Fourier inversion of Whittaker functions

Erik van den Ban
University of Utrecht

The Legacy of Joseph Fourier after 250 years TSIMF, Sanya, December 20, 2018

Whittaker functions

Setting

- G connected real semisimple Lie group, finite center. example: $G=\operatorname{SL}(n, \mathbb{R})$.
- $N_{0}<G$ nilpotent subgroup from Iwasawa deco. Example:

$$
N_{0}=\{x \in \operatorname{SL}(n, \mathbb{R}) \mid x=I+\text { upper triangular }\}
$$

- $\chi: N_{0} \rightarrow \mathrm{U}(1)$ unitary character (regular: def ${ }^{n}$ postponed).
- $\mathcal{F}\left(G / N_{0}, \chi\right):=\left\{f: G \rightarrow \mathbb{C} \mid f(x n)=\chi(n) f(x) \quad\left(x \in G, n \in N_{0}\right)\right\}$.

$$
L^{2}\left(G / N_{0}, \chi\right):=\left\{f \in \mathcal{F}\left(G / N_{0}, \chi\right)| | f \mid \in L^{2}\left(G / N_{0}\right)\right\}
$$

- L (left regular representation $)=\operatorname{Ind}_{N_{0}}^{G}\left(\chi^{\vee}\right)$, is unitary.

Whittaker Plancherel formula

Abstractly

- Since G is type $\mathrm{I}, \quad \operatorname{Ind}_{N_{0}}^{G}\left(\chi^{\vee}\right)=\int_{\widehat{G}}^{\oplus} m_{\pi} \pi d \mu(\pi)$.

Concrete realization

- Harish-Chandra, Announcement 1982.

Details in Collected Papers 5 (posthumous), eds. R. Gangolli, V.S. Varadarajan, Springer 2018, 141-307.

Final step " \subset " appears to be missing.

- N.R. Wallach, Independent treatment;

Real reductive groups II, Acad. Press 1992, relies on erroneous estimate.
Repair addressed in arXiv:1705.06787.

- Today: missing step by new inversion theorem. Bonus: Paley-Wiener theorem.

Regular character

- $G=K A N_{0}$ Iwasawa decomposition.

Ex ${ }^{\text {ple }}: G=\operatorname{SL}(n, \mathbb{R}), K=\operatorname{SO}(n), A=\{a \in \operatorname{SL}(n, \mathbb{R}) \mid a$ diagonal $\}$.

- $\Sigma=\operatorname{Roots}(\mathfrak{g}, \mathfrak{a}), \Sigma^{+}:=\left\{\alpha \in \Sigma \mid \mathfrak{g}_{\alpha} \subset \mathfrak{n}_{0}\right\}, \Delta \subset \Sigma^{+}$simple roots.

Definition $\quad \chi: N_{0} \rightarrow \mathrm{U}(1)$ regular means:

$$
\forall \alpha \in \Delta:\left.\quad d \chi(e)\right|_{\mathfrak{g}_{\alpha}} \neq 0
$$

- $P_{0}:=Z_{K}(A) A N_{0}$, minimal parabolic subgroup; $\mathcal{P}_{\text {st }}$: the (finite) set of all parabolic subgroups $P \supset P_{0}$.
- For $P \in \mathcal{P}_{s t}$, Langlands decomposition: $P=M_{P} A_{P} N_{P}$. $\bar{P} N_{0}$ is open dense in G.

Theorem (Harish-Chandra's Thm 1)

Assume $u \in \mathcal{D}^{\prime}(G)$ left \bar{N}_{P}-invariant, χ regular, and $R_{n} u=\chi(n) u$ for all $n \in N_{0}$. Then

$$
\left.u\right|_{\bar{P} N_{0}}=0 \Longrightarrow u=0 .
$$

Ref for proof also: J.A.C. Kolk, V.S. Varadarajan, Indag. Math. 1996.

Discrete part of decomposition

Discrete part

$\pi \in \widehat{G}$ (unitary dual) is said to appear discretely in $L^{2}\left(G / N_{0}, \chi\right)$ if it can be realized as a closed subrepresentation.
Theorem (Harish-Chandra)
If $\pi \in \widehat{G}$ appears discretely in $L^{2}\left(G / N_{0}, \chi\right)$, then it appears discretely in $L^{2}(G)$, i.e., it belongs to the discrete series of G.
Proof by distributional asymptotics of matrix coefficients, combined with Thm 1.

