Cusp forms for semisimple symmetric spaces

Erik van den Ban
jt with Job Kuit

University of Utrecht
University of Copenhagen

> Radon Transforms and Integral Geometry in honor of Sigurdur Helgason's 85 th birthday
> Joint mathematics meeting, Boston, January 7, 2012

Schwartz functions for the group

Setting

- G real semisimple Lie group, (connected, finite center)
- K maximal compact, $\quad G=K \exp p$
- $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian, $\quad A:=\exp \mathfrak{a}$,
- $G=K A K, \quad \tau\left(k_{1} \exp X k_{2}\right)=\|X\|$.

Schwartz functions for the group

Setting

- G real semisimple Lie group, (connected, finite center)
- K maximal compact, $\quad G=K \exp p$
- $\mathfrak{a} \subset \mathfrak{p}$ maximal abelian, $\quad A:=\exp \mathfrak{a}$,
- $G=K A K, \quad \tau\left(k_{1} \exp X k_{2}\right)=\|X\|$.

Harish-Chandra Schwartz space

$\mathcal{C}(G)$ consists of all $f \in C^{\infty}(G)$ such that

$$
\forall u, v \in U(\mathfrak{g}) \forall N \in \mathbb{N}: \quad(1+\tau)^{N} L_{u} R_{v} f \in L^{2}(G)
$$

The representation $L \times R$ of $G \times G$ is continuous.

Cusp forms for the group

Theorem (Harish-Chandra)
If $P=M_{P} A_{P} N_{P}$ is a parabolic subgroup of G then for all $f \in \mathcal{C}(G)$

$$
\int_{N_{P}}|f(n)| d n<\infty
$$

Cusp forms for the group

Theorem (Harish-Chandra)
If $P=M_{P} A_{P} N_{P}$ is a parabolic subgroup of G then for all $f \in \mathcal{C}(G)$

$$
\int_{N_{P}}|f(n)| d n<\infty .
$$

Cusp form on G

- A function $f \in \mathcal{C}(G)$ such that

$$
\forall x, y \in G \forall P<G: \quad \int_{N_{P}} f(x n y) d n=0
$$

- $\mathcal{C}(G)_{\text {cusp }} \subset \mathcal{C}(G)$: space of cusp forms

Cusp forms for the group

Cusp forms on G, II

- $\mathcal{P}(A)$: the (finite) collection of parabolics $P<G$ with $P \supset A$
- $\mathcal{C}(G)_{\text {cusp }}$ consists of the $f \in \mathcal{C}(G)$ such that

$$
\forall P \in \mathcal{P}(A) \forall x, y \in G: \quad \int_{N_{P}} f(x n y) d n=0
$$

Cusp forms for the group

Cusp forms on G, II

- $\mathcal{P}(A)$: the (finite) collection of parabolics $P<G$ with $P \supset A$
- $\mathcal{C}(G)_{\text {cusp }}$ consists of the $f \in \mathcal{C}(G)$ such that

$$
\forall P \in \mathcal{P}(A) \forall x, y \in G: \quad \int_{N_{P}} f(x n y) d n=0
$$

Theorem (HC, 60's)

$$
\mathcal{C}(G)_{\mathrm{d}}=\mathcal{C}(G)_{\mathrm{cusp}}
$$

Remark

In theory of automorphic forms, in general

$$
\mathcal{C}(G / \Gamma)_{\text {cusp }} \subsetneq \mathcal{C}(G / \Gamma)_{\mathrm{d}}
$$

Semisimple symmetric spaces

Setting

- σ involution of G such that $\sigma(K)=K$
- $\left(G^{\sigma}\right)_{e}<H<G^{\sigma}$,
- $X=G / H$ semisimple symmetric space

Semisimple symmetric spaces

Setting

- σ involution of G such that $\sigma(K)=K$
- $\left(G^{\sigma}\right)_{e}<H<G^{\sigma}$,
- $X=G / H$ semisimple symmetric space

