The Harish-Chandra transform for Whittaker functions

Erik van den Ban

Utrecht University

Afternoon Representation Theory
Institut Élie Cartan de Lorraine
Organizers: S. Mehdi, A. Pasquale
Metz, March 23, 2021

Whittaker functions

Setting

- G real reductive group
- K maximal compact, $G=K A N_{0}$ Iwasawa decomposition
- $\chi: N_{0} \rightarrow \mathrm{U}(1)$ unitary character, regular (!)

$$
\text { i.e.: } \forall \alpha \in \Sigma\left(\mathfrak{n}_{0}, \mathfrak{a}\right) \text { simple: }\left.d \chi(e)\right|_{\mathfrak{g}_{\alpha}} \neq 0
$$

Whittaker functions
$\mathcal{M}\left(G / N_{0}, \chi\right):=\left\{f: G \xrightarrow{\text { meas }} \mathbb{C} \mid f(x n)=\chi(n)^{-1} f(x) \quad\left(x \in G, n \in N_{0}\right)\right\}$
$L^{2}\left(G / N_{0}, \chi\right) \quad:=\left\{f \in \mathcal{M}\left(G / N_{0}, \chi\right)| | f \mid \in L^{2}\left(G / N_{0}\right)\right\}$

- Left reg ${ }^{r}$ rep $^{n}: \quad L=\operatorname{Ind}_{N_{0}}^{G}(\chi)$ is unitary

Whittaker Plancherel formula

Abstractly
$-\operatorname{Ind}_{N_{0}}^{G}(\chi)=\int_{\widehat{G}}^{\oplus} m_{\pi} \pi d \mu(\pi)$.
Concrete realization

- Harish-Chandra, Announcement 1982.

Details in Collected Papers Vol 5 (posthumous), 141-307, eds. R. Gangolli, V.S. Varadarajan, Springer 2018.
Final step not clear.

- Pres ${ }^{n}$ Bestwig 2020 () : final step by Paley-Wiener technique
- Today: final step by using cusp forms \& HC transform
- Important ref: Wallach, RRG II: discrete part, cusp forms, and functional equation and holomorphic dependence of Whittaker vectors

Discrete part of decomposition

Discrete part

$\pi \in \widehat{G}$ (unitary dual) is said to appear discretely in $L^{2}\left(G / N_{0}, \chi\right)$ if it can be realized as a closed subrepresentation.
The closed span of such π is denoted $L_{d}^{2}\left(G / N_{0}, \chi\right)$.
Theorem (HC, W)
If $\pi \in \widehat{G}$ appears in $L_{d}^{2}\left(G / N_{0}, \chi\right)$, then it appears in $L_{d}^{2}(G)$, i.e., it belongs to the discrete series of G.

Spherical functions

Let $\left(\tau, V_{\tau}\right)$ be a finite dimensional unitary representation of K.

$$
\begin{aligned}
& L_{d}^{2}\left(\tau, G / N_{0}, \chi\right):=\left(L_{d}^{2}\left(G / N_{0}, \chi\right) \otimes V_{\tau}\right)^{K} \\
& \quad \hookrightarrow\left\{f \in \mathcal{M}\left(G, V_{\tau}\right) \mid f(k x n)=\chi(n)^{-1} \tau(k) f(x)\right\}
\end{aligned}
$$

This space will be characterized as a space of cusp forms

Whittaker functions of Schwartz type

- Define $\rho \in \mathfrak{a}^{*}$ by $\rho(X)=\frac{1}{2} \operatorname{tr}\left(\operatorname{ad}(X) \mid N_{0}\right)$.

Definition (Schwartz space)
$\mathcal{C}\left(G / N_{0}, \chi\right)$: the space of $f \in C^{\infty}\left(G / N_{0}, \chi\right)$ s.t. $\forall u \in U(\mathfrak{g}), N \in \mathbb{N}$,

$$
\left|L_{u} f(k a n)\right| \leq C_{u, N}(1+|\log (a)|)^{-N} a^{-\rho} \quad\left(k a n \in K A N_{0}\right)
$$

Property: $\quad C_{c}^{\infty}\left(G / N_{0}, \chi\right) \subset \mathcal{C}\left(G / N_{0}, \chi\right) \subset L^{2}\left(G / N_{0}, \chi\right)$.

