|_{M_G} \perp {}^{\circ}C_{G,\tau}$. From (3) it follows that $\forall a \in A_G : (R_a f)|_{M_G} = 0$. Hence f = 0 on $M_G A_G = G$.

Parabolic induction and Whittaker integrals

Let
$$P = M_P A_P N_P \in \mathcal{P}_{st}$$
 and $\psi \in {}^{\circ}\mathcal{C}_{P,\tau}$. For $\nu \in \mathfrak{a}_{P\mathbb{C}}^*$ define $\psi_{\nu} : G \to V_{\tau}$ by
 $\psi_{\nu}(kma\bar{n}) = a^{\nu+\rho_P}\tau(k)\psi(m).$

For $\operatorname{Re}(\nu) >_{P} 0$, the integral

$$\operatorname{Wh}(\mathcal{P},\psi,\nu,\mathbf{x}) := \int_{N_{\mathcal{P}}} \chi(n)\psi_{\nu}(\mathbf{x}n) \, dn \qquad (\mathbf{x}\in G)$$

is $abs^{\gamma} \operatorname{conv}^{t}$ and defines a function $\operatorname{Wh}(P, \psi, \nu) \in C^{\infty}(\tau, G/N_{0}, \chi)$ which depends holomorphically on ν in the indicated region.

Remark

The above Whittaker integral is essentially a finite sum of generalized matrix coefficients (defined by Jacquet integrals) of $\operatorname{Ind}_{\overline{P}}^{G}(\sigma \otimes -\nu \otimes 1)$, with $\sigma \in \widehat{M}_{P,ds}$ appearing in ${}^{\circ}C_{P,\tau}$. (Analogue of Eisenstein integral.)

Holomorphic extension

Theorem (W)

Wh(P, ψ, ν), initially defined for Re $\nu >_P 0$, extends to entire holom^c function of $\nu \in \mathfrak{a}_{P\mathbb{C}}^*$ with values in $C^{\infty}(\tau, G/N_0, \chi)$.

Remark: HC: there exists a merom^{*c*} extension, regular on ia_P^* .

Theorem (~): Uniformly tempered estimates Let $\varepsilon > 0$ be suff^tly small. If $u \in U(\mathfrak{g})$ then $\exists C, N, r > 0$ s.t.

 $|\mathrm{Wh}(\boldsymbol{P},\psi,\nu,\boldsymbol{u};\boldsymbol{k}\boldsymbol{a})| \leq C(1+|\nu|)^{N}(1+|\log\boldsymbol{a}|)^{N}\boldsymbol{e}^{r|\mathrm{Re}\nu||\log\boldsymbol{a}|}\boldsymbol{a}^{-\rho},$

for all $k \in K$, $a \in A$, $\nu \in \mathfrak{a}_{P\mathbb{C}}^*$ with $|\operatorname{Re}\nu| < \varepsilon$.

Ingredients of proof

- Bernstein-Sato type functional equation for Jacquet integrals.
- Uniformly moderate estimates.
- Wallach's method of improving estimates along max psg's, with parameters.

Fourier transform

For $f \in C(\tau, G/N_0, \chi)$, $P \in \mathcal{P}_{st}$, $\nu \in i\mathfrak{a}_P^*$, the Fourier transform $\mathcal{F}_P f(\nu) \in {}^{\circ}C_{P,\tau}$ is defined by

$$\langle \mathcal{F}_{\mathcal{P}}f(\nu),\psi\rangle := \int_{G/N_0} \langle f(x), \operatorname{Wh}(\mathcal{P},\psi,\nu,x)\rangle_{V_{\tau}} dx, \ (\psi \in {}^{\circ}\mathcal{C}_{\mathcal{P},\tau}).$$

Theorem (\sim)

$$\mathcal{F}_{\mathcal{P}}: \mathcal{C}(\tau, \mathcal{G}/\mathcal{N}_{0}, \chi) \to \mathcal{S}(\mathfrak{ia}_{\mathcal{P}}^{*}) \otimes \mathcal{C}_{\mathcal{P}, \tau},$$

(ロ) (同) (三) (三) (三) (○) (○)

continuous linearly.

Remark: HC proves this for \mathcal{F}_P restricted to $C_c^{\infty}(\tau, G/N_0, \chi)$.

Proof

This follows from the uniformly tempered estimates.

Remark: Suppose *G* has compact center. Then: ${}^{\flat}\mathcal{F}_{G} = L^{2} - \operatorname{orth}^{\ell} \operatorname{proj}^{n}: \quad \mathcal{C}(\tau, G/N_{0}, \chi) \to {}^{\circ}\mathcal{C}(\tau, G/N_{0}, \chi).$

Relation Fourier transform and HC descent transform

Let \mathcal{F}_e denote the Euclidean Fourier transform $\mathcal{S}(A_P) \to \mathcal{S}(i\mathfrak{a}_P^*)$.