Examples

- $G={ }^{\prime} G \times{ }^{\prime} G, H=\operatorname{diag}\left({ }^{\prime} G\right)$. Then $X \simeq{ }^{`} G$ ('group case')

Semisimple symmetric spaces

Setting

- σ involution of G such that $\sigma(K)=K$
- $\left(G^{\sigma}\right)_{e}<H<G^{\sigma}$,
- $X=G / H$ semisimple symmetric space

Examples

- $G={ }^{\prime} G \times{ }^{\prime} G, H=\operatorname{diag}\left({ }^{\prime} G\right)$. Then $X \simeq{ }^{\prime} G$ ('group case')
- $H=K, \quad X=G / K, \quad$ (Riemannian case)

Semisimple symmetric spaces

Setting

- σ involution of G such that $\sigma(K)=K$
- $\left(G^{\sigma}\right)_{e}<H<G^{\sigma}$,
- $X=G / H$ semisimple symmetric space

Examples

- $G={ }^{\prime} G \times{ }^{\prime} G, H=\operatorname{diag}\left({ }^{\prime} G\right)$. Then $X \simeq{ }^{`} G$ ('group case')
- $H=K, \quad X=G / K, \quad$ (Riemannian case)
- Hyperbolic spaes $X_{p, q}=\operatorname{SO}(p, q) / \mathrm{SO}(p-1, q) \simeq$

$$
\left\{x \in \mathbb{R}^{p+q} \mid x_{1}^{2}+\cdots x_{p}^{2}-\left(x_{p+1}^{2}+\cdots+x_{p+q}^{2}\right)=1\right\}
$$

Semisimple symmetric spaces

Setting

- σ involution of G such that $\sigma(K)=K$
- $\left(G^{\sigma}\right)_{e}<H<G^{\sigma}$,
- $X=G / H$ semisimple symmetric space

Examples

- $G={ }^{\prime} G \times{ }^{\prime} G, H=\operatorname{diag}\left({ }^{\prime} G\right)$. Then $X \simeq{ }^{\prime} G$ ('group case')
- $H=K, \quad X=G / K, \quad$ (Riemannian case)
- Hyperbolic spaes $X_{p, q}=\operatorname{SO}(p, q) / \mathrm{SO}(p-1, q) \simeq$

$$
\left\{x \in \mathbb{R}^{p+q} \mid x_{1}^{2}+\cdots x_{p}^{2}-\left(x_{p+1}^{2}+\cdots+x_{p+q}^{2}\right)=1\right\}
$$

- $\operatorname{SL}(n, \mathbb{R}) / \mathrm{GL}(n-1, \mathbb{R})$.

Semisimple symmetric spaces

Structure

- $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}=\mathfrak{h} \oplus \mathfrak{q}(\pm 1$ eigenspaces for $\theta, \sigma)$
- $\mathfrak{a}_{\mathrm{q}} \subset \mathfrak{p} \cap \mathfrak{q}$ maximal abelian, $A_{\mathrm{q}}=\exp \left(\mathfrak{a}_{\mathrm{q}}\right)$
- $G=K A_{\mathrm{q}} H, \quad \tau_{X}: X \rightarrow \mathbb{R}, k \exp X H \mapsto\|X\|$.

Semisimple symmetric spaces

Structure

- $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}=\mathfrak{h} \oplus \mathfrak{q}(\pm 1$ eigenspaces for $\theta, \sigma)$
- $\mathfrak{a}_{\mathrm{q}} \subset \mathfrak{p} \cap \mathfrak{q}$ maximal abelian, $A_{q}=\exp \left(\mathfrak{a}_{q}\right)$
- $G=K A_{\mathrm{q}} H, \quad \tau_{X}: X \rightarrow \mathbb{R}, k \exp X H \mapsto\|X\|$.

