Plancherel formulas for reductive groups, symmetric spaces and Whittaker functions
 I. Distribution vectors and Fourier transform

Erik van den Ban

Utrecht University

AIM Research Community
Representation Theory and non-commutative geometry Organizers: P. Clare, N. Higson, B. Speh
August 30, 2021

Plancherel decomposition

Setting

- G real reductive group
- K maximal compact, $G=K A N_{0}$ Iwasawa decomposition
- $\mathrm{H}<\mathrm{G}$ a closed unimodular subgroup
- $\chi: H \rightarrow \mathrm{U}(1)$ unitary character

Function spaces

$$
\begin{aligned}
& \mathcal{M}(G / H, \chi):=\left\{f: G \xrightarrow{\text { meas }} \mathbb{C} \mid f(x h)=\chi(h)^{-1} f(x) \quad(x \in G, h \in H)\right\} \\
& L^{2}(G / H, \chi):=\left\{f \in \mathcal{M}(G / H, \chi)| | f \mid \in L^{2}(G / H)\right\}
\end{aligned}
$$

- Left reg ${ }^{r}$ rep $^{n}: \quad L=\operatorname{Ind}_{H}^{G}(\chi)$ is unitary

Abstract Plancherel decomposition
$-\operatorname{Ind}_{H}^{G}(\chi) \simeq \int_{\widehat{G}}^{\oplus} 1_{\mathcal{V}_{\pi}} \otimes \pi d \mu(\pi) \quad\left(\widehat{G}:=\widehat{G}_{u}, \mathcal{V}_{\pi}:\right.$ multiplicity space $)$.

Three cases

Symmetric space

- $\left(G^{\sigma}\right)_{e}<H<G^{\sigma}$ where $\sigma \in \operatorname{Aut}(G), \sigma^{2}=I$. w.l.o.g.: $\quad \sigma(K)=K$ (Riemannian special case: $\sigma=\theta, H=K$)
- $\chi=1$

Subcase: group as symmetric space

- \underline{G} real reductive group,
- $G:=\underline{G} \times \underline{G} \curvearrowright \underline{G}: \quad(x, y) \cdot g=x g y^{-1}$ $\Longrightarrow \underline{G} \simeq G / H$, where $H=\operatorname{diag}(\underline{G})$.
- $H=G^{\sigma}$, for $\sigma:(x, y) \mapsto(y, x)$.
- $\chi=1$.

Case of Whittaker functions

- $H=N_{0}$ (maximal nilpotent),
- $\chi \in \widehat{N}_{0}$ regular, i.e.: $\forall \alpha \in \Sigma\left(\mathfrak{n}_{0}, \mathfrak{a}\right)$ simple: $\left.d \chi(e)\right|_{\mathfrak{g}_{\alpha}} \neq 0$.

Generalized vectors

Let $\left(\pi, \mathcal{H}_{\pi}\right) \in \widehat{G}:=$ unitary dual. Define

$$
\begin{array}{ll}
\mathcal{H}_{\pi}^{\infty} & :=\left\{v \in \mathcal{H}_{\pi} \mid[g \mapsto \pi(g) v] \in C^{\infty}\left(G, \mathcal{H}_{\pi}\right)\right. \\
\mathcal{H}_{\pi}^{-\infty} & :=\left(\overline{\mathcal{H}_{\pi}^{\infty}}\right)^{\prime}
\end{array}
$$

Then $\quad \mathcal{H}_{\pi}^{\infty} \subset \mathcal{H}_{\pi} \hookrightarrow \mathcal{H}_{\pi}^{-\infty}$.
Put $\quad \mathcal{H}_{\pi}^{-\infty, \chi}:=\left\{\eta \in H_{\pi}^{-\infty} \mid h \cdot \eta=\chi(h) \eta \quad(h \in H)\right\}$.
Frobenius $\operatorname{rec}^{y}: \operatorname{Hom}_{G}\left(H_{\pi}, C^{\infty}(G / H, \chi)\right) \simeq \overline{\mathcal{H}_{\pi}^{-\infty, \chi}}$.
Corollary: π in Plancherel formula $\Longrightarrow \mathcal{H}_{\pi}^{-\infty, \chi} \neq 0$.
Notation: $\widehat{\mathcal{G}}_{\chi}:=\left\{\pi \in \widehat{\mathcal{G}} \mid \mathcal{H}_{\pi}^{-\infty, \chi} \neq 0\right\}$.
Group as symmetric space: $\underline{G}=G / H, \chi=1$

$$
\begin{aligned}
& \widehat{G}=\{\pi \otimes \rho \mid \pi, \rho \in \underline{\widehat{G}}\} . \\
& \widehat{G}_{1}=\widehat{G}_{H}=\left\{\pi \otimes \pi^{\vee} \mid \pi \in \underline{\widehat{G}}\right\} .
\end{aligned}
$$

