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Whittaker functions

Setting
» G connected real semisimple Lie group, finite center.
example: G = SL(n, R).

Ny < G nilpotent subgroup from Ilwasawa deco.
Example:

v

No = {x € SL(n,R) | x = | + upper triangular} .

v

x : No — U(1) unitary character (regular: def” postponed).
F(G/No,x) ={f: G—=C|f(xn)=x(nf(x) (x€G,neN)}.

v

L3(G/No, x) := {f € F(G/No,x) | If| € L*(G/No)}.

v

L (left regular representation) = Indﬁo(XV), is unitary.



Whittaker Plancherel formula

Abstractly
> Since Gis type |, Indf§ (x") = [§ mxmdu(n).

Concrete realization
» Harish-Chandra, Announcement 1982.

Details in Collected Papers 5 (posthumous), eds. R. Gangolli,
V.S. Varadarajan, Springer 2018, 141-307.
Final step "C" appears to be missing.

» N.R. Wallach, Independent treatment;

Real reductive groups I, Acad. Press 1992, relies on erroneous

estimate.
Repair addressed in arXiv:1705.06787.

» Today: missing step by new inversion theorem.
Bonus: Paley-Wiener theorem.



Regular character

» G = KAN, lwasawa decomposition.
ExPe: G = SL(n,R), K = SO(n), A= {a e SL(n,R) | a diagonal}.
» ¥ =Roots(g,a), LT :={a € X | gy Cnp}, A C X simple roots.

Definition x : No — U(1) regular means:
Vaoe A: dx(e)lg,. #0.

> Py := Zx(A)ANy, minimal parabolic subgroup;
Ps: : the (finite) set of all parabolic subgroups P O Py.

» For P € Pg, Langlands decomposition: P = MpApNp.
PN, is open dense in G.

Theorem (Harish-Chandra’s Thm 1)

Assume u € D'(G) left Np-invariant, x regular, and R,u = x(n)u for
allne Ny. Then
ulpy, =0 = u=0.

Ref for proof also: J.A.C. Kolk, V.S. Varadarajan, Indag. Math. 1996.



Discrete part of decomposition

Discrete part

7 € G (unitary dual) is said to appear discretely in L2(G/Np, x) if it
can be realized as a closed subrepresentation.

Theorem (Harish-Chandra)

IfreG appears discretely in L2(G/Ny, x), then it appears discretely
in L2(G), i.e., it belongs to the discrete series of G.

Proof by distributional asymptotics of matrix coefficients, combined
with Thm 1.
Corollary

It = € G appears discretely in L2(G/No, x), then its infinitesimal
character is real and regular.

This result is crucial for the distinction of spectra in the Whittaker
Plancherel decomposition.



Schwartz functions
Define p € a* by p(X) = Ftr(ad(X)|n,)-

Def: Schwartz space (HC)
C(G/Ny, x): the space of f € C>°(G/Ny, x) such that

sup (1 + |log(a)|)VNa’|Luf(ka)| < oo,  (Vu e U(g),¥YN > 1).
keK,acA

For (7, V;) a finite dimensional unitary representation of K, we define
C(r, G/Ny, x) .= {f € C(G/ Ny, x)2V; | f(ka) = 7(k)f(x) (k€ K,x € G)}.
Finally, with 3 := center U(g),

A(7, G/No, x) := {f € C(7, G/No, x) | dim 3f < oo}

Theorem (HC) A(r, G/No, x) = L5(7, G/No, x)-
The space is finite dimensional.



Whittaker integrals
Let P = MpApNp € P and put Ap - := A(1,Mp/Mp N N, x).
For+ € Ap . and X € ap, define (for k € K, man € MpApNp):

Upn(kman) = a7 (K)u(m),

Definition (HC)
For¢y € Ap ., A € a’;ﬂ& x € G, the Whittaker integral is defined by

Wh(P. . 0.x) = [y (xn)x(m) .

It is essentially a finite sum of matrix coefficients of Indg(a ®—-A®1),
with o appearing in L2(r, Mp/Mp N No, x).

Remark: For P = Py, we have Mp N Ny = {e} and Mp C K, so
.A(T, Mp/Mp N N, X) = LZ(T, MP)



Holomorphy

Wh(v, A, -) depends linearly on ¢» and belongs to C>°(r, G/No, x). Itis
convenient to write

Wh(P, A)(x)(¥) := Wh(P, ¥, A, x);
Viewpoint: Wh(P, X) € C>*(G/Ny, x) ® Hom(Ap -, V;).

