Fourier analysis of Whittaker functions on a real reductive group

Erik van den Ban

University of Utrecht

Reductive Groups 2020 Organizers: B. Krötz, J. Kuit On Zoo₀₀M, June 29, 2020

(ロ) (同) (三) (三) (三) (○) (○)

Whittaker functions

Setting

- G real reductive group
- K maximal compact, $G = KAN_0$ lwasawa decomposition
- $\chi : N_0 \rightarrow U(1)$ unitary character, regular (!)

i.e.: $\forall \alpha \in \Sigma(\mathfrak{n}_0, \mathfrak{a})$ simple: $d\chi(e)|_{\mathfrak{g}_{\alpha}} \neq 0$.

Whittaker functions

 $\mathcal{M}(G/N_0,\chi) := \{f: G \xrightarrow{\text{meas}} \mathbb{C} \mid f(xn) = \chi(n)^{-1}f(x) \quad (x \in G, n \in N_0)\}$ $L^2(G/N_0,\chi) := \{f \in \mathcal{M}(G/N_0,\chi) \mid |f| \in L^2(G/N_0)\}$

(日) (日) (日) (日) (日) (日) (日)

• Left reg^r repⁿ: $L = \text{Ind}_{N_0}^G(\chi)$ is unitary

Whittaker Plancherel formula

Abstractly

• $\operatorname{Ind}_{N_0}^G(\chi) = \int_{\widehat{G}}^{\oplus} m_{\pi} \pi d\mu(\pi).$

Concrete realization

Harish-Chandra, Announcement 1982.

Details in Collected Papers Vol 5 (posthumous), 141- 307, eds. R. Gangolli, V.S. Varadarajan, Springer 2018. Final step not clear.

N.R. Wallach, Independent treatment.

Real reductive groups II, Acad. Press 1992. Erroneous estimate. Repair addressed in arXiv:1705.06787.

Today: final step in HC through new inversion theorem.

Discrete part

 $\pi \in \widehat{G}$ (unitary dual) is said to appear discretely in $L^2(G/N_0, \chi)$ if it can be realized as a closed subrepresentation.

Theorem (HC, W)

If $\pi \in \widehat{G}$ appears discretely in $L^2(G/N_0, \chi)$, then it appears discretely in $L^2(G)$, *i.e.*, it belongs to the discrete series of *G*.

Corollary

If $\pi \in \widehat{G}$ appears discretely in $L^2(G/N_0, \chi)$, then its infinitesimal character is real and regular, while $\operatorname{rk}(\mathfrak{k}) = \operatorname{rk}(\mathfrak{g})$.

This result is crucial for the separation of tempered spectra in the Whittaker Plancherel decomposition.

Schwartz functions

Define $\rho \in \mathfrak{a}^*$ by $\rho(X) = \frac{1}{2} \operatorname{tr}(\operatorname{ad}(X)|_{N_0})$. Let $\mathfrak{Z} := \operatorname{center} U(\mathfrak{g})$

Definition (Schwartz space)

 $\mathcal{C}(G/N_0, \chi)$: the space of $f \in \mathcal{C}^{\infty}(G/N_0, \chi)$ s.t. $\forall u \in U(\mathfrak{g}), N \in \mathbb{N}$,

$$|L_u f(kan)| \leq C_{u,N} \left(1 + |\log(a)|\right)^{-N} a^{-\rho} \qquad (kan \in KAN_0).$$

For (τ, V_{τ}) a finite dimensional unitary representation of K,

$$\mathcal{C}(\tau, \boldsymbol{G}/\boldsymbol{N}_{0}, \chi) := (\mathcal{C}(\boldsymbol{G}/\boldsymbol{N}_{0}, \chi) \otimes \boldsymbol{V}_{\tau})^{K}$$

 $\mathcal{A}_{2}(\tau, \mathcal{G}/\mathcal{N}_{0}, \chi) := \{ f \in \mathcal{C}(\tau, \mathcal{G}/\mathcal{N}_{0}, \chi) \mid \dim \mathfrak{Z} f < \infty \}.$

Theorem (HC, W)

$$\mathcal{A}_{2}(\tau, G/N_{0}, \chi) = L^{2}_{d}(\tau, G/N_{0}, \chi).$$

The space is finite dimensional.

