The Harish-Chandra transform for Whittaker functions

Erik van den Ban

Utrecht University

Afternoon Representation Theory Institut Élie Cartan de Lorraine Organizers: S. Mehdi, A. Pasquale Metz, March 23, 2021

(ロ) (同) (三) (三) (三) (○) (○)

Whittaker functions

Setting

- G real reductive group
- K maximal compact, $G = KAN_0$ lwasawa decomposition
- $\chi : N_0 \rightarrow U(1)$ unitary character, regular (!)

i.e.: $\forall \alpha \in \Sigma(\mathfrak{n}_0, \mathfrak{a})$ simple: $d\chi(e)|_{\mathfrak{g}_{\alpha}} \neq 0$.

Whittaker functions

$$\mathcal{M}(G/N_0,\chi) := \{f: G \xrightarrow{\text{meas}} \mathbb{C} \mid f(xn) = \chi(n)^{-1}f(x) \quad (x \in G, n \in N_0)\}$$

 $L^{2}(G/N_{0},\chi) := \{f \in \mathcal{M}(G/N_{0},\chi) \mid |f| \in L^{2}(G/N_{0})\}$

• Left reg^r repⁿ: $L = \text{Ind}_{N_0}^G(\chi)$ is unitary

Whittaker Plancherel formula

Abstractly

• $\operatorname{Ind}_{N_0}^G(\chi) = \int_{\widehat{G}}^{\oplus} m_{\pi} \pi d\mu(\pi).$

Concrete realization

Harish-Chandra, Announcement 1982.

Details in Collected Papers Vol 5 (posthumous), 141- 307, eds. R. Gangolli, V.S. Varadarajan, Springer 2018. Final step not clear.

- ▶ Presⁿ Bestwig 2020 (~) : final step by Paley-Wiener technique
- Today: final step by using cusp forms & HC transform
- Important ref: Wallach, RRG II: discrete part, cusp forms, and functional equation and holomorphic dependence of Whittaker vectors

Discrete part

 $\pi \in \widehat{G}$ (unitary dual) is said to appear discretely in $L^2(G/N_0, \chi)$ if it can be realized as a closed subrepresentation. The closed span of such π is denoted $L^2_d(G/N_0, \chi)$.

Theorem (HC, W)

If $\pi \in \widehat{G}$ appears in $L^2_d(G/N_0, \chi)$, then it appears in $L^2_d(G)$, i.e., it belongs to the discrete series of G.

Spherical functions

Let (τ, V_{τ}) be a finite dimensional unitary representation of *K*.

$$L^{2}_{d}(\tau, G/N_{0}, \chi) := (L^{2}_{d}(G/N_{0}, \chi) \otimes V_{\tau})^{K}$$
$$\hookrightarrow \{f \in \mathcal{M}(G, V_{\tau}) \mid f(kxn) = \chi(n)^{-1}\tau(k)f(x)\}$$

This space will be characterized as a space of cusp forms

Whittaker functions of Schwartz type

• Define
$$\rho \in \mathfrak{a}^*$$
 by $\rho(X) = \frac{1}{2} \operatorname{tr}(\operatorname{ad}(X)|_{N_0})$.

Definition (Schwartz space) $\mathcal{C}(G/N_0, \chi)$: the space of $f \in C^{\infty}(G/N_0, \chi)$ s.t. $\forall u \in U(\mathfrak{g}), N \in \mathbb{N}$, $|L_u f(kan)| \leq C_{u,N} (1 + |\log(a)|)^{-N} a^{-\rho} \quad (kan \in KAN_0).$

Property: $C_c^{\infty}(G/N_0,\chi) \subset C(G/N_0,\chi) \subset L^2(G/N_0,\chi).$

- $P_0 := Z_K(A)AN_0$, minimal psg.
- ▶ P_{st} : (finite) set of psg's P < G with $P \supset P_0$ (standard psg's).
- ▶ For $P \in \mathcal{P}_{st}$, Langlands deco: $P = M_P A_P N_P$, $M_{1P} := M_P A_P$.