- $P_{0}:=Z_{K}(A) A N_{0}$, minimal psg.
- $\mathcal{P}_{s t}$: (finite) set of psg's $P<G$ with $P \supset P_{0} \quad$ (standard psg's).
- For $P \in \mathcal{P}_{s t}$, Langlands deco: $P=M_{P} A_{P} N_{P}, \quad M_{1 P}:=M_{P} A_{P}$. Lemma (HC, W)
If $f \in \mathcal{C}\left(G / N_{0} ; \chi\right)$ and $P \in \mathcal{P}_{\text {st }}$ then $\int_{\bar{N}_{P}}|f(\bar{n})| d \bar{n}<\infty$.
The map $f \mapsto \int_{\bar{N}_{P}}|f(\bar{n})| d \bar{n}$ is continuous.

Cusp forms

Definition (Space of cusp forms)

${ }^{\circ} \mathcal{C}\left(G / N_{0}, \chi\right):=$ space of $f \in \mathcal{C}\left(G / N_{0}, \chi\right)$ s.t. $\forall P \in \mathcal{P}_{s t}$

$$
\int_{\bar{N}_{P}} f(x \bar{n}) d \bar{n}=0, \quad(x \in G)
$$

For $\left(\tau, V_{\tau}\right)$ a finite dimensional unitary representation of K,

$$
{ }^{\circ} \mathcal{C}\left(\tau, G / N_{0}, \chi\right):=\left({ }^{\circ} \mathcal{C}\left(G / N_{0}, \chi\right) \otimes V_{\tau}\right)^{K} .
$$

$\operatorname{Thm}(\mathrm{HC}, \mathrm{W}) \quad{ }^{\circ} \mathcal{C}\left(\tau, G / N_{0}, \chi\right)=L_{d}^{2}\left(\tau, G / N_{0}, \chi\right)$.
The space is finite dimensional.

Harish-Chandra descent transform

For $P \in \mathcal{P}_{s t}$ define $d_{P}: P \rightarrow \mathbb{R}^{+}$by $d_{P}(p):=\left.|\operatorname{det} \operatorname{Ad}(p)|_{\mathfrak{n}_{P}}\right|^{1 / 2}$.
Definition (HC transform)
For $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$ define $f^{(\bar{P})}: M_{1 P} \rightarrow V_{\tau}$ by

$$
f^{(\bar{P})}(m):=d_{P}(m) \int_{\bar{N}_{P}} f(m \bar{n}) d \bar{n} .
$$

Property $\quad f^{(\bar{P})} \in C^{\infty}\left(\tau_{P}, M_{1 P} / M_{1 P} \cap N_{0}, \chi_{P}\right)$,
where $\tau_{P}:=\left.\tau\right|_{M_{1 P} \cap K}, \quad \chi P:=\left.\chi\right|_{M_{1} \cap \cap_{0}}$.
Thm (HC, W)
For $a \in A_{P}$ define $R_{a}\left(f^{(\bar{P})}\right): m \mapsto f^{(\bar{P})}(m a)$. Then

$$
R_{a}\left(f^{(\bar{P})}\right) \in \mathcal{C}\left(\tau_{P}, M_{P} / M_{P} \cap N_{0}, \chi_{P}\right)
$$

Role of the Harish-Chandra transform

- For $P \in \mathcal{P}_{s t}$ put ${ }^{\circ} \mathcal{C}_{P, \tau}:={ }^{\circ} \mathcal{C}\left(\tau_{P}, M_{P} / M_{P} \cap N_{0}, \chi_{P}\right)$.

