Plancherel formulas for reductive groups, symmetric spaces and Whittaker functions

II. Spherical functions and Fourier inversion

Erik van den Ban
Utrecht University

AIM Research Community
Representation Theory and non-commutative geometry
Organizers: P. Clare, N. Higson, B. Speh
September 1, 2021

Plancherel identity

Definition Fourier transform
For $f \in C_{c}^{\infty}(G / H, \chi)$, the Fourier transform $\hat{f}(P, \sigma, \nu)$ is the element of $\left(\mathcal{V}_{\sigma, d s}^{\chi}\right)^{*} \otimes L^{2}\left(K / K_{P}: \sigma_{P}\right)$, defined by

$$
\hat{f}(P, \sigma, \nu)(\eta):=\int_{G / H} f(x) \pi_{P, \sigma,-\nu}(x) j^{\circ}(P, \sigma,-\nu)(\eta) d x
$$

Theorem (Plancherel)

$$
\|f\|_{L^{2}}^{2}=\sum_{P \in \mathcal{P}_{\mathrm{st}} / \sim} \sum_{\sigma \in\left(M_{P}\right)_{\hat{\chi}}} \int_{i_{\mathrm{p}} \mathrm{a}_{\mathrm{P}}^{*}}\|\hat{f}(P, \sigma, \nu)\|^{2} d \lambda_{P}(\nu)
$$

Strategy
Prove identity on the dense subspace $C^{\infty}(G / H, \chi)_{K}$ of K-finite functions. Technical tool: sphericalization. Let $\left(\tau, V_{\tau}\right)$ be an arbitrary finite dimensional unitary representation of K. Suff ${ }^{t}$ to prove the result for functions in $\left(C_{C}^{\infty}(G / H, \chi) \otimes V_{\tau}\right)^{K}$.

τ-spherical functions

Definition For X a left K-manifold:

$$
\begin{aligned}
C^{\infty}(\tau: X): & =\left\{f: X \rightarrow V_{\tau} \mid f(k x)=\tau(k) f(x)\right\} \\
& \simeq\left(C^{\infty}(X) \otimes V_{\tau}\right)^{K}
\end{aligned}
$$

Likewise: $C_{c}^{\infty}(\tau: G / H: \chi) \simeq\left(C_{c}^{\infty}(G / H: \chi) \otimes V_{\tau}\right)^{K}$.
By triviality on tensor component V_{τ}, Fourier transform becomes

$$
\begin{aligned}
& C_{c}^{\infty}(\tau: G / H: \chi) \xrightarrow{\mathrm{ft} p, \sigma_{\nu}} \quad \mathcal{V}_{\sigma, d s}^{*} \otimes L^{2}\left(\tau: K / K_{P}: \sigma_{P}\right) \\
& \downarrow I \otimes \mathrm{ev}_{e} \\
& \mathcal{F}_{P, \sigma, \nu} \quad \searrow \\
& \mathcal{V}_{\sigma, d s}^{*} \otimes\left(\mathcal{H}_{\sigma} \otimes V_{\tau}\right)^{K_{P}} \\
& \downarrow \simeq \text { (matrix coefficient) } \\
& \oplus_{v \in p \mathcal{W}} L_{\sigma}^{2}\left(\tau_{P}: M_{P} / M_{P} \cap v H v^{-1}:(v \chi)_{P}\right) \\
& :=\mathcal{A}_{2, P, \sigma}
\end{aligned}
$$

Notation: $T \mapsto \psi_{T}$ for composition of vertical maps (isometric).
Assumption: (to simplify exposition) $p \mathcal{W}=\{1\}$ (automatic for group, Riemannian symmetric, complex symmetric, Whittaker case). Then

$$
\mathcal{A}_{2, P, \sigma}=L_{\sigma}^{2}\left(\tau_{P}: M_{P} / M_{P} \cap H: \chi_{P}\right)
$$

Plancherel identity for spherical functions

Definition

$$
\begin{aligned}
\mathcal{A}_{2, P} & =\oplus_{\sigma \in \widehat{M}_{P, d s}^{\chi}} \mathcal{A}_{2, P, \sigma} \\
& =L_{d s}^{2}\left(\tau_{P}: M_{P} / M_{P} \cap H: \chi_{P}\right)
\end{aligned}
$$