Corollary

If $\pi \in \widehat{G}$ appears discretely in $L^{2}\left(G / N_{0}, \chi\right)$, then its infinitesimal character is real and regular.
This result is crucial for the distinction of spectra in the Whittaker Plancherel decomposition.

Schwartz functions

Define $\rho \in \mathfrak{a}^{*}$ by $\rho(X)=\frac{1}{2} \operatorname{tr}\left(\left.\operatorname{ad}(X)\right|_{N_{0}}\right)$.
Def: Schwartz space (HC)
$\mathcal{C}\left(G / N_{0}, \chi\right)$: the space of $f \in C^{\infty}\left(G / N_{0}, \chi\right)$ such that

$$
\sup _{k \in K, a \in A}(1+|\log (a)|)^{N} a^{\rho}\left|L_{u} f(k a)\right|<\infty, \quad(\forall u \in U(\mathfrak{g}), \forall N \geq 1)
$$

For $\left(\tau, V_{\tau}\right)$ a finite dimensional unitary representation of K, we define

$$
\mathcal{C}\left(\tau, G / N_{0}, \chi\right):=\left\{f \in \mathcal{C}\left(G / N_{0}, \chi\right) \otimes V_{\tau} \mid f(k a)=\tau(k) f(x) \quad(k \in K, x \in G)\right\}
$$

Finally, with $\mathfrak{Z}:=$ center $\cup(\mathfrak{g})$,

$$
\mathcal{A}\left(\tau, G / N_{0}, \chi\right):=\left\{f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right) \mid \operatorname{dim} \rightrightarrows f<\infty\right\}
$$

Theorem (HC) $\mathcal{A}\left(\tau, G / N_{0}, \chi\right)=L_{d}^{2}\left(\tau, G / N_{0}, \chi\right)$.
The space is finite dimensional.

Whittaker integrals

Let $P=M_{P} A_{P} N_{P} \in \mathcal{P}_{s t}$ and put $\mathcal{A}_{P, \tau}:=\mathcal{A}\left(\tau, M_{P} / M_{P} \cap N, \chi\right)$.
For $\psi \in \mathcal{A}_{P, \tau}$ and $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$, define (for $k \in K$, man $\in M_{P} A_{P} N_{P}$):

$$
\psi_{\bar{P}, \lambda}(k m a n):=a^{-\lambda+\rho_{P}} \tau(k) \psi(m),
$$

Definition (HC)
For $\psi \in \mathcal{A}_{P, \tau}, \lambda \in \mathfrak{a}_{P \mathbb{C}}^{*+}, x \in G$, the Whittaker integral is defined by

$$
\mathrm{Wh}(P, \psi, \lambda, x):=\int_{N_{P}} \psi_{\bar{P},-\lambda}(x n) \chi(n)^{-1} d n
$$

It is essentially a finite sum of matrix coefficients of $\operatorname{Ind}_{\bar{p}}^{G}(\sigma \otimes-\lambda \otimes 1)$, with σ appearing in $L_{d}^{2}\left(\tau, M_{P} / M_{P} \cap N_{0}, \chi\right)$.
Remark: For $P=P_{0}$, we have $M_{P} \cap N_{0}=\{e\}$ and $M_{P} \subset K$, so $\mathcal{A}\left(\tau, M_{P} / M_{P} \cap N, \chi\right)=L^{2}\left(\tau, M_{P}\right)$.

Holomorphy

Wh($\psi, \lambda, \cdot)$ depends linearly on ψ and belongs to $C^{\infty}\left(\tau, G / N_{0}, \chi\right)$. It is convenient to write

$$
\mathrm{Wh}(P, \lambda)(x)(\psi):=\mathrm{Wh}(P, \psi, \lambda, x) ;
$$

Viewpoint: $\operatorname{Wh}(P, \lambda) \in C^{\infty}\left(G / N_{0}, \chi\right) \otimes \operatorname{Hom}\left(\mathcal{A}_{P, \tau}, V_{\tau}\right)$.