Lemma (HC, W)

If $f \in C(G/N_0; \chi)$ and $P \in \mathcal{P}_{st}$ then $\int_{\bar{N}_P} |f(\bar{n})| d\bar{n} < \infty$. The map $f \mapsto \int_{\bar{N}_P} |f(\bar{n})| d\bar{n}$ is continuous.

Cusp forms

Definition (Space of cusp forms) ° $\mathcal{C}(G/N_0, \chi)$:= space of $f \in \mathcal{C}(G/N_0, \chi)$ s.t. $\forall P \in \mathcal{P}_{st}$

$$\int_{\bar{N}_P} f(x\bar{n}) \ d\bar{n} = 0, \qquad (x \in G).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

For (τ, V_{τ}) a finite dimensional unitary representation of K,

$${}^{\circ}\mathcal{C}(\tau, \boldsymbol{G}/\boldsymbol{N}_{0}, \chi) := ({}^{\circ}\mathcal{C}(\boldsymbol{G}/\boldsymbol{N}_{0}, \chi) \otimes \boldsymbol{V}_{\tau})^{\boldsymbol{K}}.$$

Thm (HC,W) $^{\circ}C(\tau, G/N_0, \chi) = L^2_d(\tau, G/N_0, \chi).$ The space is finite dimensional.

Harish-Chandra descent transform

For $P \in \mathcal{P}_{st}$ define $d_P : P \to \mathbb{R}^+$ by $d_P(p) := |\det \operatorname{Ad}(p)|_{\mathfrak{n}_P}|^{1/2}$.

Definition (HC transform) For $f \in C(\tau, G/N_0, \chi)$ define $f^{(\bar{P})} : M_{1P} \to V_{\tau}$ by

$$f^{(\bar{P})}(m) := d_P(m) \int_{\bar{N}_P} f(m\bar{n}) d\bar{n}.$$

Property $f^{(\tilde{P})} \in C^{\infty}(\tau_P, M_{1P}/M_{1P} \cap N_0, \chi_P),$ where $\tau_P := \tau|_{M_{1P} \cap K}, \quad \chi_P := \chi|_{M_{1P} \cap N_0}.$

Thm (HC, W) For $a \in A_P$ define $R_a(f^{(\overline{P})}) : m \mapsto f^{(\overline{P})}(ma)$. Then

 $R_a(f^{(P)}) \in \mathcal{C}(\tau_P, M_P/M_P \cap N_0, \chi_P).$

Role of the Harish-Chandra transform

► For $P \in \mathcal{P}_{st}$ put $^{\circ}\mathcal{C}_{P,\tau} := ^{\circ}\mathcal{C}(\tau_P, M_P / M_P \cap N_0, \chi_P)$.

Def (HC) Let $f \in C(\tau, G/N_0, \chi)$. Then

$$f^{(\bar{P})} \sim 0 \quad : \iff \quad R_a(f^{(\bar{P})}) \perp {}^{\circ}\mathcal{C}_{P,\tau} \; (\forall a \in A_P).$$

More explicitly, the assertion on the right means that for all $a \in A_P$ and all $\psi \in {}^{\circ}C_{P,\tau}$,

$$\int_{M_P/M_P\cap N_0} \langle f^{(ar{P})}(ma),\psi(m)
angle_{V_{ au}} dm = 0.$$

Thm (HC's completeness theorem) Let $f \in C(\tau, G/N_0, \chi)$. If $f^{(\bar{P})} \sim 0$ for each $P \in \mathcal{P}_{st}$ then f = 0.

Proof of HC's completeness

Thm (HC's completeness theorem) Let $f \in C(\tau, G/N_0, \chi)$. If $f^{(\overline{P})} \sim 0$ for each $P \in \mathcal{P}_{st}$ then f = 0.