Lemma $\mathcal{A}_{2, p}$ is finite dimensional
(gp: HC, ss: Oshima-Matsuki, wh: HC, Wallach).
Definition $\mathcal{F}_{P}: C_{C}^{\infty}(\tau: G / H: \chi) \rightarrow C^{\omega}\left(i a_{P}^{*}\right) \otimes \mathcal{A}_{2, P}$ by

$$
\mathcal{F}_{P}(f)(\nu):=\oplus_{\sigma \in \widehat{M}_{P, d s}^{\chi}} \mathcal{F}_{P, \sigma, \nu}(f) \text {. }
$$

Plancherel identity is equivalent to

$$
\|f\|_{L^{2}}^{2}=\sum_{P \in \mathcal{P}_{\text {st }} / \sim} \int_{i \mathfrak{i a}_{P}^{*}}\left\|\mathcal{F}_{P} f(\nu)\right\|^{2} d \lambda_{P}(\nu), \quad\left(f \in C_{C}^{\infty}(\tau: G / H: \chi)\right) .
$$

Normalized Eisenstein, Whittaker integrals

Definition
$E^{\circ}(P, \psi, \nu) \in C^{\infty}(\tau: G / H: \chi)$ is linear in $\psi \in \mathcal{A}_{2, P}$. For $\psi=\psi_{T}$ with $T=\eta \otimes \varphi \in \mathcal{V}_{\sigma}^{\chi} \otimes L^{2}\left(\tau_{P}: K / K_{P}: \chi_{P}\right)$ it is given as matrix coefficient

$$
E^{\circ}\left(P, \psi_{T}, \nu, x\right)=\left\langle\varphi, \pi_{P, \sigma, \bar{\nu}}(x) j^{\circ}(P, \sigma, \bar{\nu}) \eta\right\rangle
$$

Remark In the Whittaker case, Harish-Chandra calls this the normalized Whittaker function

Lemma

$$
\left\langle\mathcal{F}_{P} f(\nu), \psi\right\rangle=\int_{G / H} f(x) \overline{E^{\circ}(P, \psi,-\bar{\nu}, x)} d x=\left\langle f, E^{\circ}(P, \psi,-\bar{\nu})\right\rangle
$$

Lemma $E^{\circ}(P, \psi, \nu)$ depends meromorphically on $\nu \in \mathfrak{a}_{P \mathbb{C}}^{*}$. For generic ν it satisfies the following differential equations

$$
R_{Z} E^{\circ}(P, \psi, \nu)=E^{\circ}\left(P, \underline{\mu}_{P}(Z, \nu) \psi, \nu\right), \quad(Z \in \mathfrak{Z}(\mathfrak{g}))
$$

Here $\underline{\mu}_{P}(Z, \nu) \in \operatorname{End}\left(\mathcal{A}_{2, P}\right)$ is polynomial in ν, algebra homomorphism in Z.

C-functions, Maass-Selberg relations

Asymptotic behavior Let $P, Q \in \mathcal{P}_{\mathrm{st}}$. There exist unique meromorphic functions $C_{Q \mid P}^{\circ}(s, \cdot): \mathfrak{a}_{P \mathbb{C}}^{*} \rightarrow \operatorname{Hom}\left(\mathcal{A}_{2, P}, \mathcal{A}_{2, Q}\right)$, for $s \in W\left(\mathfrak{p}_{Q} \mid{ }_{p} \mathfrak{a}_{P}\right)$ such that for generic $\nu \in i_{\mathrm{p}} \mathrm{a}_{P}^{*}$ and $a \rightarrow \infty$ in ${ }_{p} A_{Q}^{+}$.

$$
E^{\circ}(P, \psi, \nu)(k a m) \sim \sum_{s \in W\left(\left.{ }_{p} a_{Q}\right|_{p} a_{P}\right)} a^{s \nu-\rho_{Q}}\left[C_{Q \mid P}^{\circ}(s, \nu) \psi\right](m), \quad\left(m \in M_{P}\right)
$$