Discrete series

Definition $\pi \in \widehat{G}$ belongs to discrete series for $\operatorname{Ind}_{H}^{G}(\chi)$ iff $\operatorname{Hom}_{G}\left(\mathcal{H}_{\pi}, L^{2}(G / H, \chi)\right) \neq 0$. Notation: $\widehat{G}_{\chi, d s}=\{[\pi] \mid$ such $\pi\}$.
Remark Group case: $G=\underline{G} \times \underline{G}, H=\operatorname{diag}(\underline{G}), \chi=1$.

$$
\widehat{\mathcal{G}}_{H, d s}:=\widehat{\mathcal{G}}_{1, d s}=\left\{\pi \otimes \pi^{\vee} \mid \pi \in \widehat{\underline{G}}_{d s}\right\}
$$

Thm, group case (HC)
(a) \underline{G} has discrete series iff $\mathrm{rk} \underline{G}=\mathrm{rk} \underline{K}$.
(b) $\pi \in \underline{\widehat{G}}_{d s} \Longrightarrow$ inf char of π is real and regular.

Thm, symm space (Flensted-Jensen, Oshima-Matsuki)
(a) $\widehat{G}_{H, d s} \neq \emptyset$ iff $\mathrm{rk} G / H=\mathrm{rk} K / K \cap H$.
(b) If π belongs to discrete series of \underline{G} then its infinitesimal $\mathbb{D}(G / H)$-characters are real and regular.

Thm, Whittaker case (Harish-Chandra, Wallach)

$$
\widehat{G}_{x, d s} \subset \widehat{G}_{d s}
$$

Induced representations

Setting

- $P=M_{P} A_{P} N_{P}$ psg with Langlands deco
- $\sigma \in \widehat{M}_{P}$ (unitary dual)
- $\nu \in \mathfrak{a}_{P \mathbb{C}}^{*} \rightsquigarrow$ character: $\left.A_{P} \rightarrow \mathbb{C}^{*}, a \mapsto a^{\nu}=e^{\nu(\log a)}\right]$
- normalized induction $\operatorname{Ind}_{P}^{G}(\sigma \otimes \nu)$ (unitary for $\left.\nu \in i \mathfrak{a}_{P}^{*}\right)$

Space of smooth vectors

$$
C^{\infty}(G / P: \sigma: \nu):=\left\{f: G \xrightarrow{C^{\infty}} \mathcal{H}_{\sigma} \mid f(x m a n)=a^{-\nu-\rho_{P}} \sigma(m)^{-1} f(x)\right\}
$$

Equipped with $\pi_{P, \sigma, \nu}:=$ restriction of left regular representation L.
Compact picture Set $K_{P}:=K \cap M_{P}, \sigma_{P}=\left.\sigma\right|_{K_{P}}$. Since $G=K \times_{K_{P}} P$, restriction from G to K induces topological linear iso:

$$
C^{\infty}(G / P: \sigma: \nu) \simeq C^{\infty}\left(K / K_{P}: \sigma_{P}\right)
$$

Define $\pi_{P, \sigma, \nu}:$ ass d transfer of $\operatorname{Ind}_{P}^{G}(\sigma \otimes \nu)$ to $C^{\infty}\left(K / K_{P}: \sigma_{P}\right)$.

Polar decomposition

$$
G=K_{\mathrm{p}} A H, \quad\left({ }_{\mathrm{p}} A \subset A\right) .
$$

Cases:

(a) Symmetric space: $\sigma(\mathfrak{a})=\mathfrak{a},{ }_{\mathrm{p}} \mathfrak{a}:=\mathfrak{a} \cap \mathfrak{h}^{\perp}$ maximal dim.
(b) Group: ${ }_{\mathrm{p}} \mathfrak{a}=\{(X,-X) \mid X \in \underline{\mathfrak{a}}\}$.
(c) Whittaker: ${ }_{\mathrm{p}} \mathfrak{a}=$ usual \mathfrak{a} (so: Iwasawa decomposition).