Def (HC)
Let $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$. Then

$$
f^{(\bar{P})} \sim 0 \quad: \Longleftrightarrow \quad R_{a}\left(f^{(\bar{P})}\right) \perp{ }^{\circ} \mathcal{C}_{P, \tau}\left(\forall a \in A_{P}\right)
$$

More explicitly, the assertion on the right means that for all $a \in A_{P}$ and all $\psi \in{ }^{\circ} \mathcal{C}_{P, \tau}$,

$$
\int_{M_{P} / M_{P} \cap N_{0}}\left\langle f^{(\bar{P})}(m a), \psi(m)\right\rangle v_{\tau} d m=0
$$

Thm (HC's completeness theorem)
Let $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$. If $f^{(\bar{P})} \sim 0$ for each $P \in \mathcal{P}_{\text {st }}$ then $f=0$.

Proof of HC's completeness

Thm (HC's completeness theorem)
Let $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$. If $f^{(\bar{P})} \sim 0$ for each $P \in \mathcal{P}_{\text {st }}$ then $f=0$.
Sketch of proof

1. Transitivity of descent. Let $P, Q \in \mathcal{P}_{s t}$ with $P \subset Q$. Then
${ }^{*} P:=P \cap M_{1 Q}$ is a parabolic subgroup of $M_{1 Q}$. For
$f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$, by Fubini:

$$
\left(f^{(\bar{Q})}\right)^{\left({ }^{*} \bar{P}\right)}=f^{(\bar{P})} .
$$

2. Apply induction on $\mathrm{rk}_{\mathbb{R}} G=\operatorname{dim} \mathfrak{a}$. Assume $f^{(\bar{P})} \sim 0$ for all $P \in \mathcal{P}_{s t}$. If $Q \in \mathcal{P}_{s t}, Q \neq G$ then $\mathrm{rk}_{\mathbb{R}} M_{Q}<\mathrm{rk}_{\mathbb{R}} G$ hence by (1) and induction hypothesis

$$
f^{(\bar{Q})}=0 .
$$

Hence $f \in{ }^{\circ} \mathcal{C}\left(\tau, G / N_{0}, \chi\right)={ }^{\circ} \mathcal{C}_{G, \tau}$.
3. Now $f^{(\bar{G})} \sim 0$ implies $f \perp f$ hence $f=0$.

Parabolic induction and Whittaker integrals

Let $P=M_{P} A_{P} N_{P} \in \mathcal{P}_{s t}$ and $\psi \in{ }^{\circ} \mathcal{C}_{P, \tau}$. For $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$ define $\psi_{\lambda}: G \rightarrow V_{\tau}$ by

$$
\psi_{\lambda}(k m a \bar{n})=a^{\lambda+\rho_{\rho}} \tau(k) \psi(m)
$$

For $\operatorname{Re}(\lambda)>_{p} 0$, the integral

$$
\mathrm{Wh}(P, \psi, \lambda, x):=\int_{N_{P}} \chi(n) \psi_{\lambda}(x n) d n \quad(x \in G)
$$

is abs ${ }^{y}$ conv t and defines a function $\mathrm{Wh}(P, \psi, \lambda) \in C^{\infty}\left(\tau, G / N_{0}, \chi\right)$ which depends holomorphically on λ in the indicated region.

Remark

The above Whittaker integral is essentially a finite sum of generalized matrix coefficients (defined by Jacquet integrals) of $\operatorname{Ind}_{\bar{P}}^{G}(\sigma \otimes-\lambda \otimes 1)$, with $\sigma \in \widehat{M}_{P, \mathrm{ds}}$ appearing in ${ }^{\circ} \mathcal{C}_{P, \tau}$. (Analogue of Eisenstein integral.)

Holomorphic extension

Theorem (W)
$\mathrm{Wh}(P, \psi, \lambda)$, initially defined for $\operatorname{Re} \lambda>_{P} 0$, extends to entire holom ${ }^{c}$ function of $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$ with values in $C^{\infty}\left(\tau, G / N_{0}, \chi\right)$.
Remark: HC: there exists a merom ${ }^{c}$ extension, regular on $\mathfrak{i a}_{P}^{*}$.
Theorem (\sim): Uniformly tempered estimates
Let $\varepsilon>0$ be sufftly small. If $u \in U(\mathfrak{g})$ then $\exists C, N, r>0$ s.t.

$$
|\mathrm{Wh}(P, \psi, \lambda, u ; k a)| \leq C(1+|\lambda|)^{N}(1+|\log a|)^{N} e^{r|\operatorname{Re} \lambda||\log a|} a^{-\rho},
$$

for all $k \in K, a \in A, \lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$ with $|\operatorname{Re} \lambda|<\varepsilon$.