Maass-Selberg relations $C_{Q \mid P}^{\circ}(s,-\bar{\nu})^{*} C_{Q \mid P}^{\circ}(s, \nu)$ indep t of Q, s.
(gp: HC, ss: vdB, Delorme-Carmona, wh: HC)
Lemma $C_{P \mid P}^{\circ}(1, \nu)=\mathrm{id}_{\mathcal{A}_{2, P}}$.
Proof For $\operatorname{Re} \nu$ sufficiently dominant in $p_{p} \mathfrak{a}_{P}^{*+}$, Langlands' limit formula for matrix coefficients of $\operatorname{Ind} \overline{\mathcal{P}}(\sigma \otimes \bar{\nu})$ gives $\left(\psi=\psi_{T}, T=\eta \otimes \varphi\right)$, for $a \rightarrow \infty$ in ${ }_{\mathrm{p}} A_{P}^{+}$that

$$
\begin{aligned}
a^{-\nu+\rho_{P}} E^{\circ}(P, \psi, \nu, a m) & =a^{-\nu+\rho_{P}}\left\langle\left[A(\cdots)^{-1} \varphi\right], \pi_{\bar{P}, \sigma, \bar{\nu}}(m a) j(\bar{P}, \sigma, \bar{\nu}) \eta\right\rangle \\
& \sim\left\langle A(\cdots)\left[A(\cdots)^{-1} \varphi\right](m), \operatorname{ev}_{e} j(\bar{P}, \sigma, \bar{\nu}) \eta\right\rangle \\
& =\langle\varphi(m), \eta\rangle=\psi(m) .
\end{aligned}
$$

Regularity

Corollary For $P, Q \in \mathcal{P}_{\text {st }}, s \in W\left({ }_{p} \mathfrak{a}_{Q} \mid{ }_{p} \mathfrak{a}_{P}\right)$,

$$
C_{Q \mid P}^{\circ}(s,-\bar{\nu})^{*} C_{Q \mid P}^{\circ}(s, \nu)=\operatorname{id}_{\mathcal{A}_{2, P}}
$$

In particular, $C_{Q \mid P}^{\circ}(s, \nu) \in \mathrm{U}\left(\mathcal{A}_{2, P}, \mathcal{A}_{2, Q}\right)$ for ν imaginary.
Corollary The meromorphic functions $\nu \mapsto C_{Q \mid P}^{\circ}(s, \nu)$ are regular on $i_{p} \mathfrak{a}_{P}^{*}$.
Remark This implies that $E^{\circ}(P, \psi, \nu)$ is regular for imaginary ν, hence that $j^{\circ}(P, \sigma, \nu)$ is regular for such ν.

Extension to the Schwartz space

Recall that $\mathcal{C}(G / H: \chi)$ is the space of functions $f \in C^{\infty}(G / H: \chi)$ such that

$$
w^{N} L_{u} f \in L^{2}(G / H: \chi) \quad(u \in U(\mathfrak{g}), w \in \mathbb{N})
$$

Here $w(k a h)=(1+|\log a|)$, for $a \in{ }_{\mathrm{p}} A$.
Let $\mathcal{S}\left(i_{\mathrm{p}} \mathfrak{a}_{p}^{*}\right)$ denote the usual space of Schwartz functions on the finite dimensional real linear space $i_{\mathrm{p}} \mathfrak{a}_{P}^{*}$.

Theorem For each $P \in \mathcal{P}_{\text {st }}$ the map \mathcal{F}_{P} is continuous linear

$$
\mathcal{C}(\tau: G / H: \chi) \rightarrow \mathcal{S}\left(i_{\mathrm{p}} \mathfrak{a}_{P}^{*}\right) \otimes \mathcal{A}_{2, P} .
$$

Proof for gp: HC, for ss: vdB, Carmona-Delorme, for wh: vdB. The following strategy works in all cases.
(a) the generalized vector map $j(\bar{P}: \sigma: \nu)$ is defined for $\operatorname{Re} \nu$ sufficiently P-dominant.
(b) derive a Bernstein-Sato type functional equation for $j(\bar{P}: \sigma: \nu)$

Extension to the Schwartz space, II

Theorem $\quad \mathcal{F}_{p}: \mathcal{C}(\tau: G / H: \chi) \rightarrow \mathcal{S}\left(i_{p} \mathfrak{a}_{P}^{*}\right) \otimes \mathcal{A}_{2, P}$ is conts linear.