Theorem (Wallach)

The Whittaker integral $\mathrm{Wh}(P, \lambda)$, initially defined for $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*+}$, extends to an entire holomorphic function of $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$ with values in

$$
C^{\infty}\left(G / N_{0}, \chi\right) \otimes \operatorname{Hom}\left(\mathcal{A}_{P, \tau}, V_{\tau}\right)
$$

- Harish-Chandra established existence of meromorphic extension, regular on $\mathfrak{i a}_{p}^{*}$.
- We found a new proof, using Thm 1.

Classical Whittaker functions

Example

- $G=\operatorname{SL}(2, \mathbb{R}), \tau \in \operatorname{SO}(2)^{\wedge}, M_{0}=\{ \pm l\}, \psi(-l)=\tau(-I)= \pm 1$.
- Wh($P, \lambda, \psi)$ is essentially a classical Whittaker function on \mathbb{R};
- satisfies ODE on \mathbb{R} with regular singularity at ∞,
- but with irregular singularity at $-\infty$;

For $\alpha(\log a) \rightarrow-\infty$ have:

- Wh(P, $\lambda, \psi)(a) \sim e^{-a^{-\alpha}}$ (super fast decay);
- generic solution W of ODE:

$$
W(a) \sim e^{a^{-\alpha}} \text { (super exponential growth). }
$$

C-functions, Maass-Selberg relations

Asymptotic behavior (HC)
For $\psi \in \mathcal{A}_{P, \tau}, \lambda \in i a_{P}^{*}, m \in M_{P}, a \rightarrow \infty$ in A_{P}^{+},

$$
W h(P, \lambda)(m a) \psi \sim \sum_{s \in W(a p)} a^{s \lambda-\rho_{P}}\left[C_{P \mid P}(s, \lambda) \psi\right](m)
$$

with $C_{P \mid P}(s, \lambda) \in \operatorname{End}\left(\mathcal{A}_{P, \tau}\right)$ meromorphic in $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$.
For $a \rightarrow \infty$ in other chambers of $A_{P}, W h(P, \lambda)(m a)=o\left(a^{-\rho_{P}}\right)$.
Maass-Selberg relations (HC)
For all $s \in W\left(\mathfrak{a}_{P}\right), \lambda \in i \mathfrak{a}_{P}^{*}$,

$$
C_{P \mid P}^{\circ}(s, \lambda):=C_{P \mid P}(s, \lambda) C_{P \mid P}(1, \lambda)^{-1}
$$

is unitary.

Fourier transform

Normalized Whittaker functions (HC)

$$
\mathrm{Wh}^{\circ}(P, \lambda, x):=\mathrm{Wh}(P, \lambda, x) \circ C_{P \mid P}(s, \lambda)^{-1} .
$$

Normalized Fourier transform

$$
{ }^{\circ} \mathrm{Wh}^{*}(P, \lambda, x):=\mathrm{Wh}^{\circ}(P,-\bar{\lambda}, x)^{*} \in \operatorname{Hom}\left(V_{\tau}, \mathcal{A}_{P, \tau}\right)
$$

For $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right), P \in \mathcal{P}_{s t}, \lambda \in \dot{\mathfrak{a}}^{*}$,

$$
\mathcal{F}_{P}^{\circ} f(\lambda):=\int_{G / N_{0}}{ }^{\circ} \mathrm{Wh}^{*}(P, \lambda, x) f(x) d x \in \mathcal{A}_{P, \tau}
$$

Also: unnormalized versions all without ${ }^{\circ}$.
Discrete part of Fourier transform
For $P=G$ one has $\mathfrak{a}_{P}^{*}=\{0\}$ and the normalized Fourier transform is given by the (finite rank) L^{2}-orthogonal projection

$$
\mathcal{C}\left(\tau, G / N_{0}, \chi\right) \rightarrow L_{d}^{2}\left(\tau, G / N_{0}, \chi\right)
$$

Plancherel formula

For $P, Q \in \mathcal{P}_{s t}, P \sim Q$ means $\mathfrak{a}_{P}, \mathfrak{a}_{Q}$ conjugate under $W(\mathfrak{a})$.
Plancherel identity (HC)
For suitable normalization of the measures on i_{ρ}^{*},

$$
\|f\|_{L^{2}\left(G / N_{0}, x\right)}^{2}:=\sum_{P \in \mathcal{P}_{s t} / \sim}\left\|\mathcal{F}_{P}^{\circ} f\right\|_{L^{2}\left(i a_{p}^{*}\right)}^{2} .
$$

The issue of completeness Harish-Chandra proves this identity for f in a space spanned by wave packets, of which the density in $L^{2}\left(\tau, G / N_{0}, \chi\right)$ appears to remain unproven. In principle this allows a non-trival joint kernel of the Fourier transforms.
Speculation: perhaps Harish-Chandra intended to obtain completeness from the similar completeness related to his Plancherel decomposition of $L^{2}(G)$.
Different idea for obtaining completeness Use Paley-Wiener shift argument such as developed in collaboration with Henrik Schlichtkrull for proof of the Plancherel formula for a semisimple symmetric space G / H.

