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Whittaker functions

Setting
I G real reductive group
I K maximal compact, G = KAN0 Iwasawa decomposition
I χ : N0 → U(1) unitary character, regular (!)

i.e.: ∀α ∈ Σ(n0, a) simple: dχ(e)|gα 6= 0.

Whittaker functions

M(G/N0, χ) := {f : G meas−→ C | f (xn) = χ(n)−1f (x) (x ∈ G,n ∈ N0)}

L2(G/N0, χ) := {f ∈M(G/N0, χ) | |f | ∈ L2(G/N0)}

I Left regr repn: L = IndG
N0

(χ) is unitary



Whittaker Plancherel formula

Abstractly
I IndG

N0
(χ) =

∫ ⊕
Ĝ mππdµ(π).

Concrete realization
I Harish-Chandra, Announcement 1982.

Details in Collected Papers Vol 5 (posthumous), 141- 307,
eds. R. Gangolli, V.S. Varadarajan, Springer 2018.
Final step not clear.

I Presn Bestwig 2020 (∼) : final step by Paley-Wiener technique

I Today: final step by using cusp forms & HC transform

I Important ref: Wallach, RRG II: discrete part, cusp forms, and
functional equation and holomorphic dependence of Whittaker
vectors



Discrete part of decomposition

Discrete part
π ∈ Ĝ (unitary dual) is said to appear discretely in L2(G/N0, χ) if it
can be realized as a closed subrepresentation.
The closed span of such π is denoted L2

d (G/N0, χ).

Theorem (HC, W)
If π ∈ Ĝ appears in L2

d (G/N0, χ), then it appears in L2
d (G), i.e., it

belongs to the discrete series of G.

Spherical functions
Let (τ,Vτ ) be a finite dimensional unitary representation of K .

L2
d (τ,G/N0, χ) := (L2

d (G/N0, χ)⊗ Vτ )K

↪→ {f ∈M(G,Vτ ) | f (kxn) = χ(n)−1τ(k)f (x)}

This space will be characterized as a space of cusp forms



Whittaker functions of Schwartz type

I Define ρ ∈ a∗ by ρ(X ) = 1
2 tr(ad(X )|N0 ).

Definition (Schwartz space)
C(G/N0, χ): the space of f ∈ C∞(G/N0, χ) s.t. ∀u ∈ U(g),N ∈ N,

|Luf (kan)| ≤ Cu,N (1 + | log(a)|)−Na−ρ (kan ∈ KAN0).

Property: C∞c (G/N0, χ) ⊂ C(G/N0, χ) ⊂ L2(G/N0, χ).

I P0 := ZK (A)A N0, minimal psg.

I Pst : (finite) set of psg’s P < G with P ⊃ P0 (standard psg’s).

I For P ∈ Pst , Langlands deco: P = MPAPNP , M1P := MPAP .

Lemma (HC, W)
If f ∈ C(G/N0;χ) and P ∈ Pst then

∫
N̄P
|f (n̄)|dn̄ <∞.

The map f 7→
∫

N̄P
|f (n̄)|dn̄ is continuous.



Cusp forms

Definition (Space of cusp forms)
◦C(G/N0, χ) := space of f ∈ C(G/N0, χ) s.t. ∀P ∈ Pst∫

N̄P

f (xn̄) dn̄ = 0, (x ∈ G).

For (τ,Vτ ) a finite dimensional unitary representation of K ,

◦C(τ,G/N0, χ) := (◦C(G/N0, χ)⊗ Vτ )K .

Thm (HC,W) ◦C(τ,G/N0, χ) = L2
d (τ,G/N0, χ).

The space is finite dimensional.



Harish-Chandra descent transform

For P ∈ Pst define dP : P → R+ by dP(p) := | det Ad(p)|nP |1/2.

Definition (HC transform)
For f ∈ C(τ,G/N0, χ) define f (P̄) : M1P → Vτ by

f (P̄)(m) := dP(m)

∫
N̄P

f (mn̄) dn̄.

Property f (P̄) ∈ C∞(τP ,M1P/M1P ∩ N0, χP),

where τP := τ |M1P∩K , χP := χ|M1P∩N0 .

Thm (HC, W)
For a ∈ AP define Ra(f (P̄)) : m 7→ f (P̄)(ma). Then

Ra(f (P̄)) ∈ C(τP ,MP/MP ∩ N0, χP).



Role of the Harish-Chandra transform

I For P ∈ Pst put ◦CP,τ := ◦C(τP ,MP/MP ∩ N0, χP).

Def (HC)
Let f ∈ C(τ,G/N0, χ). Then

f (P̄) ∼ 0 :⇐⇒ Ra(f (P̄)) ⊥ ◦CP,τ (∀a ∈ AP).