Strategy of Proof

(a) the generalized vector map $j(\bar{P}: \sigma: \nu)$ is defined for $\operatorname{Re} \nu$ sufficiently P-dominant.
(b) derive a Bernstein-Sato type functional equation for $j(\bar{P}: \sigma: \nu)$
(c) use (b) to extend $j(\bar{P}: \sigma: \nu)$ meromorphically. Singular set is a locally finite union of real translates of root hyperplanes. Gives estimates for $j(\bar{P}: \sigma: \nu)$ with uniformity for $\mathrm{Re} \nu$ in translates of the cone of P-dominant elements.
(d) get moderate estimates for $E^{\circ}(P: \sigma: \nu)$ on G / H which are of the type of uniformity mentioned in (c).
(e) use estimate improvements by repeated application of the differential equations coming from $\mathfrak{Z}(\mathfrak{g})$.
(f) estimates lead to uniformly tempered estimates in the range $\nu \in i_{\mathrm{p}} \mathfrak{a}_{P}^{*}$, hence to estimates for $\left\langle\mathcal{F}_{P} f, \psi\right\rangle=\left\langle f, E^{\circ}(P, \psi, \nu)\right\rangle$.

Wave packets, Spherical Fourier inversion

Definition For $P \in \mathcal{P}_{\text {st }}$ define $\mathcal{W}_{P}: \mathcal{S}\left(i_{\mathrm{p}} \mathfrak{a}_{P}^{*}\right) \otimes \mathcal{A}_{2, P} \rightarrow \mathcal{C}^{\infty}(\tau: G / H: \chi)$ by

$$
\mathcal{W}_{P}(\psi)(x)=\int_{i_{\mathrm{p}} a_{P}^{*}} E^{\circ}(P, \psi(\nu), \nu, x) d \lambda_{P}(\nu)
$$

Theorem \mathcal{W}_{P} maps continuously to $\mathcal{C}(\tau: G / H: \chi)$.
(gp: HC, ss: vdB-C-D, wh: vdB).
Proof In all cases: a theory of the constant term with parameters: holomorphic version of HC's functions of type $\mathrm{II}(\lambda)$.

Lemma The composition $\mathcal{W}_{P} \mathcal{F}_{P}$ depends on P through $[P] \in \mathcal{P}_{\text {st }} / \sim$ (consequence of Maass-Selberg relations).

Lemma \mathcal{F}_{P} and \mathcal{W}_{P} are adjoint.
Since $\left\|\mathcal{F}_{P} f\right\|^{2}=\left\langle f, \mathcal{W}_{P} \mathcal{F}_{P} f\right\rangle$ the spherical Plancherel identity follows from:
Theorem: spherical fourier inversion

$$
I=\sum_{P \in \mathcal{P}_{\text {st }} / \sim} \mathcal{W}_{P} \mathcal{F}_{P} \quad \text { on } \mathcal{C}(\tau: G / H: \chi) \quad(\mathrm{SFI})
$$

Final part of the talk: sketch of proof for both $\mathrm{ss}(\mathrm{vdB}-\mathrm{S})$ and $\mathrm{wh}(\mathrm{vdB})$.

Cone supported functions

There exists an open polyhedral cone ${ }_{p} \mathfrak{a}^{+}$such that $\left({ }_{p} A^{+}=\exp \left({ }_{p} \mathfrak{a}^{+}\right)\right)$

$$
G_{+}:=K_{\mathrm{p}} A^{+} H=K \exp \left(\mathrm{pa}^{+}\right) H \quad \text { open dense in } G .
$$

Cases:
(a) Symmetric space: ${ }_{\mathrm{p}} A^{+}$is positive chamber for $\Sigma^{+}\left({ }_{\mathrm{p}} \mathfrak{a}\right)$.
(b) Group: $\mathfrak{p a}{ }^{+}=\mathfrak{a}^{+} \times-\underline{\mathfrak{a}}^{+}$.
(c) Whittaker: ${ }_{\mathrm{p}} A^{+}=A$.

