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Whittaker functions

Setting
I G connected real semisimple Lie group, finite center.

example: G = SL(n,R).

I N0 < G nilpotent subgroup from Iwasawa deco.
Example:

N0 = {x ∈ SL(n,R) | x = I + upper triangular} .

I χ : N0 → U(1) unitary character (regular: defn postponed).
I F(G/N0, χ) := {f : G→ C | f (xn) = χ(n)f (x) (x ∈ G,n ∈ N0)}.

L2(G/N0, χ) := {f ∈ F(G/N0, χ) | |f | ∈ L2(G/N0)}.

I L (left regular representation) = IndG
N0

(χ∨), is unitary.



Whittaker Plancherel formula

Abstractly
I Since G is type I, IndG

N0
(χ∨) =

∫ ⊕
Ĝ mππdµ(π).

Concrete realization
I Harish-Chandra, Announcement 1982.

Details in Collected Papers 5 (posthumous), eds. R. Gangolli,
V.S. Varadarajan, Springer 2018, 141-307.
Final step "⊂" appears to be missing.

I N.R. Wallach, Independent treatment;

Real reductive groups II, Acad. Press 1992, relies on erroneous
estimate.
Repair addressed in arXiv:1705.06787.

I Today: missing step by new inversion theorem.
Bonus: Paley-Wiener theorem.



Regular character

I G = KAN0 Iwasawa decomposition.
Exple: G = SL(n,R), K = SO(n), A = {a ∈ SL(n,R) | a diagonal}.

I Σ = Roots(g, a), Σ+ := {α ∈ Σ | gα ⊂ n0}, ∆ ⊂ Σ+ simple roots.

Definition χ : N0 → U(1) regular means:

∀α ∈ ∆ : dχ(e)|gα 6= 0.

I P0 := ZK (A)AN0, minimal parabolic subgroup;
Pst : the (finite) set of all parabolic subgroups P ⊃ P0.

I For P ∈ Pst , Langlands decomposition: P = MPAPNP .
P̄N0 is open dense in G.

Theorem (Harish-Chandra’s Thm 1)
Assume u ∈ D′(G) left N̄P-invariant, χ regular, and Rnu = χ(n)u for
all n ∈ N0. Then

u|P̄N0
= 0 =⇒ u = 0.

Ref for proof also: J.A.C. Kolk, V.S. Varadarajan, Indag. Math. 1996.



Discrete part of decomposition

Discrete part
π ∈ Ĝ (unitary dual) is said to appear discretely in L2(G/N0, χ) if it
can be realized as a closed subrepresentation.

Theorem (Harish-Chandra)
If π ∈ Ĝ appears discretely in L2(G/N0, χ), then it appears discretely
in L2(G), i.e., it belongs to the discrete series of G.
Proof by distributional asymptotics of matrix coefficients, combined
with Thm 1.

Corollary
If π ∈ Ĝ appears discretely in L2(G/N0, χ), then its infinitesimal
character is real and regular.
This result is crucial for the distinction of spectra in the Whittaker
Plancherel decomposition.



Schwartz functions

Define ρ ∈ a∗ by ρ(X ) = 1
2 tr(ad(X )|N0 ).

Def: Schwartz space (HC)
C(G/N0, χ): the space of f ∈ C∞(G/N0, χ) such that

sup
k∈K ,a∈A

(1 + | log(a)|)Naρ|Luf (ka)| <∞, (∀u ∈ U(g),∀N ≥ 1).

For (τ,Vτ ) a finite dimensional unitary representation of K , we define

C(τ,G/N0, χ) := {f ∈ C(G/N0, χ)⊗Vτ | f (ka) = τ(k)f (x) (k ∈ K , x ∈ G)}.

Finally, with Z := center U(g),

A(τ,G/N0, χ) := {f ∈ C(τ,G/N0, χ) | dimZf <∞}

Theorem (HC) A(τ,G/N0, χ) = L2
d (τ,G/N0, χ).

The space is finite dimensional.