Theorem (Wallach)

The Whittaker integral Wh(P, X), initially defined for A € ajf, extends
to an entire holomorphic function of A € ap with values in
C>(G/No, x) @ Hom(Ap ., V).

» Harish-Chandra established existence of meromorphic
extension, regular on iap.

» We found a new proof, using Thm 1.



Classical Whittaker functions

Example
» G=SL(2,R), 7 € SO2)", My = {£/}, p(—1) = 7(—1) = +1.
» Wh(P, \,v) is essentially a classical Whittaker function on R;
» satisfies ODE on R with regular singularity at oo,
» but with irregular singularity at —oc;

For a(log a) — —oc have:
» Wh(P,\,v)(a) ~ e 2 ° (super fast decay);
» generic solution W of ODE:

W(a) ~ e ° (super exponential growth).



C-functions, Maass-Selberg relations

Asymptotic behavior (HC)

Fory € Ap ., A € iap, m € Mp, a — oc in A},

Wh(P, \)(ma)y ~ S a=%[Cpip(s, Aul(m).

seW(ap)

with Cpjp(S, A) € End(Ap, ) meromorphic in A € ape.

For a — oo in other chambers of Ap, Wh(P, \)(ma) = o(a—*?).

Maass-Selberg relations (HC)
Forall s € W(ap), A € iap,

C;;);‘P(S, )\) = CP|P(S, )\)CP|P(1 R )\)_1

is unitary.



Fourier transform

Normalized Whittaker functions (HC)
Wh°(P, A, X) := Wh(P, A, x) o Cpjp(s,\) """

Normalized Fourier transform
°Wh*(P, A, X) := Wh°(P, =X, x)* € Hom(V;, Ap,).
For f € C(r,G/No, x), P € Pst, A € ia*,
FSf(N) ::/ Wh*(P, A\, x)f(x) dx € Ap...
G/No
Also: unnormalized versions all without °.

Discrete part of Fourier transform

For P = G one has af = {0} and the normalized Fourier transform is
given by the (finite rank) L2-orthogonal projection

C(Tu G/N07 X) — Lg(Tv G/NOa X)



Plancherel formula

For P, Q € Ps, P ~ Q means ap, ag conjugate under W(a).

Plancherel identity (HC)

For suitable normalization of the measures on iap,

2 . o £|2
1feemony = 3 1B
PEPst/~

The issue of completeness Harish-Chandra proves this identity for f
in a space spanned by wave packets, of which the density in

L2(1, G/No, x) appears to remain unproven. In principle this allows a
non-trival joint kernel of the Fourier transforms.

Speculation: perhaps Harish-Chandra intended to obtain
completeness from the similar completeness related to his Plancherel
decomposition of L2(G).

Different idea for obtaining completeness Use Paley-Wiener shift
argument such as developed in collaboration with Henrik Schlichtkrull
for proof of the Plancherel formula for a semisimple symmetric space
G/H.



Series expansion

Let P = Py be minimal. Then Ap . ~ VM and,
Wh(P, \) € C=(r, G,x) @ Ap .

holomorphic in A € a. The function is 3-finite, hence satisfies a
cofinite system of differential equations, which has regular
singularities at infinity in the direction of A*.

Expansion at infinity

Wh(P,\) = Y~ Why(P,s))Cpip(s,))
seWw

where Wh, (P, ) € C>(, G, x) ® Ap . depends meromorphically on
A € a;c, and admits a converging series expansion

Why(P ) (@) =a"" Y a "I, (ac A),
PENA

with T',(X) € End(Ap -) meromorpic, Mo(\) =id4, .



Fourier inversion
Co (1, G/ Ny, x) :={f € C(7, G/Ny, x) | supp f cpt mod Np}.

Key theorem: Fourier inversion
f(x) = |W(a)| Wh (P, X, x) Fp f(\) dA,
ia*+n

forall f € C¥(r,G/Ny, x) and all x € G, provided (n,a) << 0
(Va e TT).

NB: For A € aj¢, the function Wh (P, \) is globally defined on X, but
may exhibit super exponential growth in directions different from A+.

Notation: denote expression on right by 7,,f(x). Then

7;] : CSO(T7 G/NOaX) — COO(T7 G/N07X)



Proof of Fourier inversion

Sketch of proof:

» There exists a non-trivial symmetric differential operator D = Lz,
Z € 3 which cancels singularities if n moves to 0. By Cauchy’s
thm:

D(T,f)(x) = D(Tof)(x)
= [fi.- DWhY(P, X, X)FOf(N) dA.