Schwartz space

The Schwartz space $\mathcal{C}(X)$ consists of $f \in C^{\infty}(X)$ such that

$$
\forall u \in U(\mathfrak{g}) \forall N \in \mathbb{N}: \quad\left(1+\tau_{X}\right)^{N} L_{u} f \in L^{2}(X)
$$

σ-parabolic subgroups

σ-parabolic subgroups

- P with $\sigma(P)=\bar{P}=\theta(P)$.
- $\mathcal{P}_{\sigma}\left(A_{\mathrm{q}}\right)$: the (finite) set of proper σ-parabolics $P \supset A_{\mathrm{q}}$.

σ-parabolic subgroups

σ-parabolic subgroups

- P with $\sigma(P)=\bar{P}=\theta(P)$.
- $\mathcal{P}_{\sigma}\left(A_{\mathrm{q}}\right)$: the (finite) set of proper σ-parabolics $P \supset A_{\mathrm{q}}$.

Plancherel decomposition of $L^{2}(X)$:
Building blocks are the discrete series for X and the induced reps

$$
\operatorname{Ind}_{P}^{G}(\xi \otimes \lambda \otimes 1)
$$

with

- $P \in \mathcal{P}_{\sigma}\left(A_{q}\right)$,
- ξ a discrete series rep of $M_{P} / M_{P} \cap H$,
- $\lambda \in i \mathfrak{a}_{P_{q}}^{*}$.

Cusp forms, first attempt

First attempt
Cusp form: $f \in \mathcal{C}(G / H)$ such that

$$
\forall P \in \mathcal{P}_{\sigma}\left(A_{q}\right) \forall x \in G: \quad \int_{N_{P}} f(x n H) d n=0 .
$$

Cusp forms, first attempt

First attempt
Cusp form: $f \in \mathcal{C}(G / H)$ such that

$$
\forall P \in \mathcal{P}_{\sigma}\left(A_{q}\right) \forall x \in G: \quad \int_{N_{p}} f(x n H) d n=0 .
$$

Problems

- Integral need not converge (e.g. hyperbolic spaces, Andersen's talk; $\operatorname{SL}(n, \mathbb{R}) / \mathrm{GL}(n-1, \mathbb{R}))$.
- In the groups case:

$$
\text { New : } \int_{N_{P} \times \bar{N}_{P}} f(x n \bar{n} y) d n d \bar{n}=0, \quad \text { Old : } \quad \int_{N_{P}} f(x n y) d n=0 .
$$

Idea of Flensted-Jensen

Minimal σ-parabolics

- $\mathfrak{a}_{\mathfrak{q}} \subset \mathfrak{p} \cap \mathfrak{q}$ maximal abelian;
- $\Sigma\left(\mathfrak{a}_{q}\right)$ roots of \mathfrak{a}_{q} in \mathfrak{g}, \quad fix $\Sigma^{+}\left(\mathfrak{a}_{q}\right) \quad \rightsquigarrow \mathfrak{n}_{0}, N_{0}$
- $P_{0}=Z_{G}\left(\mathfrak{a}_{\mathrm{q}}\right) N_{0}$ is a minimal σ-parabolic.

Idea of Flensted-Jensen

Minimal σ-parabolics

- $\mathfrak{a}_{\mathfrak{q}} \subset \mathfrak{p} \cap \mathfrak{q}$ maximal abelian;
- $\Sigma\left(\mathfrak{a}_{q}\right)$ roots of $\mathfrak{a}_{\mathrm{q}}$ in \mathfrak{g}, \quad fix $\Sigma^{+}\left(\mathfrak{a}_{\mathrm{q}}\right) \quad \rightsquigarrow \mathfrak{n}_{0}, N_{0}$
- $P_{0}=Z_{G}\left(\mathfrak{a}_{\mathrm{q}}\right) N_{0}$ is a minimal σ-parabolic.

