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Plancherel identity

Definition Fourier transform
For f ∈ C∞c (G/H, χ), the Fourier transform f̂ (P, σ, ν) is the element of
(Vχσ,ds)∗ ⊗ L2(K/KP : σP), defined by

f̂ (P, σ, ν)(η) :=

∫
G/H

f (x)πP,σ,−ν(x) j◦(P, σ,−ν)(η) dx

Theorem (Plancherel)

‖f‖2
L2 =

∑
P∈Pst/∼

∑
σ∈(MP )∧χ

∫
i pa
∗
P

‖f̂ (P, σ, ν)‖2 dλP(ν)

Strategy

Prove identity on the dense subspace C∞(G/H, χ)K of K -finite functions. Technical
tool: sphericalization. Let (τ,Vτ ) be an arbitrary finite dimensional unitary
representation of K . Sufft to prove the result for functions in (C∞c (G/H, χ)⊗ Vτ )K .



τ -spherical functions

Definition For X a left K -manifold:

C∞(τ : X) : = {f : X → Vτ | f (kx) = τ(k)f (x)}
' (C∞(X)⊗ Vτ )K .

Likewise: C∞c (τ : G/H : χ) ' (C∞c (G/H : χ)⊗ Vτ )K .

By triviality on tensor component Vτ , Fourier transform becomes

C∞c (τ : G/H : χ)
ftP,σ,ν−→ V∗σ,ds ⊗ L2(τ : K/KP : σP)

↓ I ⊗ eve
FP,σ,ν ↘ V∗σ,ds ⊗ (Hσ ⊗ Vτ )KP

↓ ' (matrix coefficient)

⊕v∈PW L2
σ(τP :MP/MP∩vHv−1:(vχ)P )

:= A2,P,σ

Notation: T 7→ ψT for composition of vertical maps (isometric).

Assumption: (to simplify exposition) PW = {1} (automatic for group, Riemannian
symmetric , complex symmetric, Whittaker case). Then

A2,P,σ = L2
σ(τP : MP/MP ∩ H : χP ).



Plancherel identity for spherical functions

Definition

A2,P = ⊕
σ∈M̂χP,ds

A2,P,σ

= L2
ds(τP : MP/MP ∩ H : χP )

Lemma A2,P is finite dimensional

(gp: HC, ss: Oshima-Matsuki, wh: HC, Wallach).

Definition FP : C∞c (τ : G/H : χ)→ Cω(ia∗P)⊗A2,P by

FP(f )(ν) := ⊕
σ∈M̂χP,ds

FP,σ,ν(f ).

Plancherel identity is equivalent to

‖f‖2
L2 =

∑
P∈Pst/∼

∫
ia∗P

‖FP f (ν)‖2dλP(ν), (f ∈ C∞c (τ : G/H : χ)).



Normalized Eisenstein, Whittaker integrals

Definition
E◦(P, ψ, ν) ∈ C∞(τ : G/H : χ) is linear in ψ ∈ A2,P . For ψ = ψT with
T = η ⊗ ϕ ∈ Vχσ ⊗ L2(τP : K/KP : χP ) it is given as matrix coefficient

E◦(P, ψT , ν, x) = 〈ϕ, πP,σ,ν̄(x)j◦(P, σ, ν̄)η 〉.

Remark In the Whittaker case, Harish-Chandra calls this the normalized Whittaker
function

Lemma

〈 FP f (ν), ψ 〉 =

∫
G/H

f (x)E◦(P, ψ,−ν̄, x) dx = 〈 f ,E◦(P, ψ,−ν̄) 〉

Lemma E◦(P, ψ, ν) depends meromorphically on ν ∈ a∗PC. For generic ν it satisfies
the following differential equations

RZ E◦(P, ψ, ν) = E◦(P, µ
P

(Z , ν)ψ, ν), (Z ∈ Z(g)).

Here µ
P

(Z , ν) ∈ End(A2,P) is polynomial in ν, algebra homomorphism in Z .



C-functions, Maass-Selberg relations

Asymptotic behavior Let P,Q ∈ Pst. There exist unique meromorphic functions
C◦Q|P(s, · ) : a∗PC → Hom(A2,P ,A2,Q), for s ∈ W (paQ | paP) such that for generic

ν ∈ i pa∗P and a→∞ in pA+
Q .

E◦(P, ψ, ν)(kam) ∼
∑

s∈W (paQ |paP )

asν−ρQ [C◦Q|P(s, ν)ψ](m), (m ∈ MP)

Maass-Selberg relations C◦Q|P(s,−ν̄)∗C◦Q|P(s, ν) indept of Q, s.