» By Paley-Wiener shift for (7, a) - —oo (Va € A), one sees
supp f C KaCNy = supp(7,f) C KaCNp.
Here C=expC, C:= —a™™, the cone negative dual to a*.

D7,
» is symmetric, hence support preserving;
» is essentially a differential operator on A.



Support preservation

S=DoT,=DoTy = S symmetric

C(r,G/No,X) -5 C=(7,G/No,X)
! )
eS) M 3's 00 M .

pe CF(a)® V: =  C™¥(a)e V! Yo : supp S C suppy + C.
Hence distribution kernel K of S satisfies:

1. supp K € A+ C x {0}. By symmetry, get

2. suppK C A+ {0} x C=A+(-C) x {0}.
1&2 = suppK C A = S support preserving.

(43




Proof of Fourier inversion, continued

DT,
» is essentially a differential operator on A;
» commutes with 3-action;
» satisfies cofinite system of DE’s with regular singularities at oo in
At
» is determined by highest order asymptotic part.

DT, = D by highest order term asymptotic analysis.

Application of Holmgren'’s uniquess theorem
» rad (D) analytic with highest order part in D(A) ® /.

supp(7,f — f) C K(suppf N A)CN

D(T,f — ) =0 }=>7;,f—f:0.



Residual kernels
By Fourier inversion:

f(x) = |W(a)| Wh (P, X, x) Fp f(\) dA.
ia*+n
Shifting n towards zero and organizing residues, one gets
f(x) = [W| Y t(F)TH(x),
FcA

where
i) = [ KEO X, 1)1(y) dy dpe()).
I'a;i-+6/: G/Ng

Here Pr = MrAENE is the standard parabolic subgroup associated
with F C A, with ¢ : 22 — [0, 1] a weight function describing a certain
organisation of residue shifts, and with e € a}* sufficiently close to 0.



Completeness

Theorem

KE(A, X, y) = Wh®(Pr, X)(x) o *Wh™(Pg, A)(y)
This identification follows from a vanishing theorem for families. By
the Maass-Selberg relations the functions K£(), x, y) are seen to be

regular on ia*, hence we may let e — 0 and then:

Fourier inversion

f(x) = \W| 3 t(F) / W (P, A, X) 75, F(\) e (V)

FcA

This result implies the completeness of the given collection of Fourier
transforms.



Vanishing Theorem

Let P € Pg. The vanishing thm is about certain meromorphic
ape 2 A= f € C°(7, G/Np, \) such that
» f, behaves finitely under 3 in a specific \-dependent way,
» f, satisfies certain mild restrictions on leading exponents along
ap,
» certain asymptotic coefficients along codimension one walls are
of moderate growth in the transversal Levi variable.

Vanishing theorem

Let f, be a family as above. If the asymptotic coefficient of a*~7 in the
expansion of f, along A} vanishes identically as a function of
(A\,m) € ap: x Mpthen fy =0 forall A € ap..

Importance

This result allows identification of families by looking at top order
asymptotic behavior.



Paley-Wiener theorem

Definition
Recall: C = exp(—a*™). A function f € C(r, G/ Ny, x) is said to be
cone supported (notation Cg) if Jag € A s.t.

suppf C KagCNp.

Lemma
Forevery f € Ces(1, G/No, X), all u € U(g) and all m > 0,

sup emledl| L f(ka)| < oc.
keK,acA

Paley-Wiener theorem
Let P = Py (minimal). Then Fp is injective on Ccs(1, G/ Ny, x). The

image of this space under Fp equals the space PW(x, ) of
holomorphic functions ¢ : ai. — Ap ; satisfying

» estimates of Paley—Wiener type;
» relations of Arthur—Campoli type.



Arthur—Campoli type relations

More precisely, the definition of this space is as follows.

Definition Paley—Wiener space

PW(x, 7) is the space of holomorphic functions ¢ : ai — Ap ,
satisfying

» JR>0and Vo € af YN € N3IC > 0 s.t.
eI < C(1 +[]A])NeflIFeAl (X e Ao — aih).

» For all finite collections \; € af., ui € S(a*), & € Hom(V;, Ap .)*,
1<i<N,

N N

D (6,0 WhH(P)(M)) =0 = Y (&, due(N)) = 0.

i=1 i=1