- Bernstein-Sato type functional equation for Jacquet integrals.
- Uniformly moderate estimates.
- Wallach's method of improving estimates along max psg's, with parameters.

Fourier transform

Fourier transform

For $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right), P \in \mathcal{P}_{s t}, \lambda \in i \mathfrak{a}_{P}^{*}$, the Fourier transform $\mathcal{F}_{P} f(\lambda) \in{ }^{\circ} \mathcal{C}_{P, \tau}$ is defined by

$$
\left\langle\mathcal{F}_{P} f(\lambda), \psi\right\rangle:=\int_{G / N_{0}}\langle f(x), \mathrm{Wh}(P, \psi, \lambda, x)\rangle v_{\tau} d x, \quad\left(\psi \in{ }^{\circ} \mathcal{C}_{P, \tau}\right)
$$

Theorem (\sim)

$$
\mathcal{F}_{P}: \mathcal{C}\left(\tau, G / N_{0}, \chi\right) \rightarrow \mathcal{S}\left(i \mathfrak{a}_{P}^{*}\right) \otimes^{\circ} \mathcal{C}_{P, \tau},
$$

continuous linearly.
Remark: HC proves this for \mathcal{F}_{P} restricted to $C_{c}^{\infty}\left(\tau, G / N_{0}, \chi\right)$.
Proof this follows from the uniformly tempered estimates.
Remark: $\quad \mathcal{F}_{G}=$ orth $^{\prime} \operatorname{proj}^{n} \quad \mathcal{C}\left(\tau, G / N_{0}, \chi\right) \rightarrow{ }^{\circ} \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$.

Relation with the Harish-Chandra transform

Let \mathcal{F}_{e} denote the Euclidean Fourier transform $\mathcal{S}\left(A_{P}\right) \rightarrow \mathcal{S}\left(i a_{P}^{*}\right)$.
Thm (\sim)
If $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$ and $\psi \in{ }^{\circ} \mathcal{C}_{P, \tau}$, define

$$
f_{\psi}^{(\bar{P})}: a \mapsto \int_{M_{P} / M_{P} \cap N_{0}}\left\langle f^{(\bar{P})}(m a), \psi(m)\right\rangle_{v_{\tau}} d m .
$$

Then $f_{\psi}^{(\bar{P})}$ belongs to $\mathcal{S}\left(i \mathfrak{a}_{P}^{*}\right)$ and

$$
\mathcal{F}_{e}\left(f_{\psi}^{(\bar{P})}\right)(\lambda)=\left\langle\mathcal{F}_{P} f(\lambda), \psi\right\rangle, \quad\left(\lambda \in i \mathfrak{a}_{P}^{*}\right)
$$

Proof

1. First for supp f compact modulo N_{0} by using explicit calculation, holomorphy of $\mathcal{F}_{P} f$ and application of Cauchy's theorem.
2. Use density of $C_{c}^{\infty}\left(\tau, G / N_{0}, \chi\right)$ in $\mathcal{C}\left(\tau, G / N_{0}, \chi\right)$, combined with continuity on $\mathcal{C}\left(\tau, G / N_{0}, \chi\right)$ of the HC transform $f \mapsto R_{a}\left(f^{(\bar{P})}\right)$ (due to HC) and the Fourier transform \mathcal{F}_{P} (by uniform temperedness).

Injectivity of the Fourier transform

Thm (~)
If $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$ and $\psi \in{ }^{\circ} \mathcal{C}_{P, \tau}$, define

$$
f_{\psi}^{(\bar{P})}: a \mapsto \int_{M_{P} / M_{P} \cap N_{0}}\left\langle f^{(\bar{P})}(m a), \psi(m)\right\rangle_{V_{\tau}} d m .
$$

Then $f_{\psi}^{(\bar{P})}$ belongs to $\mathcal{S}\left(A_{P}\right)$ and

$$
\mathcal{F}_{e}\left(f_{\psi}^{(\bar{P})}\right)(\lambda)=\left\langle\mathcal{F}_{P} f(\lambda), \psi\right\rangle, \quad\left(\lambda \in i \mathfrak{a}_{P}^{*}\right)
$$

Corollary (injectivity FT)
Let $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$. If $\mathcal{F}_{P}(f)=0$ for all $P \in \mathcal{P}_{s t}$ then $f=0$.