Whittaker integrals

Let P = MPAPNP ∈ Pst and put AP,τ := A(τ,MP/MP ∩ N, χ).

For ψ ∈ AP,τ and λ ∈ a∗PC, define (for k ∈ K ,man ∈ MPAPNP):

ψP̄,λ(kman) := a−λ+ρP τ(k)ψ(m),

Definition (HC)
For ψ ∈ AP,τ , λ ∈ a∗+PC, x ∈ G, the Whittaker integral is defined by

Wh(P, ψ, λ, x) :=

∫
NP

ψP̄,−λ(xn)χ(n)−1 dn.

It is essentially a finite sum of matrix coefficients of IndG
P̄ (σ ⊗−λ⊗ 1),

with σ appearing in L2
d (τ,MP/MP ∩ N0, χ).

Remark: For P = P0, we have MP ∩ N0 = {e} and MP ⊂ K , so
A(τ,MP/MP ∩ N, χ) = L2(τ,MP).



Holomorphy

Wh(ψ, λ, ·) depends linearly on ψ and belongs to C∞(τ,G/N0, χ). It is
convenient to write

Wh(P, λ)(x)(ψ) := Wh(P, ψ, λ, x);

Viewpoint: Wh(P, λ) ∈ C∞(G/N0, χ)⊗ Hom(AP,τ ,Vτ ).

Theorem (Wallach)
The Whittaker integral Wh(P, λ), initially defined for λ ∈ a∗+PC, extends
to an entire holomorphic function of λ ∈ a∗PC with values in
C∞(G/N0, χ)⊗ Hom(AP,τ ,Vτ ).

I Harish-Chandra established existence of meromorphic
extension, regular on ia∗P .

I We found a new proof, using Thm 1.



Classical Whittaker functions

Example
I G = SL(2,R), τ ∈ SO(2)∧, M0 = {±I}, ψ(−I) = τ(−I) = ±1.
I Wh(P, λ, ψ) is essentially a classical Whittaker function on R;

I satisfies ODE on R with regular singularity at∞,
I but with irregular singularity at −∞;

For α(log a)→ −∞ have:
I Wh(P, λ, ψ)(a) ∼ e−a−α

(super fast decay);
I generic solution W of ODE:

W (a) ∼ ea−α
(super exponential growth).



C-functions, Maass-Selberg relations

Asymptotic behavior (HC)
For ψ ∈ AP,τ , λ ∈ ia∗P , m ∈ MP , a→∞ in A+

P ,

Wh(P, λ)(ma)ψ ∼
∑

s∈W (aP )

asλ−ρP [CP|P(s, λ)ψ](m),

with CP|P(s, λ) ∈ End(AP,τ ) meromorphic in λ ∈ a∗PC.

For a→∞ in other chambers of AP , Wh(P, λ)(ma) = o(a−ρP ).

Maass-Selberg relations (HC)
For all s ∈W (aP), λ ∈ ia∗P ,

C◦P|P(s, λ) := CP|P(s, λ)CP|P(1, λ)−1

is unitary.



Fourier transform

Normalized Whittaker functions (HC)

Wh◦(P, λ, x) := Wh(P, λ, x) ◦ CP|P(s, λ)−1.

Normalized Fourier transform
◦Wh∗(P, λ, x) := Wh◦(P,−λ̄, x)∗ ∈ Hom(Vτ ,AP,τ ).

For f ∈ C(τ,G/N0, χ), P ∈ Pst , λ ∈ ia∗,

F◦P f (λ) :=

∫
G/N0

◦Wh∗(P, λ, x)f (x) dx ∈ AP,τ .

Also: unnormalized versions all without ◦.

Discrete part of Fourier transform
For P = G one has a∗P = {0} and the normalized Fourier transform is
given by the (finite rank) L2-orthogonal projection

C(τ,G/N0, χ)→ L2
d (τ,G/N0, χ).



Plancherel formula

For P,Q ∈ Pst , P ∼ Q means aP , aQ conjugate under W (a).