Sketch of proof

1. Transitivity of descent. Let $P, Q \in \mathcal{P}_{st}$ with $P \subset Q$. Then * $P := P \cap M_{1Q}$ is a parabolic subgroup of M_{1Q} . For $f \in C(\tau, G/N_0, \chi)$, by Fubini:

$$(f^{(\bar{Q})})^{(*\bar{P})} = f^{(\bar{P})}$$

2. Apply induction on $\operatorname{rk}_{\mathbb{R}}G = \dim \mathfrak{a}$. Assume $f^{(\overline{P})} \sim 0$ for all $P \in \mathcal{P}_{st}$. If $Q \in \mathcal{P}_{st}, Q \neq G$ then $\operatorname{rk}_{\mathbb{R}}M_Q < \operatorname{rk}_{\mathbb{R}}G$ hence by (1) and induction hypothesis

$$f^{(\bar{Q})}=0.$$

Hence $f \in {}^{\circ}\mathcal{C}(\tau, G/N_0, \chi) = {}^{\circ}\mathcal{C}_{G,\tau}$.

3. Now $f^{(\bar{G})} \sim 0$ implies $f \perp f$ hence f = 0.

Parabolic induction and Whittaker integrals

Let
$$P = M_P A_P N_P \in \mathcal{P}_{st}$$
 and $\psi \in {}^{\circ}\mathcal{C}_{P,\tau}$. For $\lambda \in \mathfrak{a}_{P\mathbb{C}}^*$ define $\psi_{\lambda} : G \to V_{\tau}$ by
 $\psi_{\lambda}(kma\bar{n}) = a^{\lambda + \rho_P} \tau(k)\psi(m).$

For $\operatorname{Re}(\lambda) >_{\scriptscriptstyle P} 0$, the integral

$$\mathrm{Wh}(P,\psi,\lambda,x) := \int_{N_P} \chi(n)\psi_\lambda(xn) \, dn \qquad (x \in G)$$

is $abs^{y} \operatorname{conv}^{t} and defines a function Wh(P, \psi, \lambda) \in C^{\infty}(\tau, G/N_{0}, \chi)$ which depends holomorphically on λ in the indicated region.

Remark

The above Whittaker integral is essentially a finite sum of generalized matrix coefficients (defined by Jacquet integrals) of $\operatorname{Ind}_{\overline{P}}^{G}(\sigma \otimes -\lambda \otimes 1)$, with $\sigma \in \widehat{M}_{P,ds}$ appearing in ${}^{\circ}C_{P,\tau}$. (Analogue of Eisenstein integral.)

Theorem (W)

Wh(P, ψ, λ), initially defined for Re $\lambda >_P 0$, extends to entire holom^c function of $\lambda \in \mathfrak{a}_{P\mathbb{C}}^*$ with values in $C^{\infty}(\tau, G/N_0, \chi)$.

Remark: HC: there exists a merom^{*c*} extension, regular on $i\mathfrak{a}_P^*$.

Theorem (~): Uniformly tempered estimates Let $\varepsilon > 0$ be suff^tly small. If $u \in U(\mathfrak{g})$ then $\exists C, N, r > 0$ s.t.

 $|\mathrm{Wh}(\boldsymbol{P},\psi,\lambda,\boldsymbol{u};\boldsymbol{ka})| \leq C(1+|\lambda|)^N(1+|\log a|)^N e^{r|\mathrm{Re}\lambda||\log a|}a^{ho},$

for all $k \in K$, $a \in A$, $\lambda \in \mathfrak{a}_{P\mathbb{C}}^*$ with $|\operatorname{Re}\lambda| < \varepsilon$.

- Bernstein-Sato type functional equation for Jacquet integrals.
- Uniformly moderate estimates.
- Wallach's method of improving estimates along max psg's, with parameters.

Fourier transform

For $f \in C(\tau, G/N_0, \chi)$, $P \in \mathcal{P}_{st}$, $\lambda \in i\mathfrak{a}_P^*$, the Fourier transform $\mathcal{F}_P f(\lambda) \in {}^{\circ}C_{P,\tau}$ is defined by

$$\langle \mathcal{F}_{\mathcal{P}}f(\lambda),\psi\rangle := \int_{G/N_0} \langle f(x), \operatorname{Wh}(\mathcal{P},\psi,\lambda,x)\rangle_{V_{\tau}} dx, \ (\psi \in {}^{\circ}\mathcal{C}_{\mathcal{P},\tau}).$$

Theorem (\sim)

$$\mathcal{F}_{\mathcal{P}}: \mathcal{C}(\tau, \mathcal{G}/N_0, \chi) \to \mathcal{S}(i\mathfrak{a}_{\mathcal{P}}^*) \otimes {}^{\circ}\mathcal{C}_{\mathcal{P}, \tau},$$

continuous linearly.