Parabolic subgroups

- $\blacktriangleright \ \Sigma = \operatorname{Roots}(\mathfrak{g}, \mathfrak{a}), \ \ \Sigma^+ := \{ \alpha \in \Sigma \mid \mathfrak{g}_\alpha \subset \mathfrak{n}_0 \}, \ \ \Delta \subset \Sigma^+ \text{ simple roots,}$
- $\blacktriangleright W(\mathfrak{a}) = N_{\mathcal{K}}(\mathfrak{a})/Z_{\mathcal{K}}(\mathfrak{a}).$
- $P_0 := Z_{\mathcal{K}}(A)AN_0$, minimal psg.
- $\mathcal{P}(A)$: (finite) set of psg's $P \supset A$.
- ▶ $\mathcal{P}_{st} := \{ P \in \mathcal{P}(A) \mid P \supset P_0 \}$ (standard psg's).
- For *P* a psg: Langlands deco: $P = M_P A_P N_P$.

Associated parabolics

For $P, Q \in \mathcal{P}(A)$ define: $P \sim Q$ iff \mathfrak{a}_P and \mathfrak{a}_Q are $W(\mathfrak{a})$ -conjugate. If so,

$$W(\mathfrak{a}_{Q} \mid \mathfrak{a}_{P}) := \{T \in \operatorname{Hom}(\mathfrak{a}_{P}, \mathfrak{a}_{Q}) \mid \exists w \in W(\mathfrak{a}) : T = w|_{\mathfrak{a}_{P}}\}$$

A D F A 同 F A E F A E F A Q A

Parabolic induction and Whittaker integrals

For $P = M_P A_P N_P \in \mathcal{P}_{st}$, put $\mathcal{A}_{2,P} := \mathcal{A}_2(\tau|_{K_P}, M_P/M_P \cap N_0, \chi|_{M_P \cap N_0})$. For $\lambda \in \mathfrak{a}_{P\mathbb{C}}^*$, $\operatorname{Re} \lambda >_P 0$,

 $\mathrm{Ind}_{\mathcal{P}}^{\mathcal{G}}(\cdot \otimes -\lambda): \mathcal{A}_{2,\mathcal{P}} \ni \psi \mapsto \mathrm{Wh}(\mathcal{P},\lambda,\cdot,\psi) \in \mathcal{A}_{\mathrm{temp}}(\tau,\mathcal{G}/N_{0},\chi)$

Remark

The above Whittaker integral is essentially a finite sum of generalized matrix coefficients (defined by Jacquet integrals) of $\operatorname{Ind}_{\overline{P}}^{G}(\sigma \otimes -\lambda \otimes 1)$, with $\sigma \in \widehat{G}_{ds}$ appearing in $\mathcal{A}_{2,P}$. (Analogue of Eisenstein integral.)

Viewpoint

The Whittaker integral $Wh(P, \lambda)$ is viewed as a (K-fixed) element of

 $\mathcal{A}_{\text{temp}}(\textit{G}/\textit{N}_{0},\chi) \otimes \text{Hom}(\mathcal{A}_{2,\textit{P}},\textit{V}_{\tau})$

depending holomorphically on $\lambda \in \mathfrak{a}_{P\mathbb{C}}^*$ in the region $\operatorname{Re} \lambda >_P 0$.

Classical Whittaker functions

Example

- $G = SL(2, \mathbb{R}), \tau \in SO(2)^{\wedge}$
- Wh(P, λ, ψ) is essentially a classical Whittaker function in the variable a^{-α} ∈ (0, ∞).
- ▶ satisfies 2^{nd} order ODE on $(0, \infty)$ with regular singularity at 0
- this ODE has irregular singularity at ∞ ;

For $a^{-\alpha} \to \infty$

generic solution W of ODE:

 $\forall k \ge 0$: $|W(a)| \ge a^{-k\alpha}$ (very fast growth).

representation theory selects the special solution

 $\forall k \geq 0$: Wh $(P, \lambda, \psi)(a) = \mathcal{O}(a^{k\alpha})$ (very fast decay).