Plancherel identity (HC)
For suitable normalization of the measures on ia∗P ,

‖f‖2
L2(G/N0,χ) :=

∑
P∈Pst/∼

‖F◦P f‖2
L2(ia∗

P ).

The issue of completeness Harish-Chandra proves this identity for f
in a space spanned by wave packets, of which the density in
L2(τ,G/N0, χ) appears to remain unproven. In principle this allows a
non-trival joint kernel of the Fourier transforms.
Speculation: perhaps Harish-Chandra intended to obtain
completeness from the similar completeness related to his Plancherel
decomposition of L2(G).

Different idea for obtaining completeness Use Paley-Wiener shift
argument such as developed in collaboration with Henrik Schlichtkrull
for proof of the Plancherel formula for a semisimple symmetric space
G/H.



Series expansion

Let P = P0 be minimal. Then AP,τ ' V M
τ and,

Wh(P, λ) ∈ C∞(τ,G, χ)⊗A∗P,τ

holomorphic in λ ∈ a∗C. The function is Z-finite, hence satisfies a
cofinite system of differential equations, which has regular
singularities at infinity in the direction of A+.

Expansion at infinity

Wh(P, λ) =
∑
s∈W

Wh+(P, sλ)CP|P(s, λ)

where Wh+(P, λ) ∈ C∞(τ,G, χ)⊗A∗P,τ depends meromorphically on
λ ∈ a∗qC, and admits a converging series expansion

Wh+(P, λ)(a) = aλ−ρ
∑
µ∈N∆

a−µΓµ(λ) (a ∈ A),

with Γµ(λ) ∈ End(AP,τ ) meromorpic, Γ0(λ) = idAP,τ .



Fourier inversion

C∞c (τ,G/N0, χ) := {f ∈ C∞(τ,G/N0, χ) | supp f cpt mod N0}.

Key theorem: Fourier inversion

f (x) = |W (a)|
∫

ia∗+η

Wh+(P, λ, x)F0
P0

f (λ) dλ,

for all f ∈ C∞c (τ,G/N0, χ) and all x ∈ G, provided 〈 η, α 〉 << 0
(∀α ∈ Σ+).

NB: For λ ∈ a∗qC, the function Wh+(P, λ) is globally defined on X , but
may exhibit super exponential growth in directions different from A+.

Notation: denote expression on right by Tηf (x). Then

Tη : C∞c (τ,G/N0, χ)→ C∞(τ,G/N0, χ).



Proof of Fourier inversion

Sketch of proof:
I There exists a non-trivial symmetric differential operator D = LZ ,

Z ∈ Z which cancels singularities if η moves to 0. By Cauchy’s
thm:

D(Tηf )(x) = D(T0f )(x)

=
∫

ia∗ DWh0(P, λ, x)F0f (λ) dλ.

I By Paley-Wiener shift for 〈 η, α 〉 → −∞ (∀α ∈ ∆), one sees

supp f ⊂ KaCN0 =⇒ supp(Tηf ) ⊂ KaCN0.

Here C = exp C, C := −a++, the cone negative dual to a+.

DTη
I is symmetric, hence support preserving;
I is essentially a differential operator on A.



Support preservation

S = D ◦ Tη = D ◦ T0 =⇒ S symmetric

C∞c (τ,G/N0, χ)
S−→ C∞(τ,G/N0, χ)

↓ ↓
ϕ ∈ C∞c (a)⊗ V M

τ

∃!S−→ C∞(a)⊗ V M
τ ∀ϕ : supp Sϕ ⊂ suppϕ+ C.

Hence distribution kernel K of S satisfies:
1. supp K ⊂ ∆ + C × {0}. By symmetry, get
2. supp K ⊂ ∆ + {0} × C = ∆ + (−C)× {0}.

1 & 2 =⇒ supp K ⊂ ∆ =⇒ S support preserving.

 



Proof of Fourier inversion, continued

DTη
I is essentially a differential operator on A;

I commutes with Z-action;
I satisfies cofinite system of DE’s with regular singularities at∞ in

A+;

I is determined by highest order asymptotic part.