Remark: HC proves this for \mathcal{F}_P restricted to $C_c^{\infty}(\tau, G/N_0, \chi)$.

Proof this follows from the uniformly tempered estimates.

Remark: $\mathcal{F}_{G} = \operatorname{orth}^{l} \operatorname{proj}^{n} \quad \mathcal{C}(\tau, G/N_{0}, \chi) \to {}^{\circ}\mathcal{C}(\tau, G/N_{0}, \chi).$

A D F A 同 F A E F A E F A Q A

Relation with the Harish-Chandra transform

Let \mathcal{F}_e denote the Euclidean Fourier transform $\mathcal{S}(\mathcal{A}_P) \to \mathcal{S}(i\mathfrak{a}_P^*)$. Thm (~) If $f \in \mathcal{C}(\tau, G/N_0, \chi)$ and $\psi \in {}^{\circ}\mathcal{C}_{P,\tau}$, define

$$f_{\psi}^{(\bar{P})}: a \mapsto \int_{M_P/M_P \cap N_0} \langle f^{(\bar{P})}(ma), \psi(m) \rangle_{V_{\tau}} dm.$$

Then $f_{\psi}^{(\bar{P})}$ belongs to $\mathcal{S}(\mathfrak{ia}_{P}^{*})$ and

$$\mathcal{F}_{\boldsymbol{\theta}}(f_{\boldsymbol{\psi}}^{(\bar{\boldsymbol{P}})})(\boldsymbol{\lambda}) = \langle \mathcal{F}_{\boldsymbol{P}}f(\boldsymbol{\lambda}), \boldsymbol{\psi} \rangle, \qquad (\boldsymbol{\lambda} \in i\mathfrak{a}_{\boldsymbol{P}}^*).$$

Proof

- 1. First for supp *f* compact modulo N_0 by using explicit calculation, holomorphy of $\mathcal{F}_P f$ and application of Cauchy's theorem.
- 2. Use density of $C_c^{\infty}(\tau, G/N_0, \chi)$ in $\mathcal{C}(\tau, G/N_0, \chi)$, combined with continuity on $\mathcal{C}(\tau, G/N_0, \chi)$ of the HC transform $f \mapsto R_a(f^{(\bar{P})})$ (due to HC) and the Fourier transform \mathcal{F}_P (by uniform temperedness).

Injectivity of the Fourier transform

Thm (~)
If
$$f \in C(\tau, G/N_0, \chi)$$
 and $\psi \in {}^{\circ}C_{P,\tau}$, define
 $f_{\psi}^{(\bar{P})} : \mathbf{a} \mapsto \int_{M_P/M_P \cap N_0} \langle f^{(\bar{P})}(m\mathbf{a}), \psi(m) \rangle_{V_{\tau}} dm.$

Then $f_{\psi}^{(\bar{P})}$ belongs to $\mathcal{S}(A_{P})$ and

$$\mathcal{F}_{\boldsymbol{\theta}}(f_{\psi}^{(\bar{\boldsymbol{\mathcal{P}}})})(\lambda) = \langle \mathcal{F}_{\boldsymbol{\mathcal{P}}}f(\lambda), \psi \rangle, \qquad (\lambda \in i\mathfrak{a}_{\boldsymbol{\mathcal{P}}}^*).$$

Corollary (injectivity FT) Let $f \in C(\tau, G/N_0, \chi)$. If $\mathcal{F}_P(f) = 0$ for all $P \in \mathcal{P}_{st}$ then f = 0. Proof

1. $\mathcal{F}_P f = 0$ implies that $f_{\psi}^{(\bar{P})} = 0$ for all $\psi \in {}^{\circ}\mathcal{C}_{P,\tau}$. Hence $f^{(\bar{P})} \sim 0$. 2. f = 0 by HC's completeness thm.