Theorem (W)

Wh(P, λ), initially defined for Re $\lambda >_P 0$, extends to entire holom^c function of $\lambda \in \mathfrak{a}_{P\mathbb{C}}^*$ with values in $C^{\infty}(G/N_0, \chi) \otimes \operatorname{Hom}(\mathcal{A}_{2,P}, V_{\tau})$.

Remark: HC: there exists a merom^{*c*} extension, regular on $i\mathfrak{a}_P^*$.

Theorem (~): Uniformly tempered estimates Let $\varepsilon > 0$ be suff^tly small. If $u \in U(\mathfrak{g})$ then $\exists C, N, r > 0$ s.t.

 $|Wh(P,\lambda,u;ka)| \leq C(1+|\lambda|)^N(1+|\log a|)^N e^{r|\operatorname{Re}\lambda||\log a|}a^{ho},$

for all $k \in K$, $a \in A$, $\lambda \in \mathfrak{a}_{P\mathbb{C}}^*$ with $|\operatorname{Re}\lambda| < \varepsilon$.

- Bernstein-Sato type functional equation for Jacquet integrals.
- Uniformly moderate estimates.
- Wallach's method of improving estimates along max psg's, with parameters.

C-function, Normalized Whittaker function

- $W(P, \lambda)$ is 3-finite,
- ► top order asymptotic behavior of exp^l type along cl(A⁺),
- rapid decay outside $cl(A^+)$.

Lemma

Let $P \in \mathcal{P}_{st}$. For $\psi \in \mathcal{A}_{2,P}$, $\operatorname{Re} \lambda \in \mathfrak{a}_{P}^{*+}$, $m \in M_{P}$, $a \to \infty$ in \mathcal{A}_{P}^{+} ,

 $Wh(P,\lambda)(ma)\psi \sim a^{\lambda-\rho_P}[C_P(\lambda)\psi](m),$

with $C_{P}(\lambda) \in \operatorname{End}(\mathcal{A}_{2,P})$, merom^c in $\lambda \in \mathfrak{a}_{P\mathbb{C}}^{*}$ (reg^r for $\operatorname{Re}\lambda \in \mathfrak{a}_{P}^{*+}$).

Definition (HC) Wh^o(P, λ) := Wh(P, λ) $\circ C_P(\lambda)^{-1}$.

Functional equations, Maass-Selberg relations

Lemma (Functional equations: HC) Let $P, Q \in \mathcal{P}_{st}$, $P \sim Q$. Then for all $s \in W(\mathfrak{a}_Q|\mathfrak{a}_P)$,

$$\mathrm{Wh}^{\circ}(\mathcal{Q}, \boldsymbol{s}\lambda) \circ \mathcal{C}^{\circ}_{\mathcal{Q}|\mathcal{P}}(\boldsymbol{s},\lambda) = \mathrm{Wh}^{\circ}(\mathcal{P},\lambda), \quad (\lambda \in \mathfrak{a}_{\mathcal{PC}}^{*}),$$

with $C^{\circ}_{Q|P}(s, \lambda) \in \text{Hom}(\mathcal{A}_{2,P}, \mathcal{A}_{2,Q})$ a uniquely determined merom^c function of $\lambda \in \mathfrak{a}_{P\mathbb{C}}^*$.

Thm (Maass-Selberg relations, HC) For all $s \in W(\mathfrak{a}_Q|\mathfrak{a}_P), \lambda \in \mathfrak{a}_{P\mathbb{C}}^*$,

$$\mathcal{C}^\circ_{\mathcal{Q}|\mathcal{P}}(oldsymbol{s},-ar{\lambda})^*\circ\mathcal{C}^\circ_{\mathcal{Q}|\mathcal{P}}(oldsymbol{s},\lambda)=I_{\mathcal{A}_{2,\mathcal{P}}}$$

In particular, for $\lambda \in i\mathfrak{a}_P^*$, the map $C_{Q|P}^{\circ}(s, \lambda)$ is unitary.