(gp: HC, ss: vdB, Delorme-Carmona, wh: HC)

Lemma C◦P|P(1, ν) = idA2,P .

Proof For Reν sufficiently dominant in pa
∗+
P , Langlands’ limit formula for matrix

coefficients of IndG
P̄

(σ ⊗ ν̄) gives (ψ = ψT ,T = η ⊗ ϕ), for a→∞ in pA+
P that

a−ν+ρP E◦(P, ψ, ν, am) = a−ν+ρP 〈 [A(· · · )−1ϕ], πP̄,σ,ν̄(ma)j(P̄, σ, ν̄)η 〉

∼ 〈A(· · · )[A(· · · )−1ϕ](m), eve j(P̄, σ, ν̄)η 〉
= 〈ϕ(m), η 〉 = ψ(m).



Regularity

Corollary For P,Q ∈ Pst, s ∈ W (paQ | paP),

C◦Q|P(s,−ν̄)∗C◦Q|P(s, ν) = idA2,P .

In particular, C◦Q|P(s, ν) ∈ U(A2,P ,A2,Q) for ν imaginary.

Corollary The meromorphic functions ν 7→ C◦Q|P(s, ν) are regular on i pa∗P .

Remark This implies that E◦(P, ψ, ν) is regular for imaginary ν, hence that j◦(P, σ, ν)
is regular for such ν.



Extension to the Schwartz space

Recall that C(G/H : χ) is the space of functions f ∈ C∞(G/H : χ) such that

wNLu f ∈ L2(G/H : χ) (u ∈ U(g),w ∈ N).

Here w(kah) = (1 + | log a|), for a ∈ pA.

Let S(i pa∗P) denote the usual space of Schwartz functions on the finite dimensional
real linear space i pa∗P .

Theorem For each P ∈ Pst the map FP is continuous linear

C(τ : G/H : χ)→ S(i pa
∗
P)⊗A2,P .

Proof for gp: HC, for ss: vdB, Carmona–Delorme, for wh: vdB. The following strategy

works in all cases.

(a) the generalized vector map j(P̄ : σ : ν) is defined for Reν sufficiently P-dominant.

(b) derive a Bernstein-Sato type functional equation for j(P̄ : σ : ν)



Extension to the Schwartz space, II

Theorem FP : C(τ : G/H : χ)→ S(i pa∗P)⊗A2,P is conts linear.

Strategy of Proof

(a) the generalized vector map j(P̄ : σ : ν) is defined for Reν sufficiently P-dominant.

(b) derive a Bernstein-Sato type functional equation for j(P̄ : σ : ν)

(c) use (b) to extend j(P̄ : σ : ν) meromorphically. Singular set is a locally finite union
of real translates of root hyperplanes. Gives estimates for j(P̄ : σ : ν) with
uniformity for Reν in translates of the cone of P-dominant elements.

(d) get moderate estimates for E◦(P : σ : ν) on G/H which are of the type of
uniformity mentioned in (c).

(e) use estimate improvements by repeated application of the differential equations
coming from Z(g).

(f) estimates lead to uniformly tempered estimates in the range ν ∈ i pa∗P , hence to
estimates for 〈 FP f , ψ 〉 = 〈 f ,E◦(P, ψ, ν) 〉.



Wave packets, Spherical Fourier inversion

Definition For P ∈ Pst defineWP : S(i pa∗P)⊗A2,P → C∞(τ : G/H : χ) by

WP(ψ)(x) =

∫
i pa
∗
P

E◦(P, ψ(ν), ν, x) dλP(ν).

Theorem WP maps continuously to C(τ : G/H : χ).

(gp: HC, ss: vdB–C–D, wh: vdB).

Proof In all cases: a theory of the constant term with parameters: holomorphic version
of HC’s functions of type II(λ).

Lemma The compositionWPFP depends on P through [P] ∈ Pst/ ∼
(consequence of Maass-Selberg relations).

Lemma FP andWP are adjoint.

Since ‖FP f‖2 = 〈 f ,WPFP f 〉 the spherical Plancherel identity follows from:

Theorem: spherical fourier inversion

I =
∑

P∈Pst/∼
WPFP on C(τ : G/H : χ) (SFI).

Final part of the talk: sketch of proof for both ss (vdB–S) and wh (vdB).



Cone supported functions

There exists an open polyhedral cone pa+ such that (pA+ = exp(pa+))

G+ := K pA+H = K exp(pa
+)H open dense in G.

Cases:

(a) Symmetric space: pA+ is positive chamber for Σ+(pa).