Notation

- $\mathcal{C} \subset_{\mathrm{p}} \mathfrak{a}$ is the cone dual to $\mathrm{pa}^{+}\left(P_{0}\right)$.
- $C_{C S}^{\infty}(G / H: \chi)$ is the collection of $f \in C^{\infty}(G / H: \chi)$ such that there exists a subset of ${ }_{p} \mathfrak{a}$ of the form $S_{X}:=\operatorname{cl}\left((X-\mathcal{C}) \cap_{\mathfrak{p}} \mathfrak{a}^{+}\right)$such that supp $f \subset K \exp \left(S_{X}\right) H$.

Whiltalue

Remark For ss: $C_{C s}^{\infty}(G / H: \chi)=C_{C}^{\infty}(G / H)$. For wh: not the case.

Series expansions

Let $P_{0}=M_{0} A_{0} N_{0}$ be the minimal element in $\mathcal{P}_{\text {st }}$. Then $M_{0} / M_{0} \cap H$ is compact, so $\sigma \in \widehat{M}_{0, d s}^{\chi} \Longrightarrow \operatorname{dim}(\sigma)<\infty$.

First step towards proof of (SIF): investigation of $\mathcal{W}_{0} \mathcal{F}_{0}=\mathcal{W}_{P_{0}} \mathcal{F}_{P_{0}}$.
Recall:

$$
G_{+}=K_{\mathrm{p}} A^{+} H \quad \text { open dense in } G
$$

Theorem: There exists unique functions $E_{+}(\nu) \in \mathcal{A}_{2,0}^{*} \otimes C^{\infty}\left(\tau: G_{+} / H: \chi\right)$ depending meromorphically on $\nu \in{ }_{\mathrm{p}} \mathfrak{a}_{\mathbb{C}}^{*}$ such that, for $\psi \in \mathcal{A}_{2,0}=\mathcal{A}_{2, P_{0}}$,

$$
\begin{aligned}
& E\left(P_{0}, \psi, \nu\right)(x)=\sum_{s \in W(\mathrm{p} \mathfrak{a})} E_{+}(s \nu, x) C^{\circ}(s: \nu)(\psi), \quad\left(x \in G_{+} / H\right) . \\
& E_{+}(\nu, a)(\psi)=a^{\nu-\rho} \sum_{m \in \mathbb{N} \Sigma^{+}(\mathfrak{p a})} a^{-m} \Gamma_{m}(\nu)(\psi), \quad\left(a \in{ }_{\mathrm{p}} A^{+}\right) .
\end{aligned}
$$

Here $C^{\circ}(s, \nu):=C_{P_{0} \mid P_{0}}^{\circ}(s, \nu), \Gamma_{m}(\nu) \in \mathcal{A}_{2,0}^{*} \otimes V_{\tau}$, and $\Gamma_{0}(\nu)(\psi)=\psi(e)$.

Contour shift à la Helgason (G/K)

For $f \in C_{c}^{\infty}(\tau: G / H: \chi), x \in G_{+}$,

$$
\begin{aligned}
\mathcal{W}_{0} \mathcal{F}_{0} f(x) & =\int_{i_{\mathfrak{p}^{*}}} \sum_{s \in W} E_{+}(s \nu, x) C^{\circ}(s: \nu) \mathcal{F}_{0} f(\nu) d \lambda(\nu) \\
& =\sum_{s \in W} \int_{i_{\mathrm{p}} \mathfrak{a}^{*}} E_{+}(\nu, x) C^{\circ}\left(s: s^{-1} \nu\right) \mathcal{F}_{0} f\left(s^{-1} \nu\right) d \lambda(\nu) \\
& =|W| \int_{i_{\mathrm{p} \mathfrak{a}^{*}}} E_{+}(\nu, x) \mathcal{F}_{0}(f)(\nu) d \lambda(\nu) \\
& =|W| \int_{i_{\mathbf{p}^{\mathfrak{a}^{*}-\eta}}} E_{+}(\nu, x) \mathcal{F}_{0}(f)(\nu) d \lambda(\nu)+\text { residual integrals } \\
& =\mathcal{T}_{\eta} f(x)+\operatorname{ResInt}(f)
\end{aligned}
$$