Theorem (HC) $\lambda \mapsto Wh^{\circ}(P, \lambda)$ is regular on $i\mathfrak{a}_{P}^{*}$.

Fourier transform

Dualized Whittaker function (\sim) Wh^{*}(P, λ, x) := Wh[°]($P, -\overline{\lambda}, x$)^{*} \in Hom($V_{\tau}, A_{2,P}$).

Fourier transform

For $f \in C(\tau, G/N_0, \chi), P \in \mathcal{P}_{st}, \lambda \in i\mathfrak{a}_P^*$,

$$\mathcal{F}_{\mathcal{P}}f(\lambda) := \int_{G/N_0} \operatorname{Wh}^*(\mathcal{P},\lambda,x)f(x) \ dx \in \mathcal{A}_{2,\mathcal{P}}.$$

Theorem (\sim)

$$\mathcal{F}_{\mathcal{P}}: \mathcal{C}(\tau, \mathcal{G}/\mathcal{N}_0, \chi) \to \mathcal{S}(i\mathfrak{a}_{\mathcal{P}}^*) \otimes \mathcal{A}_{2,\mathcal{P}},$$

continuous linearly.

Remark: HC proves this for \mathcal{F}_P restricted to $C_c^{\infty}(\tau, G/N_0, \chi)$.

Proof this follows from the uniformly tempered estimates.

Wave packets

Definition For $P \in \mathcal{P}_{st}$, $\psi \in \mathcal{S}(i\mathfrak{a}_P^*) \otimes \mathcal{A}_{2,P}$, $x \in G$,

$$\mathcal{W}_{\mathcal{P}}\psi(\mathbf{x}) := \int_{i\mathfrak{a}_{\mathcal{P}}^*} \mathrm{Wh}^{\circ}(\mathcal{P},\lambda,\mathbf{x})\psi(\lambda) \ d\lambda.$$

Theorem (\sim)

$$\mathcal{W}_{P}: \mathcal{S}(i\mathfrak{a}_{P}^{*})\otimes \mathcal{A}_{2,P} \rightarrow \mathcal{C}(\tau, \boldsymbol{G}/\boldsymbol{N}_{0}, \chi)$$

is continuous linear.

Remark: HC proves this for \mathcal{W}_P restricted to $C_c^{\infty}(i\mathfrak{a}_P^*) \otimes \mathcal{A}_{2,P}$.

Proof requires

- the uniformly tempered estimates
- theory of constant term with parameter
- ► families of type II_{hol}(Λ) (as in previous joint work with Carmona and Delorme for reductive symmetric space G/H).

Plancherel formula

If $P, Q \in \mathcal{P}_{st}, P \sim Q$ then from the MS rel^s: $\|\mathcal{F}_P f(\lambda)\| = \|\mathcal{F}_Q f(\lambda)\|$.

Plancherel identity (HC)

With suitable normalization of the Lebesgue measures on ia_P^* ,

$$\|f\|_{L^2(\tau,G/N_0,\chi)}^2 = \sum_{P \in \mathcal{P}_{st}/\sim} \|\mathcal{F}_P f\|_{L^2(i\mathfrak{a}_P^*) \otimes \mathcal{A}_{2,P}}^2,$$

for *f* in the linear span $\mathcal{W} \subset \mathcal{C}(\tau, G/N_0, \chi)$ of the wavepackets $\mathcal{W}_Q(\psi)$, for $Q \in \mathcal{P}_{st}$, and $\psi \in C_c^{\infty}(i\mathfrak{a}_Q^*) \otimes \mathcal{A}_{2,Q}$.

Problem of the final step: Is W dense in $L^2(\tau, G/N_0, \chi)$?

Theorem (\sim)

Yes! More precisely, for $f \in C(\tau, G/N_0, \chi)$ we have

$$f = \sum_{P \in \mathcal{P}_{st}/\sim} \mathcal{W}_P \circ \mathcal{F}_P(f).$$

Series expansion

Strategy for the final step: use Paley-Wiener shift argument and residue calculus as known from the theory of symmetric spaces (previous joint work with Schlichtkrull).