Roots: $\Sigma\left(\mathfrak{g},{ }_{p} \mathfrak{a}\right)\left(\right.$ non-red $\left.^{d}\right)$ root syst ${ }^{m} ;$ w.l.o.g.: $\Sigma^{+}(\mathfrak{g}, \mathfrak{p} \mathfrak{a}) \subset \Sigma\left(\mathfrak{n}_{0}, \mathfrak{p} \mathfrak{a}\right)$.
Standard psgps: Coxeter complex of $\Sigma^{+}(\mathfrak{g}, \mathfrak{p} \mathfrak{a}) \rightsquigarrow \mathcal{P}_{\text {st }}$ (finite).
Cases:
(a) Symmetric space: $\mathcal{P}_{\text {st }}=\left\{P \mid P\right.$ psgp $\left.\supset \operatorname{MAN}_{0}, \sigma(P)=\bar{P}\right\}$.
(b) Group: $\mathcal{G}=\underline{G} \times \underline{G}, \mathcal{P}_{\mathrm{st}}=\left\{P \times \bar{P} \mid P \in \mathcal{P}_{\mathrm{st}}(\underline{G})\right\}$.
(c) Whittaker: $\mathcal{P}_{\text {st }}=$ usual collection of $P \supset M A N_{0}$

H-orbits on G/P, multiplicity spaces

Lemma Let $P \in \mathcal{P}_{\text {st }}$. Then there exists a finite subset $p \mathcal{W} \subset N_{K}\left({ }_{p} \mathfrak{a}\right)$ such that

$$
(H \backslash G / P)_{\text {open }}=\cup_{v \in p \mathcal{W}} H v^{-1} P \text { (disjoint). }
$$

Cases
(a) Symmetric spaces: $p \mathcal{W} \stackrel{1-1}{\longleftrightarrow} W_{P}(p \mathfrak{a}) \backslash W\left({ }_{p} \mathfrak{a}\right) / W_{K \cap H}(p \mathfrak{a})$.
(b) Group: $p \mathcal{W}=\{e\}$.
(c) Whittaker: $p \mathcal{W}=\{e\}$.

Multiplicity spaces
For $P \in \mathcal{P}_{\mathrm{st}}, v \in{ }_{P} \mathcal{W}$ put $(v \chi)_{P}:=\left.\left[\chi \circ \operatorname{Ad}(v)^{-1}\right]\right|_{M_{P} \cap v H v^{-1}}$.
For $\sigma \in\left(M_{P}\right)_{\chi, \text { ds }}^{\wedge}$ define $\mathcal{V}_{\sigma}^{\chi}:=\oplus_{v \in p \mathcal{W}} \mathcal{H}_{\sigma}^{-\infty,(v \chi)_{p}}$.

Cases:

(a) Symmetric spaces: $\mathcal{V}_{\sigma}=\oplus_{v \in \rho \mathcal{W}} \mathcal{H}_{\sigma}^{-\infty, M_{\rho} \cap v H v^{-1}}$.
(b) Group: $\mathcal{V}_{\sigma}^{\chi}=\mathcal{V}_{\sigma}=\mathcal{H}_{\sigma}^{-\infty, H}$.
(c) Whittaker: $\mathcal{V}_{\sigma}^{\chi}=\mathcal{H}_{\sigma}^{-\infty, \chi \mid M_{\rho} \cap N_{0}}$.

Generalized vectors

G-equivariant sesquilinear pairing

$$
\begin{aligned}
& C^{\infty}(G / P: \sigma: \nu) \times C^{\infty}(G / P: \sigma:-\bar{\nu}) \rightarrow \mathbb{C} \\
& (f, g) \mapsto \int_{K}\langle f(k), g(k)\rangle_{\sigma} d k
\end{aligned}
$$

Define:

$$
C^{-\infty}(G / P: \sigma: \nu):=\overline{C^{\infty}(G / P: \sigma: \nu)^{\prime}}
$$

Pairing induces continuous linear injection

$$
C^{\infty}(G / P: \sigma: \nu) \hookrightarrow C^{-\infty}(G / P: \sigma: \nu)
$$

Lemma For $P \in \mathcal{P}, \sigma \in\left(M_{P}\right)_{\chi}^{\wedge}, d s$ evaluation map $j \mapsto(j(v) \mid v \in p \mathcal{W})$ is a well-defined linear map

$$
\mathrm{ev}: C^{-\infty}(G / \bar{P}: \sigma: \nu)^{\chi} \rightarrow \mathcal{V}_{\sigma}^{\chi}
$$