DTη = D by highest order term asymptotic analysis.

Application of Holmgren’s uniquess theorem
I rad (D) analytic with highest order part in D(A)⊗ I.

supp(Tηf − f ) ⊂ K (suppf ∩ A)CN
D(Tηf − f ) = 0

}
=⇒ Tηf − f = 0.



Residual kernels

By Fourier inversion:

f (x) = |W (a)|
∫

ia∗+η

Wh+(P, λ, x)F0
P0

f (λ) dλ.

Shifting η towards zero and organizing residues, one gets

f (x) = |W |
∑
F⊂∆

t(F )T t
F f (x),

where

T t
F f (x) =

∫
ia∗

F +εF

∫
G/N0

K t
F (λ, x , y)f (y) dy dµF (λ).

Here PF = MF AF NF is the standard parabolic subgroup associated
with F ⊂ ∆, with t : 2∆ → [0,1] a weight function describing a certain
organisation of residue shifts, and with εF ∈ a∗+F sufficiently close to 0.



Completeness

Theorem

K t
F (λ, x , y) = Wh◦(PF , λ)(x) ◦ ◦Wh∗(PF , λ)(y)

This identification follows from a vanishing theorem for families. By
the Maass-Selberg relations the functions K t

F (λ, x , y) are seen to be
regular on ia∗, hence we may let εF → 0 and then:

Fourier inversion

f (x) = |W |
∑
F⊂∆

t(F )

∫
ia∗

F

Wh◦(PF , λ, x)F◦PF
f (λ)dµF (λ).

This result implies the completeness of the given collection of Fourier
transforms.



Vanishing Theorem

Let P ∈ Pst . The vanishing thm is about certain meromorphic
a∗PC 3 λ 7→ fλ ∈ C∞(τ,G/N0, λ) such that

I fλ behaves finitely under Z in a specific λ-dependent way,
I fλ satisfies certain mild restrictions on leading exponents along

a+
P ,

I certain asymptotic coefficients along codimension one walls are
of moderate growth in the transversal Levi variable.

Vanishing theorem
Let fλ be a family as above. If the asymptotic coefficient of aλ−ρ in the
expansion of fλ along A+

P vanishes identically as a function of
(λ,m) ∈ a∗PC ×MP then fλ = 0 for all λ ∈ a∗PC.

Importance
This result allows identification of families by looking at top order
asymptotic behavior.



Paley-Wiener theorem

Definition
Recall: C = exp(−a++). A function f ∈ C(τ,G/N0, χ) is said to be
cone supported (notation Ccs) if ∃a0 ∈ A s.t.

suppf ⊂ Ka0CN0.

Lemma
For every f ∈ Ccs(τ,G/N0, χ), all u ∈ U(g) and all m > 0,

sup
k∈K ,a∈A

em| log a|‖Luf (ka)‖ <∞.

Paley-Wiener theorem
Let P = P0 (minimal). Then FP is injective on Ccs(τ,G/N0, χ). The
image of this space under FP equals the space PW(χ, τ) of
holomorphic functions ϕ : a∗C → AP,τ satisfying

I estimates of Paley–Wiener type;
I relations of Arthur–Campoli type.



Arthur–Campoli type relations

More precisely, the definition of this space is as follows.

Definition Paley–Wiener space
PW(χ, τ) is the space of holomorphic functions ϕ : a∗C → AP,τ
satisfying

I ∃R > 0 and ∀λ0 ∈ a∗C ∀N ∈ N ∃C > 0 s.t.

|ϕ(λ)| ≤ C(1 + ‖λ‖)−NeR‖Reλ‖ (λ ∈ λ0 − a∗+C ).

I For all finite collections λi ∈ a∗C,ui ∈ S(a∗), ξi ∈ Hom(Vτ ,AP,τ )∗,
1 ≤ i ≤ N,

N∑
i=1

〈 ξi , ∂ui Wh∗(P, ·)(λi ) 〉 = 0 =⇒
N∑

i=1

〈 ξi , ∂uiϕ(λi ) 〉 = 0.