Let $P = P_0$ be minimal. Then $Wh(P, \lambda) \in C^{\infty}(\tau, G, \chi) \otimes \mathcal{A}^*_{2,P}$ is holomorphic in $\lambda \in \mathfrak{a}^*_{\mathbb{C}}$. The function is \mathfrak{Z} -finite, hence satisfies a cofinite system of differential equations, which has regular singularities at infinity in the direction of A^+ .

Expansion at infinity

$$\mathrm{Wh}(\boldsymbol{P},\lambda) = \sum_{\boldsymbol{s}\in W(\mathfrak{a})} \mathrm{Wh}_+(\boldsymbol{P},\boldsymbol{s}\lambda) \boldsymbol{C}_{\boldsymbol{P}|\boldsymbol{P}}(\boldsymbol{s},\lambda)$$

where $\operatorname{Wh}_+(P,\lambda) \in C^{\infty}(\tau, G, \chi) \otimes \mathcal{A}^*_{2,P}$ is merom^c in $\lambda \in \mathfrak{a}^*_{\mathbb{C}}$, and

$$\mathrm{Wh}_+(\mathcal{P},\lambda)(\mathbf{a}) = \mathbf{a}^{\lambda-
ho} \sum_{\mu\in\mathbb{N}\Delta} \mathbf{a}^{-\mu} \Gamma_\mu(\lambda), \qquad (\mathbf{a}\in \mathcal{A}),$$

with $\Gamma_{\mu}(\lambda) \in \operatorname{Hom}(\mathcal{A}_{2,P}, V_{\tau})$ meromorphic, $\Gamma_{0}(\lambda)(\psi) = \psi(e)$.

Key theorem (\sim)

$$f(x) = \mathcal{T}_{\eta}(f)(x) := |W(\mathfrak{a})| \int_{i\mathfrak{a}^*+\eta} \operatorname{Wh}_+(P,\lambda,x) \mathcal{F}_P f(\lambda) d\lambda,$$

 $\forall f \in C^{\infty}_{c}(\tau, G/N_{0}, \chi), \forall x \in G, \text{ provided } \eta \in \mathfrak{a}^{*}, \eta >>_{\bar{P}} 0.$

NB: For generic $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$, the function $Wh_+(P, \lambda)$ is globally def^d on X, but may exhibit super exp^l growth in directions diff^t from $cl(A^+)$.

Ideas of proof

$$\succ \mathcal{T}_{\eta}: C^{\infty}_{c}(\tau, G/N_{0}, \chi) \to C^{\infty}(\tau, G/N_{0}, \chi).$$

$$\blacksquare \exists D \in \mathfrak{Z} : DT_{\eta} = DT_{0} = D \circ \mathcal{W}_{P} \circ \mathcal{F}_{P}.$$

▶ By PW shift $\eta \to \infty$ in \overline{P} -dominant direction: supp $DT_{\eta}f \subset K$ suppf.

(日) (日) (日) (日) (日) (日) (日)

 \implies rad (DT_{η}) is a differential operator on A

Ideas of proof:

- $rad(DT_{\eta})$ differential operator commuting with rad(3)
- ▶ By asymptotic analysis along A_P^+ : $DT_\eta = D$ on $C_c^{\infty}(\tau, G/N_0, \chi)$.
- By Holmgren's uniqueness theorem for analytic PDO:

$$DT_{\eta}f = Df \implies D(\mathcal{T}_{\eta}f - f) = 0 \implies \mathcal{T}_{\eta}f - f = 0.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Residual kernels

By Fourier inversion, if $f \in C_c^{\infty}(\tau, G/N_0, \chi), x \in G$,

$$f(\mathbf{x}) = |\mathbf{W}(\mathfrak{a})| \int_{i\mathfrak{a}^*+\eta} \operatorname{Wh}_+(\mathbf{P},\lambda,\mathbf{x}) \mathcal{F}_{\mathbf{P}}f(\lambda) d\lambda.$$