with $\eta \in{ }_{\mathrm{p}} \mathfrak{a}^{*}$ sufficiently P_{0}-dominant. These residues are picked up along finitely many real translates of root hyperplanes. R_{Z} acts by $\mu(Z: \nu)$ in the integrals on the right.
For suitable $Z_{0} \in \mathfrak{Z}(\mathfrak{g})$ the residues are cancelled so that

$$
R_{Z_{0}} \mathcal{W}_{0} \mathcal{F}_{0} f(x)=R_{Z_{0}} \mathcal{T}_{\eta} f(x)
$$

By sending $\eta \rightarrow \infty$ and applying a Paley-Wiener type estimation one concludes, for $f \in C_{c}^{\infty}\left(\tau: G_{+} / H: \chi\right)$,

$$
\operatorname{supp}(f) \subset K \exp \left(S_{X}\right) H \Longrightarrow \operatorname{supp} R_{Z_{0}} \mathcal{W}_{0} \mathcal{F}_{0} f \subset K \exp \left(S_{X}\right) H
$$

To be named

Lemma The operator $R_{Z_{0}} \mathcal{W}_{0} \mathcal{F}_{0} \in \operatorname{End}\left(C_{C}^{\infty}\left(\tau: G_{+} / H: \chi\right)\right)$ is support preserving.
Proof: By combining above with symmetry of the operator.
Lemma $R_{Z_{0}} \mathcal{W}_{0} \mathcal{F}_{0}=R_{Z_{0}}$.
Proof:

- The radial part of the operator on the left is essentially a differential operator D on ${ }_{\mathrm{p}} \mathrm{A}^{+}$.
- D commutes with the radial parts of all $Z \in \mathcal{Z}(\mathfrak{g})$.
- coefficients of D satisfy cofinite system of differential equations, which makes that D is determined by behavior at infinity.
- asymptotically, $D \sim \operatorname{rad}\left(R_{z_{0}}\right)$, hence $D=\operatorname{rad}\left(R_{Z_{0}}\right)$.

Theorem For all $f \in C_{c}^{\infty}(\tau: G / H: \chi)$ and η sufficiently P_{0}-dominant, one has

$$
f=\mathcal{T}_{\eta}(f) \quad \text { on } \quad G_{+}
$$

Proof:

- Induction $\rightsquigarrow \operatorname{ResInt}(f) \in C^{\infty}(\tau: G / H: \chi)$, hence $\mathcal{T}_{\eta} f \in C^{\infty}(\tau: G / H: \chi)$.
- By Paley-Wiener type estimation, $\mathcal{T}_{\eta} f \in C_{C S}^{\infty}(\tau: G / H: \chi)$.
- $\rightsquigarrow f-\mathcal{T}_{\eta} f \in C_{c s}^{\infty}(\tau: G / H: \chi)$.
$\checkmark \rightsquigarrow f-\mathcal{T}_{\eta} f$ is annihilated by the analytic linear partial differential operator $R_{Z_{0}}$.
- By Holmgren uniqueness, $f-\mathcal{T}_{\eta} f=0$.

Identification of Residual integrals

Have found:

$$
\mathcal{W}_{P_{0}} \mathcal{F}_{P_{0}} f=\mathcal{T}_{\eta} f-\operatorname{ResInt}(f), \quad \mathcal{T}_{\eta} f=f
$$

Corollary

$$
f=\mathcal{W}_{0} \mathcal{F}_{0} f+\operatorname{ResInt}(f)
$$

One can organize the residue scheme so that it allows induction over M-components of parabolic subgroups. By comparison of asymptotic behavior along A-components, one obtains:

$$
\operatorname{ResInt}(f)=\sum_{P \in \mathcal{P}_{\mathrm{st}} / \sim, P \neq P_{0}} \mathcal{W}_{P} \mathcal{F}_{P} f
$$

This completes the proof of (SFI), hence of the Plancherel identity.