Minimal parabolics

- Extend $\mathfrak{a}_{\mathrm{q}}$ to \mathfrak{a} : max abelian in $\mathfrak{p} ; \quad A=\exp \mathfrak{a}$.
- Fix $P \in \mathcal{P}_{\text {min }}(A)$ with $P \subset P_{0}$,

Then P has $N_{P} \cap H$ of minimal dimension and $N_{0} \simeq N_{P} / N_{P} \cap H$.

Idea of Flensted-Jensen

Minimal σ-parabolics

- $\mathfrak{a}_{\mathrm{q}} \subset \mathfrak{p} \cap \mathfrak{q}$ maximal abelian;
- $\Sigma\left(\mathfrak{a}_{\mathrm{q}}\right)$ roots of $\mathfrak{a}_{\mathrm{q}}$ in \mathfrak{g}, \quad fix $\Sigma^{+}\left(\mathfrak{a}_{\mathrm{q}}\right) \quad \rightsquigarrow \mathfrak{n}_{0}, N_{0}$
- $P_{0}=Z_{G}\left(\mathfrak{a}_{\mathrm{q}}\right) N_{0}$ is a minimal σ-parabolic.

Minimal parabolics

- Extend $\mathfrak{a}_{\mathrm{q}}$ to \mathfrak{a} : max abelian in $\mathfrak{p} ; \quad A=\exp \mathfrak{a}$.
- Fix $P \in \mathcal{P}_{\text {min }}(A)$ with $P \subset P_{0}$,

Then P has $N_{P} \cap H$ of minimal dimension and $N_{0} \simeq N_{P} / N_{P} \cap H$.
Flensted-Jensen's idea

- Use $Q \in \mathcal{P}_{\min }(A)$ with $N_{Q} \cap H$ of maximal dimension.
- There exists $N^{*}<N_{Q}$ such that $N_{Q} \simeq N^{*} \times\left(N_{Q} \cap H\right)$.

Cusp forms, II

Group case

Let $G={ }^{\prime} G \times^{`} G$, and ${ }^{\prime} P<{ }^{\prime} G$ a minimal parabolic then

- $P_{0}=P={ }^{`} P \times{ }^{`} \bar{P}, \quad Q=^{`} P \times{ }^{`} P$.
- $N_{P} / N_{P} \cap H \simeq N_{P} \times \bar{N}_{P}$,
$N_{Q} / N_{Q} \cap H \simeq N_{P}$.

Cusp forms, II

Group case

Let $G={ }^{`} G \times^{`} G$, and ${ }^{`} P<^{\prime} G$ a minimal parabolic then

- $P_{0}=P={ }^{\prime} P \times{ }^{\prime} \bar{P}, \quad Q=^{\prime} P \times{ }^{\prime} P$.
- $N_{P} / N_{P} \cap H \simeq N_{P} \times \bar{N}_{P}, \quad N_{Q} / N_{Q} \cap H \simeq N_{P}$.

Theorem: Andersen, Flensted-Jensen, Schlichtkrull

Let $X=X_{p, q}$ be hyperbolic (over \mathbb{R}, \mathbb{C} or \mathbb{H}). Let Q be a minimal parabolic subgroup with $N_{Q} \cap H$ of maximal possible dimension. Then

$$
\forall f \in \mathcal{C}(X): \quad \int_{N_{Q} /\left(N_{Q} \cap H\right)}|f(n)| d n<\infty
$$

This allows [A, F-J, S] to define a cusp form by the requirement

$$
\forall x \in G: \quad \int_{N_{Q} /\left(N_{Q} \cap H\right)} f(x n) d n=0 .
$$

σ-split rank one

From now on $\operatorname{dim} \mathfrak{a}_{\mathrm{q}}=1$
Define $\rho_{Q h} \in \mathfrak{a}^{*}: X \mapsto \frac{1}{2} \operatorname{tr}\left(\left.\operatorname{ad}(\cdot)\right|_{\mathfrak{n}_{Q} \cap Z\left(\mathfrak{a}_{q}\right)}\right)$
Theorem (vdB $-K$)
(a) There exist $Q \in \mathcal{P}_{\text {min }}(A)$ which are H-compatible, i.e.
(1) $\operatorname{dim}\left(N_{Q} \cap H\right)$ is max
(2) $\left\langle\rho_{Q h}, \alpha\right\rangle \geq 0 \quad \forall \alpha \in \Sigma\left(\mathfrak{a}, \mathfrak{n}_{Q}\right)$.