Proof

1. $\mathcal{F}_{P} f=0$ implies that $f_{\psi}^{(\bar{P})}=0$ for all $\psi \in{ }^{\circ} \mathcal{C}_{P, \tau}$. Hence $f^{(\bar{P})} \sim 0$.
2. $f=0$ by HC's completeness thm.

C-function, Normalized Whittaker integral

- $\mathrm{Wh}(P, \psi, \lambda)$ is finite under $\mathfrak{Z}:=\operatorname{center}(U(\mathfrak{g}))$,
- top order asymptotic behavior of exp type along $\operatorname{cl}\left(A^{+}\right)$,
- very rapid decay outside $\operatorname{cl}\left(A^{+}\right)$.

Lemma

Let $P \in \mathcal{P}_{s t}$. For $\psi \in{ }^{\circ} \mathcal{C}_{P, \tau}, \operatorname{Re} \lambda \in \mathfrak{a}_{P}^{*+}, m \in M_{P}, a \rightarrow \infty$ in A_{P}^{+},

$$
\mathrm{Wh}(P, \psi, \lambda)(m a) \sim a^{\lambda-\rho_{P}}\left[C_{P}(\lambda) \psi\right](m)
$$

with $C_{P}(\lambda) \in \operatorname{End}\left({ }^{\circ} \mathcal{C}_{P, \tau}\right)$, merom c in $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}\left(r e g^{r}\right.$ for $\left.\operatorname{Re} \lambda \in \mathfrak{a}_{P}^{*+}\right)$.
Definition (HC) $\mathrm{Wh}^{\circ}(P, \psi, \lambda):=\mathrm{Wh}\left(P, C_{P}(\lambda)^{-1} \psi, \lambda\right)\left(\right.$ mero c in $\left.\lambda\right)$

- $P \sim Q: \Longleftrightarrow \exists w \in W(\mathfrak{a}): w\left(\mathfrak{a}_{P}\right)=\mathfrak{a}_{Q} \quad$ (associated).
- $W\left(\mathfrak{a}_{Q} \mid \mathfrak{a}_{P}\right):=\left\{s \in \operatorname{Hom}\left(\mathfrak{a}_{P}, \mathfrak{a}_{Q}\right)|\exists w \in W(\mathfrak{a}): s=w|_{\mathfrak{a}_{\rho}}\right\}$.

Functional equations, Maass-Selberg relations

Lemma (Functional equations: HC)
Let $P, Q \in \mathcal{P}_{s t}, P \sim Q$. Then for all $s \in W\left(\mathfrak{a}_{Q} \mid \mathfrak{a}_{P}\right)$,

$$
\mathrm{Wh}^{\circ}\left(Q, C_{Q \mid P}^{\circ}(s, \lambda) \psi, s \lambda\right)=\mathrm{Wh}^{\circ}(P, \psi, \lambda), \quad\left(\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}\right)
$$

with $C_{Q \mid P}^{\circ}(s, \lambda) \in \operatorname{Hom}\left({ }^{\circ} \mathcal{C}_{P, \tau},{ }^{\circ} \mathcal{C}_{Q, \tau}\right)$ a uniquely determined merom ${ }^{c}$ function of $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$.

Thm (Maass-Selberg relations, HC) For all $s \in W\left(\mathfrak{a}_{Q} \mid \mathfrak{a}_{P}\right), \lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$,

$$
C_{Q \mid P}^{\circ}(s,-\bar{\lambda})^{*} \circ C_{Q \mid P}^{\circ}(s, \lambda)=I^{\circ} \mathcal{C}_{P, \tau}
$$

In particular, for $\lambda \in \mathfrak{i}_{P}^{*}$, the $\operatorname{map} C_{Q \mid P}^{\circ}(s, \lambda)$ is unitary.
Theorem (HC) $\quad \lambda \mapsto \mathrm{Wh}^{\circ}(P, \psi, \lambda)$ is regular on $\mathfrak{i} \mathfrak{a}_{P}^{*}$.