C-function, Normalized Whittaker integral

- Wh(P, ψ, λ) is finite under $\mathfrak{Z} := \operatorname{center}(U(\mathfrak{g})),$
- ► top order asymptotic behavior of exp^l type along cl(A⁺),
- very rapid decay outside $cl(A^+)$.

Lemma

Let $P \in \mathcal{P}_{st}$. For $\psi \in {}^{\circ}\mathcal{C}_{P,\tau}$, $\operatorname{Re}\lambda \in \mathfrak{a}_{P}^{*+}$, $m \in M_{P}$, $a \to \infty$ in A_{P}^{+} ,

 $\mathrm{Wh}(\boldsymbol{P},\psi,\lambda)(\boldsymbol{ma})\sim \boldsymbol{a}^{\lambdaho_{\boldsymbol{P}}}[\boldsymbol{C}_{\boldsymbol{P}}(\lambda)\psi](\boldsymbol{m}),$

with $C_{\mathcal{P}}(\lambda) \in \operatorname{End}({}^{\circ}\mathcal{C}_{\mathcal{P},\tau})$, merom^c in $\lambda \in \mathfrak{a}_{\mathcal{P}\mathbb{C}}^{*}$ (reg^r for $\operatorname{Re}\lambda \in \mathfrak{a}_{\mathcal{P}}^{*+}$).

Definition (HC) Wh[°](P, ψ, λ) := Wh($P, C_P(\lambda)^{-1}\psi, \lambda$) (mero^c in λ)

►
$$P \sim Q$$
: $\iff \exists w \in W(\mathfrak{a}): w(\mathfrak{a}_P) = \mathfrak{a}_Q$ (associated).

 $\blacktriangleright \ W(\mathfrak{a}_Q|\mathfrak{a}_P) := \{ s \in \operatorname{Hom}(\mathfrak{a}_P, \mathfrak{a}_Q) \mid \exists w \in W(\mathfrak{a}) : \ s = w|_{\mathfrak{a}_P} \}.$

Functional equations, Maass-Selberg relations

Lemma (Functional equations: HC) Let $P, Q \in \mathcal{P}_{st}, P \sim Q$. Then for all $s \in W(\mathfrak{a}_Q|\mathfrak{a}_P)$,

$$\mathrm{Wh}^{\circ}(\mathcal{Q}, \mathcal{C}^{\circ}_{\mathcal{Q}|\mathcal{P}}(s,\lambda)\psi, s\lambda) = \mathrm{Wh}^{\circ}(\mathcal{P},\psi,\lambda), \quad (\lambda \in \mathfrak{a}_{\mathcal{PC}}^{*}),$$

with $C^{\circ}_{\mathcal{Q}|\mathcal{P}}(s,\lambda) \in \text{Hom}(^{\circ}\mathcal{C}_{\mathcal{P},\tau}, ^{\circ}\mathcal{C}_{\mathcal{Q},\tau})$ a uniquely determined merom^c function of $\lambda \in \mathfrak{a}_{\mathcal{P}\mathbb{C}}^{*}$.

Thm (Maass-Selberg relations, HC) For all $s \in W(\mathfrak{a}_Q|\mathfrak{a}_P), \lambda \in \mathfrak{a}_{P\mathbb{C}}^*$,

$$\mathcal{C}^\circ_{\mathcal{Q}|\mathcal{P}}(oldsymbol{s},-ar{\lambda})^*\circ\mathcal{C}^\circ_{\mathcal{Q}|\mathcal{P}}(oldsymbol{s},\lambda)=I_{^\circ\mathcal{C}_{\mathcal{P}, au}}.$$

(日) (日) (日) (日) (日) (日) (日)

In particular, for $\lambda \in i\mathfrak{a}_P^*$, the map $C_{Q|P}^{\circ}(s, \lambda)$ is unitary.