σ-split rank one

From now on $\operatorname{dim} \mathfrak{a}_{\mathrm{q}}=1$
Define $\rho_{Q h} \in \mathfrak{a}^{*}: X \mapsto \frac{1}{2} \operatorname{tr}\left(\left.\operatorname{ad}(\cdot)\right|_{\mathfrak{n}_{Q} \cap Z\left(\mathfrak{a}_{q}\right)}\right)$
Theorem (vdB -K)
(a) There exist $Q \in \mathcal{P}_{\text {min }}(A)$ which are H-compatible, i.e.
(1) $\operatorname{dim}\left(N_{Q} \cap H\right)$ is max
(2) $\left\langle\rho_{Q h}, \alpha\right\rangle \geq 0 \quad \forall \alpha \in \Sigma\left(\mathfrak{a}, \mathfrak{n}_{Q}\right)$.
(b) If Q as in (a) then for all $f \in \mathcal{C}(X)$,

$$
\int_{N_{Q} / N_{Q} \cap H}|f(n)| d n<\infty .
$$

σ-split rank one

From now on $\operatorname{dim} \mathfrak{a}_{\mathrm{q}}=1$
Define $\rho_{Q h} \in \mathfrak{a}^{*}: X \mapsto \frac{1}{2} \operatorname{tr}\left(\left.\operatorname{ad}(\cdot)\right|_{\mathfrak{n}_{Q} \cap Z\left(\mathfrak{a}_{q}\right)}\right)$
Theorem (vdB $-K$)
(a) There exist $Q \in \mathcal{P}_{\text {min }}(A)$ which are H-compatible, i.e.
(1) $\operatorname{dim}\left(N_{Q} \cap H\right)$ is max
(2) $\left\langle\rho_{Q}, \alpha\right\rangle \geq 0 \quad \forall \alpha \in \Sigma\left(\mathfrak{a}, \mathfrak{n}_{Q}\right)$.
(b) If Q as in (a) then for all $f \in \mathcal{C}(X)$,

$$
\int_{N_{Q} / N_{Q} \cap H}|f(n)| d n<\infty .
$$

Remark (vdB - K -S)
Condition (2) is really needed for $X=\operatorname{SL}(n, \mathbb{R}) / \mathrm{GL}(n-1, \mathbb{R})$. If Q is in (a.1), then (a.2) is restrictive, and

$$
(a .2) \Longleftrightarrow(b)
$$

Outline of proof

Step 1: reduction to K-fixed positive f :
Let $f \in \mathcal{C}(X)$. Then $\exists \varphi \in \mathcal{C}(X)^{K}: \quad|f| \leq \varphi$ on X.

Outline of proof

Step 1: reduction to K-fixed positive f :
Let $f \in \mathcal{C}(X)$. Then $\exists \varphi \in \mathcal{C}(X)^{K}: \quad|f| \leq \varphi$ on X.
Step 2: Theorem
The operator $\mathcal{H}_{Q}: C_{c}(X)^{K} \rightarrow C^{\infty}\left(A_{q}\right)$ defined by

$$
\mathcal{H}_{Q} f(a)=a^{\rho Q} \int_{N_{Q} / N_{Q} \cap H} f(a n) d n
$$

extends to a continuous linear operator $\widetilde{\mathcal{H}}_{Q}: \mathcal{C}(X)^{K} \rightarrow C^{\infty}\left(A_{q}\right)$.
Proof: uses Plancherel formula for $\mathcal{C}(X)^{K}$.