More explicitly, the assertion on the right means that for all a ∈ AP
and all ψ ∈ ◦CP,τ ,∫

MP/MP∩N0

〈 f (P̄)(ma), ψ(m) 〉Vτdm = 0.

Thm (HC’s completeness theorem)
Let f ∈ C(τ,G/N0, χ). If f (P̄) ∼ 0 for each P ∈ Pst then f = 0.



Proof of HC’s completeness

Thm (HC’s completeness theorem)
Let f ∈ C(τ,G/N0, χ). If f (P̄) ∼ 0 for each P ∈ Pst then f = 0.

Sketch of proof

1. Transitivity of descent. Let P,Q ∈ Pst with P ⊂ Q. Then
∗P := P ∩M1Q is a parabolic subgroup of M1Q . For
f ∈ C(τ,G/N0, χ), by Fubini:

(f (Q̄))(∗P̄) = f (P̄).

2. Apply induction on rkRG = dim a. Assume f (P̄) ∼ 0 for all P ∈ Pst .
If Q ∈ Pst ,Q 6= G then rkRMQ < rkRG hence by (1) and induction
hypothesis

f (Q̄) = 0.

Hence f ∈ ◦C(τ,G/N0, χ) = ◦CG,τ .

3. Now f (Ḡ) ∼ 0 implies f ⊥ f hence f = 0.



Parabolic induction and Whittaker integrals

Let P = MPAPNP ∈ Pst and ψ ∈ ◦CP,τ . For λ ∈ a∗PC define
ψλ : G→ Vτ by

ψλ(kman̄) = aλ+ρP τ(k)ψ(m).

For Re(λ) >P 0, the integral

Wh(P, ψ, λ, x) :=

∫
NP

χ(n)ψλ(xn) dn (x ∈ G)

is absy convt and defines a function Wh(P, ψ, λ) ∈ C∞(τ,G/N0, χ)
which depends holomorphically on λ in the indicated region.

Remark
The above Whittaker integral is essentially a finite sum of generalized
matrix coefficients (defined by Jacquet integrals) of IndG

P̄ (σ ⊗−λ⊗ 1),

with σ ∈ M̂P,ds appearing in ◦CP,τ . (Analogue of Eisenstein integral.)



Holomorphic extension

Theorem (W)
Wh(P, ψ, λ), initially defined for Reλ >P 0, extends to entire holomc

function of λ ∈ a∗PC with values in C∞(τ,G/N0, χ).

Remark: HC: there exists a meromc extension, regular on ia∗P .

Theorem (∼): Uniformly tempered estimates
Let ε > 0 be suff tly small. If u ∈ U(g) then ∃C,N, r > 0 s.t.

|Wh(P, ψ, λ, u; ka)| ≤ C(1 + |λ|)N(1 + | log a|)Ner |Reλ|| log a|a−ρ,

for all k ∈ K , a ∈ A, λ ∈ a∗PC with |Reλ| < ε.

I Bernstein-Sato type functional equation for Jacquet integrals.
I Uniformly moderate estimates.
I Wallach’s method of improving estimates along max psg’s, with

parameters.



Fourier transform

Fourier transform
For f ∈ C(τ,G/N0, χ), P ∈ Pst , λ ∈ ia∗P , the Fourier transform
FP f (λ) ∈ ◦CP,τ is defined by

〈 FP f (λ), ψ 〉 :=

∫
G/N0

〈 f (x),Wh(P, ψ, λ, x) 〉Vτ dx , (ψ ∈ ◦CP,τ ).

Theorem (∼)
FP : C(τ,G/N0, χ)→ S(ia∗P)⊗ ◦CP,τ ,

continuous linearly.

Remark: HC proves this for FP restricted to C∞c (τ,G/N0, χ).

Proof this follows from the uniformly tempered estimates.

Remark: FG = orthl projn C(τ,G/N0, χ)→ ◦C(τ,G/N0, χ).



Relation with the Harish-Chandra transform

Let Fe denote the Euclidean Fourier transform S(AP)→ S(ia∗P).

Thm (∼)
If f ∈ C(τ,G/N0, χ) and ψ ∈ ◦CP,τ , define

f (P̄)
ψ : a 7→

∫
MP/MP∩N0

〈 f (P̄)(ma), ψ(m) 〉Vτdm.

Then f (P̄)
ψ belongs to S(ia∗P) and

Fe(f (P̄)
ψ )(λ) = 〈 FP f (λ), ψ 〉, (λ ∈ ia∗P).

Proof
1. First for supp f compact modulo N0 by using explicit calculation,

holomorphy of FP f and application of Cauchy’s theorem.
2. Use density of C∞c (τ,G/N0, χ) in C(τ,G/N0, χ), combined with

continuity on C(τ,G/N0, χ) of the HC transform f 7→ Ra(f (P̄)) (due
to HC) and the Fourier transform FP (by uniform temperedness).