(b) Group: pa+ = a+ ×−a+.

(c) Whittaker: pA+ = A.

Notation
I C ⊂ pa is the cone dual to pa+(P0).

I C∞cs (G/H : χ) is the collection of f ∈ C∞(G/H : χ) such that there exists a
subset of pa of the form SX := cl((X − C) ∩ pa+) such that suppf ⊂ K exp(SX )H.

 

jij
pot

ator

symmetrie Whittaker

Remark For ss: C∞cs (G/H : χ) = C∞c (G/H). For wh: not the case.



Series expansions

Let P0 = M0A0N0 be the minimal element in Pst. Then M0/M0 ∩ H is compact, so
σ ∈ M̂χ

0,ds =⇒ dim(σ) <∞.

First step towards proof of (SIF): investigation ofW0F0 =WP0FP0 .

Recall:
G+ = K pA+H open dense in G.

Theorem: There exists unique functions E+(ν) ∈ A∗2,0 ⊗ C∞(τ : G+/H : χ)

depending meromorphically on ν ∈ pa∗C such that, for ψ ∈ A2,0 = A2,P0 ,

E(P0, ψ, ν)(x) =
∑

s∈W (pa)

E+(sν, x)C◦(s : ν)(ψ), (x ∈ G+/H).

E+(ν, a)(ψ) = aν−ρ
∑

m∈NΣ+(pa)

a−mΓm(ν)(ψ), (a ∈ pA+).

Here C◦(s, ν) := C◦P0|P0
(s, ν), Γm(ν) ∈ A∗2,0 ⊗ Vτ , and Γ0(ν)(ψ) = ψ(e).



Contour shift à la Helgason (G/K)

For f ∈ C∞c (τ : G/H : χ), x ∈ G+,

W0F0f (x) =

∫
i pa∗

∑
s∈W

E+(sν, x)C◦(s : ν)F0f (ν) dλ(ν)

=
∑
s∈W

∫
i pa∗

E+(ν, x)C◦(s : s−1ν)F0f (s−1ν) dλ(ν)

= |W |
∫

i pa∗
E+(ν, x)F0(f )(ν) dλ(ν)

= |W |
∫

i pa∗−η
E+(ν, x)F0(f )(ν) dλ(ν) + residual integrals

= Tη f (x) + ResInt(f ),

with η ∈ pa∗ sufficiently P0-dominant. These residues are picked up along finitely many
real translates of root hyperplanes. RZ acts by µ(Z : ν) in the integrals on the right.
For suitable Z0 ∈ Z(g) the residues are cancelled so that

RZ0W0F0f (x) = RZ0Tη f (x)

By sending η →∞ and applying a Paley-Wiener type estimation one concludes, for
f ∈ C∞c (τ : G+/H : χ),

supp(f ) ⊂ K exp(SX )H =⇒ suppRZ0W0F0f ⊂ K exp(SX )H.



To be named

Lemma The operator RZ0W0F0 ∈ End(C∞c (τ : G+/H : χ)) is support preserving.

Proof: By combining above with symmetry of the operator.

Lemma RZ0W0F0 = RZ0 .

Proof:
I The radial part of the operator on the left is essentially a differential operator D on

pA+.

I D commutes with the radial parts of all Z ∈ Z(g).

I coefficients of D satisfy cofinite system of differential equations, which makes that
D is determined by behavior at infinity.

I asymptotically, D ∼ rad(RZ0 ), hence D = rad(RZ0 ).

Theorem For all f ∈ C∞c (τ : G/H : χ) and η sufficiently P0-dominant, one has

f = Tη(f ) on G+.

Proof:
I Induction ResInt(f ) ∈ C∞(τ : G/H : χ), hence Tη f ∈ C∞(τ : G/H : χ).

I By Paley-Wiener type estimation, Tη f ∈ C∞cs (τ : G/H : χ).

I  f − Tη f ∈ C∞cs (τ : G/H : χ).

I  f − Tη f is annihilated by the analytic linear partial differential operator RZ0 .

I By Holmgren uniqueness, f − Tη f = 0.



Identification of Residual integrals

Have found:
WP0FP0 f = Tη f − ResInt(f ), Tη f = f .

Corollary
f =W0F0f + ResInt(f ).

One can organize the residue scheme so that it allows induction over M-components of
parabolic subgroups. By comparison of asymptotic behavior along A-components, one
obtains:

ResInt(f ) =
∑

P∈Pst/∼,P 6=P0

WPFP f

This completes the proof of (SFI), hence of the Plancherel identity.