Series expansion

Let $P=P_{0}$ be minimal. Then $\mathcal{A}_{P, \tau} \simeq V_{\tau}^{M}$ and,

$$
\mathrm{Wh}(P, \lambda) \in C^{\infty}(\tau, G, \chi) \otimes \mathcal{A}_{P, \tau}^{*}
$$

holomorphic in $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$. The function is \mathfrak{Z}-finite, hence satisfies a cofinite system of differential equations, which has regular singularities at infinity in the direction of A^{+}.

Expansion at infinity

$$
\mathrm{Wh}(P, \lambda)=\sum_{s \in W} \mathrm{~Wh}_{+}(P, s \lambda) C_{P \mid P}(s, \lambda)
$$

where $\mathrm{Wh}_{+}(P, \lambda) \in C^{\infty}(\tau, G, \chi) \otimes \mathcal{A}_{P, \tau}^{*}$ depends meromorphically on $\lambda \in \mathfrak{a}_{\mathrm{qC}}^{*}$, and admits a converging series expansion

$$
\mathrm{Wh}_{+}(P, \lambda)(a)=a^{\lambda-\rho} \sum_{\mu \in \mathbb{N} \Delta} a^{-\mu} \Gamma_{\mu}(\lambda) \quad(a \in A)
$$

with $\Gamma_{\mu}(\lambda) \in \operatorname{End}\left(\mathcal{A}_{P, \tau}\right)$ meromorpic, $\Gamma_{0}(\lambda)=\operatorname{id}_{\mathcal{A}_{P, \tau}}$.

Fourier inversion

$$
C_{c}^{\infty}\left(\tau, G / N_{0}, \chi\right):=\left\{f \in C^{\infty}\left(\tau, G / N_{0}, \chi\right) \mid \operatorname{supp} f \mathrm{cpt} \bmod N_{0}\right\}
$$

Key theorem: Fourier inversion

$$
f(x)=|W(\mathfrak{a})| \int_{i \mathfrak{a}^{*}+\eta} W_{h_{+}}(P, \lambda, x) \mathcal{F}_{P_{0}}^{0} f(\lambda) d \lambda
$$

for all $f \in C_{c}^{\infty}\left(\tau, G / N_{0}, \chi\right)$ and all $x \in G$, provided $\langle\eta, \alpha\rangle \ll 0$ ($\forall \alpha \in \Sigma^{+}$).
NB: For $\lambda \in \mathfrak{a}_{\mathrm{qC}}^{*}$, the function $\mathrm{Wh}_{+}(P, \lambda)$ is globally defined on X, but may exhibit super exponential growth in directions different from A^{+}.
Notation: denote expression on right by $\mathcal{T}_{\eta} f(x)$. Then

$$
\mathcal{T}_{\eta}: C_{c}^{\infty}\left(\tau, G / N_{0}, \chi\right) \rightarrow C^{\infty}\left(\tau, G / N_{0}, \chi\right)
$$

Proof of Fourier inversion

Sketch of proof:

- There exists a non-trivial symmetric differential operator $D=L_{z}$, $Z \in \mathfrak{Z}$ which cancels singularities if η moves to 0 . By Cauchy's thm:

$$
\begin{aligned}
D\left(\mathcal{T}_{\eta} f\right)(x) & =D\left(\mathcal{T}_{0} f\right)(x) \\
& =\int_{i_{\mathfrak{a}^{*}}} D \mathrm{~Wh}^{0}(P, \lambda, x) \mathcal{F}^{0} f(\lambda) d \lambda
\end{aligned}
$$

- By Paley-Wiener shift for $\langle\eta, \alpha\rangle \rightarrow-\infty(\forall \alpha \in \Delta)$, one sees

$$
\operatorname{supp} f \subset K a C N_{0} \Longrightarrow \operatorname{supp}\left(\mathcal{T}_{\eta} f\right) \subset K a C N_{0}
$$

Here $C=\exp \underline{C}, \quad \underline{C}:=-\mathfrak{a}^{++}$, the cone negative dual to \mathfrak{a}^{+}.
$D \mathcal{T}_{\eta}$

- is symmetric, hence support preserving;
- is essentially a differential operator on A.