Wave packets

Definition
For $P \in \mathcal{P}_{s t}, \psi \in \mathcal{S}\left(i a_{P}^{*}\right) \otimes{ }^{\circ} \mathcal{C}_{P, \tau}, x \in G$,

$$
\mathcal{W}_{P}(\psi)(x):=\int_{i a_{P}^{*}} W^{\circ}(P, \psi(\lambda), \lambda, x) d \lambda .
$$

Theorem (\sim)

$$
\mathcal{W}_{P}: \mathcal{S}\left(i \mathfrak{a}_{P}^{*}\right) \otimes{ }^{\circ} \mathcal{C}_{P, \tau} \rightarrow \mathcal{C}\left(\tau, G / N_{0}, \chi\right)
$$

is continuous linear.
Remark: HC proves this for \mathcal{W}_{P} restricted to $C_{C}^{\infty}\left(i a_{P}^{*}\right) \otimes{ }^{\circ} \mathcal{C}_{P, \tau}$.
Proof requires

- the uniformly tempered estimates
- theory of constant term with parameter
- families of type $\mathrm{II}_{\text {hol }}(\Lambda)$ (as in previous joint work with Carmona and Delorme for reductive symmetric space G / H).

Plancherel formula

Normalized Fourier transform
For $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$ define $\mathcal{F}_{p}^{\circ} f: i_{\rho}^{*} \rightarrow{ }^{\circ} \mathcal{C}_{P, \tau}$ by

$$
\mathcal{F}_{P}^{\circ} f(\lambda)=C_{P}(\lambda)^{*} \mathcal{F}_{P}(\lambda) .
$$

Then $\mathcal{F}_{P}^{\circ}: \mathcal{C}\left(\tau, G / N_{0}, \chi\right) \rightarrow \mathcal{S}\left(i a_{P}^{*}\right) \otimes{ }^{\circ} \mathcal{C}_{P, \tau}$ is continuous linear.
Lemma
$\mathcal{W}_{P} \mathcal{F}_{P}^{\circ} \in \operatorname{End}\left(\mathcal{C}\left(\tau, G / N_{0}, \chi\right)\right)$ only depends on $[P] \in \mathcal{P}_{s t} / \sim$.
Proof: This follows from the Maass-Selberg relations.
Plancherel theorem
If $f \in \mathcal{C}\left(\tau, \mathcal{G} / N_{0}, \chi\right)$, then

$$
f=\sum_{[P] \in \mathcal{P}_{s t} / \sim} \mathcal{W}_{P} \mathcal{F}_{P}^{\circ} f .
$$

Completion proof of Plancherel

Thm $\quad f=\sum_{[P] \in \mathcal{P}_{s t} / \sim} \mathcal{W}_{P} \mathcal{F}_{P}^{\circ} f \quad\left(f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)\right)$.

Proof

(1) From HC's results on descent transform, for all $P, Q \in \mathcal{P}_{s t}$,

$$
\mathcal{F}_{Q}^{\circ} \mathcal{W}_{P} \mathcal{F}_{P}^{\circ}=\left\{\begin{array}{ccc}
\mathcal{F}_{Q}^{\circ} & \text { if } & Q \sim P \\
0 & & \text { otherwise }
\end{array}\right.
$$

(2) Put $g=f-\sum \mathcal{W}_{P} \mathcal{F}_{P}^{\circ} f$. Then $g \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$ and by (1):

$$
\mathcal{F}_{Q}^{\circ} g=\mathcal{F}_{Q}^{\circ} f-\mathcal{F}_{Q}^{\circ} f=0 .
$$

(3) From (2), $\mathcal{F}_{Q}(g)=0$ for all $Q \in \mathcal{P}_{s t}$, hence $g=0$ (injectivity).