Outline of proof

Step 1: reduction to K-fixed positive f :
Let $f \in \mathcal{C}(X)$. Then $\exists \varphi \in \mathcal{C}(X)^{K}: \quad|f| \leq \varphi$ on X.
Step 2: Theorem
The operator $\mathcal{H}_{Q}: C_{c}(X)^{K} \rightarrow C^{\infty}\left(A_{q}\right)$ defined by

$$
\mathcal{H}_{Q} f(a)=a^{\rho Q} \int_{N_{Q} / N_{Q} \cap H} f(a n) d n
$$

extends to a continuous linear operator $\widetilde{\mathcal{H}}_{Q}: \mathcal{C}(X)^{K} \rightarrow C^{\infty}\left(A_{q}\right)$.
Proof: uses Plancherel formula for $\mathcal{C}(X)^{K}$.
Final step
Let $f \in \mathcal{C}(X)^{K}, \quad f \geq 0 . \quad \exists\left(f_{n}\right) \subset C_{c}^{\infty}(X)^{K}$ s.t. $f_{n} \nearrow f$ in $\mathcal{C}(X)$.
$\Longrightarrow \mathcal{H}_{Q}\left(f_{n}\right)(e) \nearrow \& \mathcal{H}_{Q}(f)(e) \rightarrow \widetilde{\mathcal{H}}_{Q}(f)(e)$
$\Longrightarrow \int_{N_{a} /\left(N_{Q} \cap H\right)} f(n) d n<\infty$.

Eisenstein integrals

For simplicity assume G / P_{0} has one open H-orbit.
Let $Q \in \mathcal{P}_{\text {min }}(A), \lambda \in \mathfrak{a}_{\mathrm{qC}}^{*}$.
Define

$$
\psi_{Q, \lambda}: G \rightarrow \mathbb{C}, \quad k a n_{Q} \mapsto a^{\lambda+\rho_{Q h}-\rho_{Q}}
$$

Eisenstein integrals

For simplicity assume G / P_{0} has one open H-orbit.
Let $Q \in \mathcal{P}_{\text {min }}(A), \lambda \in \mathfrak{a}_{\mathrm{qC}}^{*}$.
Define

$$
\psi_{Q, \lambda}: G \rightarrow \mathbb{C}, \quad k a n_{Q} \mapsto a^{\lambda+\rho_{Q h}-\rho_{Q}}
$$

Definition: Eisenstein integral

$$
E(Q, \lambda)(x):=\int_{H /\left(H \cap N_{Q}\right)} \psi_{Q, \lambda}(x h) d l_{h}(e)^{-1 *}|\omega|
$$

where

- $\omega \in \wedge^{\text {top }} T_{e}(H / H \cap Q) \backslash\{0\}$
- Re λ sufficiently Q-dominant.

Extend $E(Q, \lambda) \in C^{\infty}(G / H)^{K}$ meromorphically in $\lambda \in \mathfrak{a}_{\mathrm{qC}}^{*}$.

Fourier transform and Harish-Chandra transform

Fourier transform
Define $\mathcal{F}_{Q}^{\text {un }}: C_{c}^{\infty}(G / H)^{K} \rightarrow \mathcal{M}\left(\mathfrak{a}_{\mathrm{qC}}^{*}\right)$ by

$$
\mathcal{F}_{Q}^{\mathrm{un}} f(\lambda):=\int_{X} f(x) E(Q:-\lambda)(x) d x
$$

Fourier transform and Harish-Chandra transform

Fourier transform
Define $\mathcal{F}_{Q}^{\text {un }}: C_{C}^{\infty}(G / H)^{K} \rightarrow \mathcal{M}\left(\mathfrak{a}_{\mathrm{qC}}^{*}\right)$ by

$$
\mathcal{F}_{Q}^{\mathrm{un}} f(\lambda):=\int_{X} f(x) E(Q:-\lambda)(x) d x
$$

Relation to HC transform

$$
\mathcal{F}_{Q}^{\text {un }}(f)(\lambda)=\mathcal{F}_{\text {eucl }}\left(\mathcal{H}_{Q} f\right)(\lambda)
$$

for $\operatorname{Re} \lambda$ sufficiently dominant.