Support preservation

$S=D \circ \mathcal{T}_{\eta}=D \circ \mathcal{T}_{0} \Longrightarrow S$ symmetric

$$
\begin{array}{ccc}
C_{c}^{\infty}\left(\tau, \underset{\downarrow}{G /} N_{0}, \chi\right) & \xrightarrow{s} & C^{\infty}\left(\tau, \underset{\downarrow}{G /} N_{0}, \chi\right) \\
\downarrow
\end{array}
$$

$\varphi \in C_{C}^{\infty}(\mathfrak{a}) \otimes V_{\tau}^{M} \quad \xrightarrow{\exists!S} \quad C^{\infty}(\mathfrak{a}) \otimes V_{\tau}^{M} \quad \forall \varphi: \operatorname{supp} \underline{S} \varphi \subset \operatorname{supp} \varphi+\underline{C}$.
Hence distribution kernel K of \underline{S} satisfies:

1. supp $K \subset \Delta+\underline{C} \times\{0\}$. By symmetry, get
2. supp $K \subset \Delta+\{0\} \times \underline{C}=\Delta+(-\underline{C}) \times\{0\}$.
$1 \& 2 \Longrightarrow \operatorname{supp} K \subset \Delta \Longrightarrow \underline{S}$ support preserving.

Proof of Fourier inversion, continued

$D \mathcal{T}_{\eta}$

- is essentially a differential operator on A;
- commutes with 3 -action;
- satisfies cofinite system of DE's with regular singularities at ∞ in A^{+};
- is determined by highest order asymptotic part.
$D \mathcal{T}_{\eta}=D$ by highest order term asymptotic analysis.
Application of Holmgren's uniquess theorem
- $\operatorname{rad}(D)$ analytic with highest order part in $\mathbb{D}(A) \otimes I$.

$$
\left.\begin{array}{l}
\operatorname{supp}\left(\mathcal{T}_{\eta} f-f\right) \subset K(\operatorname{supp} f \cap A) C N \\
D\left(\mathcal{T}_{\eta} f-f\right)=0
\end{array}\right\} \Longrightarrow \mathcal{T}_{\eta} f-f=0
$$

Residual kernels

By Fourier inversion:

$$
f(x)=|W(\mathfrak{a})| \int_{i a^{*}+\eta} W_{h_{+}}(P, \lambda, x) \mathcal{F}_{P_{0}}^{0} f(\lambda) d \lambda .
$$

Shifting η towards zero and organizing residues, one gets

$$
f(x)=|W| \sum_{F \subset \Delta} t(F) T_{F}^{t} f(x),
$$

where

$$
T_{F}^{t} f(x)=\int_{i a_{F}^{*}+\varepsilon_{F}} \int_{G / N_{0}} K_{F}^{t}(\lambda, x, y) f(y) d y d \mu_{F}(\lambda)
$$

Here $P_{F}=M_{F} A_{F} N_{F}$ is the standard parabolic subgroup associated with $F \subset \Delta$, with $t: 2^{\Delta} \rightarrow[0,1]$ a weight function describing a certain organisation of residue shifts, and with $\varepsilon_{F} \in \mathfrak{a}_{F}^{*+}$ sufficiently close to 0 .

Completeness

Theorem

$$
K_{F}^{t}(\lambda, x, y)=\mathrm{Wh}^{\circ}\left(P_{F}, \lambda\right)(x) \circ{ }^{\circ} \mathrm{Wh}^{*}\left(P_{F}, \lambda\right)(y)
$$

This identification follows from a vanishing theorem for families. By the Maass-Selberg relations the functions $K_{F}^{t}(\lambda, x, y)$ are seen to be regular on $\mathfrak{i a}^{*}$, hence we may let $\varepsilon_{F} \rightarrow 0$ and then:

Fourier inversion

$$
f(x)=|W| \sum_{F \subset \Delta} t(F) \int_{i a_{F}^{*}} W h^{\circ}\left(P_{F}, \lambda, x\right) \mathcal{F}_{P_{F}}^{\circ} f(\lambda) d \mu_{F}(\lambda) .
$$

This result implies the completeness of the given collection of Fourier transforms.