Thm (~) If $f \in C(\tau, G/N_0, \chi)$ and $\psi \in {}^{\circ}C_{P,\tau}$, define $f_{\psi}^{(\tilde{P})} : a \mapsto \int_{M_P/M_P \cap N_0} \langle f^{(\tilde{P})}(ma), \psi(m) \rangle_{V_{\tau}} dm.$

Then $f_{\psi}^{(\bar{P})}$ belongs to $\mathcal{S}(A_{P})$ and

$$\mathcal{F}_{\theta}(f_{\psi}^{(\bar{P})})(\nu) = \langle \mathcal{F}_{P}f(\nu), \psi \rangle, \qquad (\nu \in i\mathfrak{a}_{P}^{*}).$$

Corollary (injectivity FT)

Let $f \in C(\tau, G/N_0, \chi)$. If $\mathcal{F}_P(f) = 0$ for all $P \in \mathcal{P}_{st}$ then f = 0.

Proof

1.
$$\mathcal{F}_{P}f = 0$$
 implies that $f_{\psi}^{(\tilde{P})} = 0$ for all $\psi \in {}^{\circ}\mathcal{C}_{P,\tau}$. Hence $f^{(\tilde{P})} \sim 0$

2. f = 0 by HC's completeness thm.

C-function, Normalized Whittaker integral

- Wh(P, ψ, ν) is finite under $\mathfrak{Z} := \operatorname{center}(U(\mathfrak{g})),$
- top order asymptotic behavior of exp^l type along cl(A⁺),
- very rapid decay outside $cl(A^+)$.

Lemma Let $P \in \mathcal{P}_{st}$. For $\psi \in {}^{\circ}\mathcal{C}_{P,\tau}$, $\operatorname{Re} \nu \in \mathfrak{a}_{P}^{*+}$, $m \in M_{P}$,

 $\operatorname{Wh}(P,\psi,\nu)(\mathit{ma}) \sim a^{\nu-\rho_P}[C_P(\nu)\psi](\mathit{m}), \quad (a \to \infty \text{ in } A_P^+),$

with $C_P(\nu) \in \operatorname{End}({}^{\circ}C_{P,\tau})$, merom^c in $\nu \in \mathfrak{a}_{P\mathbb{C}}^*$ (reg^r for $\operatorname{Re}\nu \in \mathfrak{a}_{P}^{*+}$).

Definition (HC)

 $Wh^{\circ}(\boldsymbol{P}, \boldsymbol{\psi}, \boldsymbol{\nu}) := Wh(\boldsymbol{P}, \boldsymbol{C}_{\boldsymbol{P}}(\boldsymbol{\nu})^{-1}\boldsymbol{\psi}, \boldsymbol{\nu}) \quad (\operatorname{mero}^{c} \operatorname{in} \boldsymbol{\nu})$

$$P \sim Q : \iff \exists w \in W(\mathfrak{a}) : w(\mathfrak{a}_P) = \mathfrak{a}_Q \quad \text{(associated).}$$

$$W(\mathfrak{a}_Q|\mathfrak{a}_P) := \{ s \in \operatorname{Hom}(\mathfrak{a}_P, \mathfrak{a}_Q) \mid \exists w \in W(\mathfrak{a}) : s = w|_{\mathfrak{a}_P} \}.$$

Functional equations, Maass-Selberg relations

Lemma (Functional equations: HC) Let $P, Q \in \mathcal{P}_{st}, P \sim Q$. Then for all $s \in W(\mathfrak{a}_Q|\mathfrak{a}_P)$, $\mathrm{Wh}^{\circ}(Q, C^{\circ}_{Q|P}(s, \nu)\psi, s\nu) = \mathrm{Wh}^{\circ}(P, \psi, \nu), \quad (\nu \in \mathfrak{a}_{P\mathbb{C}}^{*}),$

with $C^{\circ}_{Q|P}(s,\nu) \in \operatorname{Hom}({}^{\circ}C_{P,\tau}, {}^{\circ}C_{Q,\tau})$ a uniquely determined merom^c function of $\nu \in \mathfrak{a}_{P\mathbb{C}}^{*}$.

Thm (Maass-Selberg relations, HC)

For all $s \in W(\mathfrak{a}_Q|\mathfrak{a}_P), \nu \in \mathfrak{a}_{P\mathbb{C}}^*$,

$$\mathcal{C}^{\circ}_{\mathcal{Q}|\mathcal{P}}(\boldsymbol{s},-ar{
u})^{*}\circ\mathcal{C}^{\circ}_{\mathcal{Q}|\mathcal{P}}(\boldsymbol{s},
u)=\mathrm{id}_{\,\circ\,\mathcal{C}_{\mathcal{P},\, au}}.$$

A D F A 同 F A E F A E F A Q A

In particular, for $\nu \in i\mathfrak{a}_P^*$, the map $C_{Q|P}^{\circ}(s,\nu)$ is unitary.