Fourier transform and Harish-Chandra transform

Fourier transform
Define $\mathcal{F}_{Q}^{\text {un }}: C_{C}^{\infty}(G / H)^{K} \rightarrow \mathcal{M}\left(\mathfrak{a}_{\mathrm{qC}}^{*}\right)$ by

$$
\mathcal{F}_{Q}^{\mathrm{un}} f(\lambda):=\int_{X} f(x) E(Q:-\lambda)(x) d x
$$

Relation to HC transform

$$
\mathcal{F}_{Q}^{\mathrm{un}}(f)(\lambda)=\mathcal{F}_{\text {eucl }}\left(\mathcal{H}_{Q} f\right)(\lambda)
$$

for $\operatorname{Re} \lambda$ sufficiently dominant.

$$
\Longrightarrow \quad \mathcal{H}_{Q} f(a)=\int_{\eta+i i_{\mathrm{q}}^{*}} a^{\lambda} \mathcal{F}_{Q}^{\mathrm{un}}(f)(\lambda) d \lambda
$$

for $\eta \in \mathfrak{a}_{\mathrm{q}}^{*}$ sufficiently dominant.

Residual operators

Residual formula
Let $f \in C_{c}^{\infty}(X)^{K}$. Then

$$
\mathcal{H}_{Q} f=T_{Q} f+R_{Q} f
$$

where

$$
T_{Q} f(a):=\lim _{\varepsilon \downarrow 0} \int_{i a_{\mathrm{q}}^{*}+\varepsilon \eta} a^{\lambda} \mathcal{F}_{Q}^{\mathrm{un}} f(\lambda) d \lambda
$$

and

$$
R_{Q}(f)(a):=2 \pi i \sum_{j} \operatorname{Res}_{\lambda=\mu_{j}}^{\operatorname{Res}}\left(a^{\lambda} \mathcal{F}_{Q}^{\mathrm{un}} f(\lambda)\right)
$$

Extension of T

Residual formula

Let $f \in C_{c}^{\infty}(X)^{K}$. Then

$$
\mathcal{H}_{Q} f=T_{Q} f+R_{Q} f
$$

Extension of T

There exists a tempered distribution v_{Q} on A_{q} such that

$$
T_{Q} f=v_{Q} * \mathcal{F}_{\text {eucl }}^{-1} \mathcal{F}_{\bar{P}_{0}} f
$$

for all $f \in C_{c}^{\infty}(X)^{K}$.

Extension of T

Residual formula

Let $f \in C_{c}^{\infty}(X)^{K}$. Then

$$
\mathcal{H}_{Q} f=T_{Q} f+R_{Q} f
$$

Extension of T

There exists a tempered distribution v_{Q} on A_{q} such that

$$
T_{Q} f=v_{Q} * \mathcal{F}_{\text {eucl }}^{-1} \mathcal{F}_{\bar{P}_{0}} f
$$

for all $f \in C_{c}^{\infty}(X)^{K}$.
Corollary
The operator T_{Q} extends to a continuous linear operator

$$
\mathcal{C}(X)^{K} \rightarrow C^{\infty}\left(A_{q}\right)_{\text {temp }}
$$

Extension of R

Kernel for R
Let $f \in C_{c}^{\infty}(X)^{K}$. Then, for $a \in A_{q}$,

$$
R_{Q} f(a)=2 \pi i \sum_{j} \int_{X} f(x) R_{j}(a, x) d x
$$

where $R_{j}(a, x)=\operatorname{Res}_{\lambda=\mu_{j}} a^{\lambda} E_{Q}(-\lambda, x)$