Vanishing Theorem

Let $P \in \mathcal{P}_{s t}$. The vanishing thm is about certain meromorphic $\mathfrak{a}_{P \mathbb{C}}^{*} \ni \lambda \mapsto f_{\lambda} \in C^{\infty}\left(\tau, G / N_{0}, \lambda\right)$ such that

- f_{λ} behaves finitely under \mathfrak{Z} in a specific λ-dependent way,
- f_{λ} satisfies certain mild restrictions on leading exponents along \mathfrak{a}_{ρ}^{+},
- certain asymptotic coefficients along codimension one walls are of moderate growth in the transversal Levi variable.

Vanishing theorem

Let f_{λ} be a family as above. If the asymptotic coefficient of $a^{\lambda-\rho}$ in the expansion of f_{λ} along A_{P}^{+}vanishes identically as a function of $(\lambda, m) \in \mathfrak{a}_{P \mathbb{C}}^{*} \times M_{P}$ then $f_{\lambda}=0$ for all $\lambda \in \mathfrak{a}_{P \mathbb{C}}^{*}$.

Importance

This result allows identification of families by looking at top order asymptotic behavior.

Paley-Wiener theorem

Definition

Recall: $C=\exp \left(-\mathfrak{a}^{++}\right)$. A function $f \in \mathcal{C}\left(\tau, G / N_{0}, \chi\right)$ is said to be cone supported (notation $\mathcal{C}_{c s}$) if $\exists a_{0} \in A$ s.t.

$$
\text { supp } f \subset K a_{0} C N_{0}
$$

Lemma
For every $f \in \mathcal{C}_{c s}\left(\tau, G / N_{0}, \chi\right)$, all $u \in U(\mathfrak{g})$ and all $m>0$,

$$
\sup _{k \in K, a \in A} e^{m|\log a|}\left\|L_{u} f(k a)\right\|<\infty
$$

Paley-Wiener theorem
Let $P=P_{0}$ (minimal). Then \mathcal{F}_{P} is injective on $\mathcal{C}_{c s}\left(\tau, G / N_{0}, \chi\right)$. The image of this space under \mathcal{F}_{P} equals the space $\operatorname{PW}(\chi, \tau)$ of holomorphic functions $\varphi: \mathfrak{a}_{\mathbb{C}}^{*} \rightarrow \mathcal{A}_{P, \tau}$ satisfying

- estimates of Paley-Wiener type;
- relations of Arthur-Campoli type.

Arthur-Campoli type relations

More precisely, the definition of this space is as follows.
Definition Paley-Wiener space
$\mathrm{PW}(\chi, \tau)$ is the space of holomorphic functions $\varphi: \mathfrak{a}_{\mathbb{C}}^{*} \rightarrow \mathcal{A}_{P, \tau}$ satisfying

- $\exists R>0$ and $\forall \lambda_{0} \in \mathfrak{a}_{\mathbb{C}}^{*} \forall N \in \mathbb{N} \exists C>0$ s.t.

$$
|\varphi(\lambda)| \leq C(1+\|\lambda\|)^{-N} e^{R\|R e \lambda\|} \quad\left(\lambda \in \lambda_{0}-\mathfrak{a}_{\mathbb{C}}^{*+}\right)
$$

- For all finite collections $\lambda_{i} \in \mathfrak{a}_{\mathbb{C}}^{*}, u_{i} \in S\left(\mathfrak{a}^{*}\right), \xi_{i} \in \operatorname{Hom}\left(V_{\tau}, \mathcal{A}_{P, \tau}\right)^{*}$, $1 \leq i \leq N$,

$$
\sum_{i=1}^{N}\left\langle\xi_{i}, \partial_{u_{i}} \mathrm{~Wh}^{*}(P, \cdot)\left(\lambda_{i}\right)\right\rangle=0 \Longrightarrow \sum_{i=1}^{N}\left\langle\xi_{i}, \partial_{u_{i}} \varphi\left(\lambda_{i}\right)\right\rangle=0 .
$$