Shifting η towards zero and organizing residues, one gets

$$f(x) = \sum_{Q \in \mathcal{P}_{st}} [W : N_W(\mathfrak{a}_Q)] t(Q) T_Q^t f(x),$$

where

$$T^t_Q f(x) = \int_{i\mathfrak{a}^*_Q + \varepsilon_Q} \int_{G/N_0} K^t_Q(\lambda, x, y) f(y) \, dy \, d\lambda_Q.$$

(日) (日) (日) (日) (日) (日) (日)

- $\varepsilon_Q \in \mathfrak{a}_Q^{*+}$ sufficiently close to 0.
- *t* : P_{st} → [0, 1] is a weight function describing a certain organization of residue shifts.

Conclusion

Theorem (\sim)

$${\mathcal K}^t_{\mathcal Q}(\lambda,x,y) = \operatorname{Wh}^\circ({\mathcal Q},\lambda)(x) \circ \operatorname{Wh}^*({\mathcal Q},\lambda)(y) = {\mathcal K}_{{\mathcal W}_{\mathcal Q}\circ {\mathcal F}_{\mathcal Q}}.$$

This identification relies on the Maass-Selberg relations. These also imply that the functions $\lambda \mapsto K_Q^t(\lambda, x, y)$ are regular on $i\mathfrak{a}_Q^*$, hence we may let $\varepsilon_Q \to 0$ and then:

Plancherel formula

$$f(x) = \sum_{Q \in \mathcal{P}_{st}} [W : N_W(\mathfrak{a}_Q)]t(Q) \ \mathcal{W}_Q \mathcal{F}_Q f(x).$$

► [W : N_W(a_Q)]t(Q) gives the weight by which Q contributes to its class in P_{st}/ ~ .

Bonus:

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Definition

A function $f \in C(\tau, G/N_0, \chi)$ is said to be *cone supported* (notation C_{cs}) if $\exists H_0 \in \mathfrak{a} \text{ s.t.}$

$$\operatorname{supp} f \subset K \exp(H_0 - \mathfrak{a}^{++}) N_0.$$

Lemma

If $f \in \mathcal{C}_{cs}(\tau, G/N_0, \chi)$, then $\forall u \in U(\mathfrak{g}) \ \forall m > 0 \ \exists C > 0$:

$$L_{u}f(ka) \| < C e^{-m|\log a|} \qquad (\forall k \in K, a \in A).$$

Paley-Wiener theorem

Let $P = P_0$ (minimal). Then " \mathcal{F}_P (unnormalized) is injective on $\mathcal{C}_{cs}(\tau, G/N_0, \chi)$. The image of this space under " \mathcal{F}_P equals the space $\mathrm{PW}(\chi, \tau)$ of holomorphic functions $\varphi : \mathfrak{a}^*_{\mathbb{C}} \to \mathcal{A}_{2,P}$ satisfying

- certain estimates of Paley–Wiener type;
- relations of Arthur–Campoli type.

Thank you

・ロト・< 言ト< 言ト・< うへぐ

Arthur–Campoli type relations

More precisely, the definition of the PW space is as follows.

Definition Paley–Wiener space

 $PW(\chi, \tau)$ is the space of holomorphic functions $\varphi : \mathfrak{a}_{\mathbb{C}}^* \to \mathcal{A}_{2,P}$ satisfying

►
$$\exists R > 0$$
: $\forall \lambda_0 \in \mathfrak{a}_{\mathbb{C}}^*$, $\forall N \in \mathbb{N}$, $\exists C > 0$ s.t.

$$|arphi(\lambda)| \leq C(1+\|\lambda\|)^{-N} e^{R\|Re\lambda\|} \qquad (\lambda \in \lambda_0 - \mathfrak{a}_{\mathbb{C}}^{*+}).$$