Parametrization of generalized vectors

Thm: For $\nu \in_{\mathrm{p}} \mathfrak{a}_{\mathrm{PC}}^{*}:=\left(\mathfrak{a}_{P} / \mathfrak{a}_{P} \cap \mathfrak{h}\right)_{\mathbb{C}}^{*}$ generic, the map ev is injective.
Thm: The space $\mathcal{V}_{\sigma}^{\chi}$ is finite dimensional. There exists a unique map

$$
j(\bar{P}, \sigma, \nu): \mathcal{V}_{\sigma}^{\chi} \rightarrow C^{-\infty}(G / \bar{P}: \sigma: \nu)^{\chi}
$$

which is meromorphic in $\nu \in{ }_{p} \mathfrak{a}_{\mathfrak{P} C}^{*}$ in the compact picture, i.e., as a function with values in $\left(\mathcal{V}_{\sigma}^{\chi}\right)^{*} \otimes C^{-\infty}\left(K / K_{P}: \sigma_{P}\right)$.

Standard intertwining operators

Setting: $P \in \mathcal{P}_{\mathrm{st}}, \sigma \in\left(M_{P}\right)_{\chi, d s}^{\wedge}, \nu \in \mathfrak{p}_{\mathrm{PC}}^{*}$.
Theorem: For ${ }_{p} \mathfrak{a}_{\mathrm{PC}}^{*}$ sufficiently $\Sigma(P, \mathfrak{p} \mathfrak{a})$-dominant the following is valid. For each $f \in C^{\infty}(G / P: \sigma: \nu)$ and all $x \in G$ the integral

$$
A(\bar{P}, P, \sigma, \nu) f(x)=\int_{\bar{N}_{P}} f(x \bar{n}) d \bar{n}
$$

is abs ${ }^{y}$ converg ${ }^{t}$ and defines $A(\bar{P}, P, \sigma, \nu) f \in C^{\infty}(G / \bar{P}: \sigma: \nu)$. The operator

$$
A(\bar{P}, P, \sigma, \nu): C^{\infty}(G / P: \sigma: \nu) \rightarrow C^{\infty}(G / H: \sigma: \nu)
$$

is continuous linear and G-equivariant.
Theorem (Knapp-Stein, Vogan-Wallach): The assignment $\nu \mapsto A(\bar{P}, P, \sigma, \nu)$ extends to ${ }_{\mathrm{p}} \mathfrak{a}_{\mathrm{PC}}^{*}$ as a meromorphic function with values in $\operatorname{End}\left(C^{\infty}\left(K / K_{P}: \sigma_{P}\right)\right)$. Each regular value $A(\bar{P}, P, \sigma, \nu)$ intertwines the (induced) representations $\pi_{P, \sigma, \nu}$ and $\pi_{\bar{P}, \sigma, \nu}$.

Intertwiners on generalized vectors

Theorem For regular $\nu \in_{\mathfrak{p}} \mathfrak{a}_{\mathrm{PC}}^{*}$ the operator $A(\bar{P}, P, \sigma, \nu)$ uniquely extends to a continuous linear endomorphism of $C^{-\infty}\left(K / K_{P}: \sigma_{P}\right)$. This extension depends meromorphically on ν and intertwines the representations $\pi_{P, \sigma, \nu}^{-\infty}$ and $\pi_{\bar{P}, \sigma, \nu}^{-\infty}$.
There exists a non-trivial meromorphic scalar function $\nu \mapsto \eta(P, \sigma, \nu)$ such that

$$
A(\bar{P}, P, \sigma, \nu) A(P, \bar{P}, \sigma, \nu)=\eta(P, \sigma, \nu) \mathrm{id}
$$

Definition: $j^{\circ}(P, \sigma, \nu):=A(\bar{P}, P, \sigma, \nu)^{-1} j(\bar{P}, \sigma, \nu)$.
Easy consequence: For generic $\nu \in{ }_{\mathrm{p}} \mathfrak{a}_{\mathrm{PC}}^{*}$, the map $j^{\circ}(P, \sigma, \nu)$ is bijective

$$
\mathcal{V}_{\sigma}^{\chi} \xrightarrow{1-1} C^{-\infty}(G / P: \sigma: \nu)^{\chi} .
$$