Theorem (HC)

 $\nu \mapsto \mathrm{Wh}^{\circ}(\mathcal{P}, \psi, \nu)$ is regular on $\mathfrak{ia}_{\mathcal{P}}^*$.

Wave packets

Definition

For $P \in \mathcal{P}_{st}$, $\psi \in \mathcal{S}(i\mathfrak{a}_P^*) \otimes {}^{\circ}\mathcal{C}_{P,\tau}$, $x \in G$,

$$\mathcal{W}_{\mathcal{P}}(\psi)(\mathbf{X}) := \int_{i\mathfrak{a}_{\mathcal{P}}^{*}} \mathrm{Wh}^{\circ}(\mathcal{P},\psi(\nu),\nu,\mathbf{X}) \ d\nu.$$

Theorem (\sim)

$$\mathcal{W}_{P}: \mathcal{S}(\mathfrak{ia}_{P}^{*}) \otimes {}^{\circ}\mathcal{C}_{P,\tau} \to \mathcal{C}(\tau, \mathcal{G}/N_{0}, \chi)$$

is continuous linear.

Remark: HC proves this for \mathcal{W}_P restricted to a subspace of $\mathcal{S}(i\mathfrak{a}_P^*) \otimes {}^{\circ}\mathcal{C}_{P,\tau}$.

Proof requires

- the uniformly tempered estimates
- theory of constant term with parameter
- ▶ families of type II_{hol}(Λ) (as in previous joint work with Carmona and Delorme for reductive symmetric space *G*/*H*).

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Normalized Fourier transform

For $f \in \mathcal{C}(\tau, G/N_0, \chi)$ define $\mathcal{F}_P f : i\mathfrak{a}_P^* \to {}^{\circ}\mathcal{C}_{P,\tau}$ as $\mathcal{F}_P f$, but with $Wh^{\circ}(P, \cdot)$ in place of $Wh(P, \cdot)$. Then $\mathcal{F}_P : \mathcal{C}(\tau, G/N_0, \chi) \to \mathcal{S}(i\mathfrak{a}_P^*) \otimes {}^{\circ}\mathcal{C}_{P,\tau}$ is continuous linear.

Lemma

 $\mathcal{W}_{P}\mathcal{F}_{P}\in \mathrm{End}(\mathcal{C}(\tau, G/N_{0}, \chi))$ only depends on $[P]\in\mathcal{P}_{st}/\sim$.

Proof

This follows from the Maass-Selberg relations.

Lemma (projection)

- (a) If $Q \in \mathcal{P}_{st}$, $Q \not\sim P$ then $\mathcal{F}_Q \mathcal{W}_P = 0$.
- (b) (∃!c_P > 0) : Π_P = c_PF_PW_P is a projection operator in S(ia^{*}_P) ⊗ °C_{P,τ}. Moreover,

$$\Pi_P \circ \mathcal{F}_P = \mathcal{F}_P.$$

A D F A 同 F A E F A E F A Q A

Plancherel Theorem for Whittaker functions

Lemma Let $P, Q \in \mathcal{P}_{st}$. Then

$$\mathcal{F}_{Q} \mathcal{C}_{P} \mathcal{W}_{P} \mathcal{F}_{P} = \delta_{[Q], [P]} \mathcal{F}_{Q}. \qquad (*)$$

Proof If $[P] \neq [Q]$, use Lemma (projection) (a). If $P \sim Q$, then by Lemma (projection) (b),

$$\mathcal{F}_{Q} \mathbf{C}_{P} \mathcal{W}_{P} \mathcal{F}_{P} = \mathcal{F}_{Q} \mathbf{C}_{Q} \mathcal{W}_{Q} \mathcal{F}_{Q} = \Pi_{Q} \circ \mathcal{F}_{Q} = \mathcal{F}_{Q}.$$

Plancherel theorem

If $f \in C(\tau, G/N_0, \chi)$, then

$$f = \sum_{[P] \in \mathcal{P}_{st}/\sim} c_P \, \mathcal{W}_P \mathcal{F}_P f.$$

Proof

Put $g = f - \sum W_P \mathcal{F}_P f$. Then $g \in C(\tau, G/N_0, \chi)$ and by (*):

$$\mathcal{F}_Q g = \mathcal{F}_Q f - \mathcal{F}_Q f = 0.$$

(ロ) (同) (三) (三) (三) (○) (○)

From this, $\mathcal{F}_Q(g) = 0$ for all $Q \in \mathcal{P}_{st}$, hence g = 0 (injectivity FT).