Extension of R

Kernel for R
Let $f \in C_{c}^{\infty}(X)^{K}$. Then, for $a \in A_{q}$,

$$
R_{Q} f(a)=2 \pi i \sum_{j} \int_{X} f(x) R_{j}(a, x) d x
$$

where $R_{j}(a, x)=\operatorname{Res}_{\lambda=\mu_{j}} a^{\lambda} E_{Q}(-\lambda, x)$
Theorem
Let Q be H-compatible. Then $R_{j} \in \mathcal{E}\left(A_{\mathrm{q}}\right) \otimes \mathcal{C}(X)_{\mathrm{d}}^{K}$.

Extension of R

Kernel for R
Let $f \in C_{c}^{\infty}(X)^{K}$. Then, for $a \in A_{q}$,

$$
R_{Q} f(a)=2 \pi i \sum_{j} \int_{X} f(x) R_{j}(a, x) d x
$$

where $R_{j}(a, x)=\operatorname{Res}_{\lambda=\mu_{j}} a^{\lambda} E_{Q}(-\lambda, x)$
Theorem
Let Q be H-compatible. Then $R_{j} \in \mathcal{E}\left(A_{q}\right) \otimes \mathcal{C}(X)_{d}^{K}$.
Corollary
Let Q be H-compatible. Then R_{Q} extends to a continuous linear map

$$
\mathcal{C}(X)^{K} \rightarrow \mathcal{E}\left(A_{\mathrm{q}}\right) .
$$

Final conclusions

Assumption: $\operatorname{dim} \mathfrak{a}_{\mathrm{q}}=1$.
Theorem
$\mathcal{C}(X)_{\text {cusp }}$ decomposes discretely.

Final conclusions

Assumption: $\operatorname{dim} \mathfrak{a}_{\mathrm{q}}=1$.
Theorem
$\mathcal{C}(X)_{\text {cusp }}$ decomposes discretely.

Let $\mathcal{C}(X)_{\text {res }}:=\mathcal{C}(X)_{\mathrm{d}} \cap \mathcal{C}(X)_{\text {cusp }}^{\perp}$

Final conclusions

Assumption: $\operatorname{dim} \mathfrak{a}_{\mathrm{q}}=1$.
Theorem
$\mathcal{C}(X)_{\text {cusp }}$ decomposes discretely.

Let $\mathcal{C}(X)_{\text {res }}:=\mathcal{C}(X)_{\mathrm{d}} \cap \mathcal{C}(X)_{\text {cusp }}^{\perp}$

Theorem

$$
\mathcal{C}(X)_{\text {res }}^{K}=\operatorname{span}\left\{\underset{\lambda=\mu_{j}}{\left.\operatorname{Res}\left(a^{\lambda} E(Q,-\lambda)\right) \mid a \in A_{q}\right\}}\right.
$$

Final conclusions

Assumption: $\operatorname{dim} \mathfrak{a}_{\mathrm{q}}=1$.
Theorem
$\mathcal{C}(X)_{\text {cusp }}$ decomposes discretely.

Let $\mathcal{C}(X)_{\text {res }}:=\mathcal{C}(X)_{\mathrm{d}} \cap \mathcal{C}(X)_{\text {cusp }}^{\perp}$
Theorem

$$
\left.\mathcal{C}(X)_{\text {res }}^{K}=\operatorname{span}\left\{\underset{\lambda=\mu_{j}}{\operatorname{Res}\left(a^{\lambda}\right.} E(Q,-\lambda)\right) \mid a \in A_{\mathrm{q}}\right\}
$$

Theorem

$$
\mathcal{C}(X)_{\mathrm{res}}^{K}=0 \quad \Longrightarrow \quad \mathcal{C}(X)_{\mathrm{res}}=0
$$

Beste Siggi........

Beste Siggi........

Best wishes from all your friends from the Netherlands, and

Beste Siggi........

Best wishes from all your friends from the Netherlands, and

Hartelijk gefeliciteerd!