Injectivity of the Fourier transform

Thm (∼)
If f ∈ C(τ,G/N0, χ) and ψ ∈ ◦CP,τ , define

f (P̄)
ψ : a 7→

∫
MP/MP∩N0

〈 f (P̄)(ma), ψ(m) 〉Vτdm.

Then f (P̄)
ψ belongs to S(AP) and

Fe(f (P̄)
ψ )(λ) = 〈 FP f (λ), ψ 〉, (λ ∈ ia∗P).

Corollary (injectivity FT)
Let f ∈ C(τ,G/N0, χ). If FP(f ) = 0 for all P ∈ Pst then f = 0.

Proof
1. FP f = 0 implies that f (P̄)

ψ = 0 for all ψ ∈ ◦CP,τ . Hence f (P̄) ∼ 0.
2. f = 0 by HC’s completeness thm.



C-function, Normalized Whittaker integral

I Wh(P, ψ, λ) is finite under Z := center(U(g)),

I top order asymptotic behavior of expl type
along cl(A+),

I very rapid decay outside cl(A+).

 

At

decay

Lemma
Let P ∈ Pst . For ψ ∈ ◦CP,τ , Reλ ∈ a∗+P , m ∈ MP , a→∞ in A+

P ,

Wh(P, ψ, λ)(ma) ∼ aλ−ρP [CP(λ)ψ](m),

with CP(λ) ∈ End(◦CP,τ ), meromc in λ ∈ a∗PC (regr for Reλ ∈ a∗+P ).

Definition (HC) Wh◦(P, ψ, λ) := Wh(P,CP(λ)−1ψ, λ) (meroc in λ)

I P ∼ Q :⇐⇒ ∃w ∈W (a) : w(aP) = aQ (associated).
I W (aQ |aP) := {s ∈ Hom(aP , aQ) | ∃w ∈W (a) : s = w |aP}.



Functional equations, Maass-Selberg relations

Lemma (Functional equations: HC)
Let P,Q ∈ Pst , P ∼ Q. Then for all s ∈W (aQ |aP),

Wh◦(Q,C◦Q|P(s, λ)ψ, sλ) = Wh◦(P, ψ, λ), (λ ∈ a∗PC),

with C◦Q|P(s, λ) ∈ Hom(◦CP,τ ,
◦CQ,τ ) a uniquely determined meromc

function of λ ∈ a∗PC.

Thm (Maass-Selberg relations, HC)
For all s ∈W (aQ |aP), λ ∈ a∗PC,

C◦Q|P(s,−λ̄)∗ ◦ C◦Q|P(s, λ) = I ◦CP,τ .

In particular, for λ ∈ ia∗P , the map C◦Q|P(s, λ) is unitary.

Theorem (HC) λ 7→Wh◦(P, ψ, λ) is regular on ia∗P .



Wave packets

Definition
For P ∈ Pst , ψ ∈ S(ia∗P)⊗ ◦CP,τ , x ∈ G,

WP(ψ)(x) :=

∫
ia∗

P

Wh◦(P, ψ(λ), λ, x) dλ.

Theorem (∼)
WP : S(ia∗P)⊗ ◦CP,τ → C(τ,G/N0, χ)

is continuous linear.
Remark: HC proves this forWP restricted to C∞c (ia∗P)⊗ ◦CP,τ .

Proof requires
I the uniformly tempered estimates
I theory of constant term with parameter
I families of type IIhol(Λ) (as in previous joint work with Carmona

and Delorme for reductive symmetric space G/H).



Plancherel formula

Normalized Fourier transform
For f ∈ C(τ,G/N0, χ) define F◦P f : ia∗P → ◦CP,τ by

F◦P f (λ) = CP(λ)∗FP(λ).

Then F◦P : C(τ,G/N0, χ)→ S(ia∗P)⊗ ◦CP,τ is continuous linear.

Lemma
WPF◦P ∈ End(C(τ,G/N0, χ)) only depends on [P] ∈ Pst/ ∼ .

Proof: This follows from the Maass-Selberg relations.

Plancherel theorem
If f ∈ C(τ,G/N0, χ), then

f =
∑

[P]∈Pst/∼

WPF◦P f .



Completion proof of Plancherel

Thm f =
∑

[P]∈Pst/∼

WPF◦P f (f ∈ C(τ,G/N0, χ)).

Proof
(1) From HC’s results on descent transform, for all P,Q ∈ Pst ,

F◦QWPF◦P =

{
F◦Q if Q ∼ P
0 otherwise

(2) Put g = f −
∑
WPF◦P f . Then g ∈ C(τ,G/N0, χ) and by (1):

F◦Qg = F◦Q f −F◦Q f = 0.

(3) From (2), FQ(g) = 0 for all Q ∈ Pst , hence g = 0 (injectivity).