Multiplicity space

Setting: $P \in \mathcal{P}_{\text {st }}, \sigma \in\left(M_{P}\right)_{\chi, d s}^{\wedge}$.
Recall: $\mathcal{V}_{\sigma}^{\chi}:=\oplus_{v \in{ }_{\rho} \mathcal{W}} \mathcal{V}_{\sigma, v}$, where

$$
\begin{aligned}
\mathcal{V}_{\sigma, v}^{\chi}:=\mathcal{H}_{\sigma}^{-\infty,(v \chi)_{P}} & \simeq \operatorname{Hom}_{G}\left(\overline{\mathcal{H}}_{\sigma}^{\infty}, C^{\infty}\left(M_{P} / M_{P} \cap v H v^{-1},(v \chi)_{P}\right)\right) \\
\eta & \mapsto i_{\eta}
\end{aligned}
$$

Define: $\mathcal{V}_{\sigma, d s, v}^{\chi}$ the space of $\eta \in \mathcal{V}_{\sigma, v}^{\chi}$ such that i_{η} extends to a continuous linear map $\overline{\mathcal{H}}_{\sigma} \rightarrow L^{2}\left(M_{P}, M_{P} \cap v H v^{-1},(v \chi)_{P}\right)$. Equip with inner product such that

$$
\mathcal{V}_{\sigma, d s, v}^{\chi} \otimes \overline{\mathcal{H}}_{\sigma} \rightarrow L^{2}\left(M_{P}, M_{P} \cap v H v^{-1}(v \chi)_{P}\right) \quad \text { isometry }
$$

Define: $\mathcal{V}_{\sigma, d s}^{\chi}:=\oplus_{v \in \rho} \mathcal{W} \quad \mathcal{V}_{\sigma, d s, v}^{\chi} \quad$ (orthogonal).
Remark

- Group case: $\mathcal{V}_{\sigma, d s}^{\chi}=\mathcal{V}_{\sigma}^{\chi} \simeq \mathbb{C} \rightsquigarrow$ formal degree.
- Whittaker case: $\mathcal{V}_{\sigma, d s}^{\chi}=\mathcal{V}_{\sigma}^{\chi}$ (Harish-Chandra, Wallach).

Plancherel identity

Definition Fourier transform
For $f \in C_{c}^{\infty}(G / H, \chi)$, the Fourier transform $\hat{f}(P, \sigma, \nu)$ is the element of $\left(\mathcal{V}_{\sigma, d s}^{\chi}\right)^{*} \otimes L^{2}\left(K / K_{P}: \sigma_{P}\right)$, defined by

$$
\hat{f}(P, \sigma, \nu)(\eta):=\int_{G / H} f(x) \pi_{P, \sigma, \nu}^{-\infty}(x) j^{\circ}(P, \sigma, \nu)(\eta) d x
$$

Theorem (Plancherel)

$$
\|f\|_{L^{2}}^{2}=\sum_{P \in \mathcal{P}_{\mathrm{st}} / \sim} \sum_{\sigma \in\left(M_{P}\right)_{\hat{\chi}}} \int_{i_{\mathrm{p}} a_{P}^{*}}\|\hat{f}(P, \sigma, \nu)\|^{2} d \lambda_{P}(\nu)
$$

- $P \sim Q$ iff $_{p} \mathfrak{a}_{P}$ and ${ }_{p} \mathfrak{a}_{Q}$ are $W\left({ }_{p} \mathfrak{a}\right)$-conjugate.
- $d \lambda_{P}$ is Lebesgue measure on $i_{p} \mathfrak{a}_{P}^{*}$, suitably normalized.

Examples

The Riemannian case: $H=K, \chi=1$. In this case, $\mathcal{V}_{\sigma}^{\chi}=\mathbb{C}$,

$$
\begin{aligned}
& j\left(\bar{P}_{0}, 1, \nu\right)=1_{\bar{P}_{0}, \nu}: k \mapsto 1 . \\
& j^{\circ}\left(P_{0}, 1, \nu\right)=c(\nu)^{-1} 1_{P_{0}, \nu} \\
& \left\|\hat{f}\left(P_{0}, 1, \nu\right)\right\|^{2}=|c(\nu)|^{-2}\left\|\pi_{P_{0}, 1, \nu}(f) 1_{P_{0}, \nu}\right\|^{2}
\end{aligned}
$$

Case of the group: $G=\underline{G} \times \underline{G}, H=\operatorname{diag}(\underline{G}), \chi=1$. In this case:

$$
\mathcal{V}_{\sigma}^{\chi}=\mathbb{C} .
$$

inner product is formal degree d_{σ} times standard inner product of \mathbb{C}