Theorem (HC) $\lambda \mapsto Wh^{\circ}(P, \psi, \lambda)$ is regular on $i\mathfrak{a}_{P}^{*}$.

Wave packets

Definition For $P \in \mathcal{P}_{st}$, $\psi \in \mathcal{S}(i\mathfrak{a}_P^*) \otimes {}^{\circ}\mathcal{C}_{P,\tau}$, $x \in G$,

$$\mathcal{W}_{\mathcal{P}}(\psi)(\boldsymbol{x}) := \int_{i\mathfrak{a}_{\mathcal{P}}^*} \mathrm{Wh}^{\circ}(\mathcal{P},\psi(\lambda),\lambda,\boldsymbol{x}) \; \boldsymbol{d}\lambda.$$

Theorem (\sim)

$$\mathcal{W}_{\mathcal{P}}: \mathcal{S}(\mathfrak{ia}_{\mathcal{P}}^*) \otimes {}^{\circ}\mathcal{C}_{\mathcal{P},\tau} \to \mathcal{C}(\tau, \mathcal{G}/\mathcal{N}_0, \chi)$$

is continuous linear.

Remark: HC proves this for \mathcal{W}_P restricted to $C_c^{\infty}(i\mathfrak{a}_P^*) \otimes {}^{\circ}\mathcal{C}_{P,\tau}$.

Proof requires

- the uniformly tempered estimates
- theory of constant term with parameter
- ► families of type II_{hol}(Λ) (as in previous joint work with Carmona and Delorme for reductive symmetric space G/H).

Plancherel formula

Normalized Fourier transform For $f \in C(\tau, G/N_0, \chi)$ define $\mathcal{F}_P^{\circ}f : i\mathfrak{a}_P^* \to {}^{\circ}C_{P,\tau}$ by $\mathcal{F}_P^{\circ}f(\lambda) = C_P(\lambda)^* \mathcal{F}_P(\lambda).$

Then $\mathcal{F}_{\mathcal{P}}^{\circ}: \mathcal{C}(\tau, \mathcal{G}/N_0, \chi) \to \mathcal{S}(i\mathfrak{a}_{\mathcal{P}}^*) \otimes {}^{\circ}\mathcal{C}_{\mathcal{P}, \tau}$ is continuous linear.

Lemma

 $\mathcal{W}_{\mathcal{P}}\mathcal{F}_{\mathcal{P}}^{\circ} \in \operatorname{End}(\mathcal{C}(\tau, \mathcal{G}/\mathcal{N}_{0}, \chi))$ only depends on $[\mathcal{P}] \in \mathcal{P}_{st}/\sim$.

Proof: This follows from the Maass-Selberg relations.

Plancherel theorem If $f \in C(\tau, G/N_0, \chi)$, then

$$f = \sum_{[P] \in \mathcal{P}_{st}/\sim} \mathcal{W}_P \mathcal{F}_P^\circ f.$$

Completion proof of Plancherel

Thm
$$f = \sum_{[P] \in \mathcal{P}_{st}/\sim} \mathcal{W}_{P} \mathcal{F}_{P}^{\circ} f \qquad (f \in \mathcal{C}(\tau, G/N_{0}, \chi)).$$

Proof

(1) From HC's results on descent transform, for all $P, Q \in \mathcal{P}_{st}$,

$$\mathcal{F}_{Q}^{\circ}\mathcal{W}_{P}\mathcal{F}_{P}^{\circ} = \begin{cases} \mathcal{F}_{Q}^{\circ} & \text{if} \quad Q \sim P \\ 0 & \text{otherwise} \end{cases}$$

(2) Put $g = f - \sum W_P \mathcal{F}_P^{\circ} f$. Then $g \in \mathcal{C}(\tau, G/N_0, \chi)$ and by (1):

$$\mathcal{F}_Q^\circ g = \mathcal{F}_Q^\circ f - \mathcal{F}_Q^\circ f = 0.$$

(3) From (2), $\mathcal{F}_Q(g) = 0$ for all $Q \in \mathcal{P}_{st}$, hence g = 0 (injectivity).