► For all finite collections $\lambda_i \in \mathfrak{a}_{\mathbb{C}}^*, u_i \in S(\mathfrak{a}^*), \ \xi_i \in \operatorname{Hom}(V_{\tau}, \mathcal{A}_{2, \mathcal{P}})^*, 1 \leq i \leq N,$

$$\sum_{i=1}^{N} \langle \xi_i, \partial_{u_i}{}^{u} \mathrm{Wh}^*(\boldsymbol{P}, \cdot)(\lambda_i) \rangle = \mathbf{0} \implies \sum_{i=1}^{N} \langle \xi_i, \partial_{u_i} \varphi(\lambda_i) \rangle = \mathbf{0}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

C-functions, Maass-Selberg relations

Thm (asymptotic behavior, HC) Let $P \in \mathcal{P}_{st}$, $\psi \in \mathcal{A}_{2,P}$. If $Q \in \mathcal{P}_{st}$, $Q \sim P$, then for $\lambda \in i\mathfrak{a}_P^*$ generic, $m \in M_Q$, $a \to \infty$ in A_Q^+ ,

$$Wh(P,\lambda)(ma)\psi\sim \sum_{s\in W(\mathfrak{a}_Q|\mathfrak{a}_P)}a^{s\lambda-
ho_Q}[C_{Q|P}(s,\lambda)\psi](m),$$

with $C_{Q|P}(s, \lambda) \in \text{Hom}(\mathcal{A}_{P}, \mathcal{A}_{Q})$ meromorphic in $\lambda \in \mathfrak{a}_{P\mathbb{C}}^{*}$. If $R \in \mathcal{P}(A) \setminus \mathcal{P}_{st}$ then $Wh(P, \lambda)(ma) = o(a^{-\rho_{R}})$ for $a \to \infty$ in \mathcal{A}_{R}^{+} .

Thm (Maass-Selberg relations, HC) For all $s \in W(\mathfrak{a}_Q|\mathfrak{a}_P), \lambda \in i\mathfrak{a}_P^*$,

$$C^\circ_{\mathcal{Q}|\mathcal{P}}(\boldsymbol{s},\lambda) := C_{\mathcal{Q}|\mathcal{P}}(\boldsymbol{s},\lambda)C_{\mathcal{P}|\mathcal{P}}(1,\lambda)^{-1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

is unitary $\mathcal{A}_{2,P} \rightarrow \mathcal{A}_{2,Q}$.

Discrete part of Fourier transform

Discrete part of Fourier transform

If rk(t) = rk(g) one has $a_G = \{0\}$ and \mathcal{F}_G is given by the (finite rank) L^2 -orthogonal projection

$$\mathcal{C}(\tau, G/N_0, \chi) \rightarrow \mathcal{A}_{2,G} = L^2_d(\tau, G/N_0, \chi).$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

HC's fundamental theorem

- ► $\Sigma = \operatorname{Roots}(\mathfrak{g}, \mathfrak{a}), \quad \Sigma^+ := \{ \alpha \in \Sigma \mid \mathfrak{g}_\alpha \subset \mathfrak{n}_0 \}, \quad \Delta \subset \Sigma^+ \text{ simple roots.}$
- ▶ $P_0 := Z_K(A)AN_0$, minimal psg; $\mathcal{P}(A)$: (finite) set of psg's $P \supset A$.
- $\mathcal{P}_{st} := \{ \boldsymbol{P} \in \mathcal{P}(\boldsymbol{A}) \mid \boldsymbol{P} \supset \boldsymbol{P}_0 \}$ (standard psgs).
- Let $P \in \mathcal{P}_{st}$, Langlands deco: $P = M_P A_P N_P$. Then $\overline{P}N_0$ is open dense in *G*.

Harish-Chandra's Thm 1 Let $u \in \mathcal{D}'(G)$ be such that

$$L_{\bar{n}}u = u, \quad R_n u = \chi^{-1}(n)u, \qquad (\bar{n} \in \bar{N}_P, n \in N_0)$$

If χ is regular and $u|_{\bar{P}N_0} = 0$ then u = 0.

Ref. for proof also: J.A.C. Kolk, V.S. Varadarajan, Indag. Math. 1996.