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The Lyapunov exponents and the Kolmogorov-Sinai en-
tropy for a two dimensional Lorentz gas at low densities are
defined for general non-equilibrium states and calculated with
the use of a Lorentz-Boltzmann type equation. In equilib-
rium the density dependence of these quantities predicted by
Krylov, is recovered and explicit expressions are obtained .
The relationship between KS entropy, Lyapunov exponents
and diffusion coefficients, developed by Gaspard and Nicolis
is generalized to a wide class of non-equilibrium states.

A standard model for studying irreversible processes
in classical fluids is the Lorentz gas, consisting of a sys-
tem of fixed hard disk or hard sphere scatterers placed
at random in space, with a particle that moves freely
between elastic collisions with the scatterers [1]. This
model of diffusion has been the object of considerable in-
terest, as a non trivial system with irreversible behavior,
accessible both to mathematical analysis, and to a study
of its transport properties by means of kinetic theory. It
has been possible to provide rigorous proofs that, under
reasonable physical assumptions, the Lorentz gas is at
least a K- system and that the periodic Lorentz gas is a
Bernoulli system [2,3]. This implies that the Lorentz gas
has a well defined equilibrium state and that a suitably
defined initial distribution will approach equilibrium.

The purpose of this letter is to present a calculation
of quantities that characterize the dynamic properties
of random Lorentz gases. We illustrate the method for
the two dimensional case and compute the positive Lya-
punov exponent λ+ and the Kolmogorov - Sinai entropy,
hKS , for such a model in the limit of low density of ran-
domly placed scatterers for two cases: (1) The system
is large and has periodic boundaries ( which we eventu-
ally allow to move off to infinity); and (2) The scatterers
are distributed over a large finite area with an absorbing
boundary. The first case will allow us to verify a con-
jecture of Krylov, discussed by Sinai and others [4], that
λ+ ∼ ñ ln ñ , where ñ is the reduced density of scatterers,
ñ = na2, with n the density of the scatterers, and a their
radius. The second case will show that the Lyapunov
exponents and Kolmogorov - Sinai entropy for open sys-
tems have finite size corrections that can be related to
the coefficient of diffusion, as suggested by Gaspard and

Nicolis [5,6].
The starting point for our analysis is a result due to

Sinai [2], for the curvature of an expanding ”wave front”
that describes the unstable manifold of the phase space
trajectory for the moving particle in the positive time
direction. For our purposes the essential ingredients in
Sinai’s formula are: (a) The curvature, κ, is the inverse
of the radius of curvature, ρ , i.e., κ = (ρ)−1. In the
present, two dimensional case ρ may be interpreted sim-
ply as the distance of two infinitesimally close particle
trajectories to their mutual intersection point, which, for
the unstable manifold, has to be located in the backward
direction. (b) Between collisions ρ increases linearly with
time as vt where v is the (constant) speed of the moving
particle. (c) Whenever the particle collides with a scat-
terer, there is an instantaneous change in the curvature
according to κ+ = κ− + 2

acosφ where κ+ = 1/ρ+ is the

curvature immediately after the collision, κ− = 1/ρ− is
the curvature immediately before the collision, and φ is
the angle of incidence in the collision of the particle with
a scatterer, with −π/2 ≤ φ ≤ π/2 (see Fig. 1).
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FIG. 1. The change in the radius of curvature at a collision

Suppose the trajectories go through collisions at times
τ1, τ2, · · · , τn, · · ·. Then the radius of curvature at time t
between τn and τn+1 satisfies the relation

ρ(t) = vτ +

(

2

acosφn
+

1

ρ−n

)−1

(1)

where τ = t − τn, and ρ−n is the radius of curvature
immediately before the collision with a scatterer at time
τn.
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The relation between the curvature ρ(t) and the posi-
tive Lyapunov exponent characterizing a particular tra-
jectory of the moving particle for the two dimensional
case discussed here, is given by the time average

λ+(r,v) = lim
t→∞

v

t

∫ t

0

1

ρ(r(τ),v(τ), ρ0, τ)
dτ (2)

In eq.(2), the initial radius of curvature ρ0 may be
taken to be any convenient value, since the initial value
will be unimportant for the time average. In general this
time average will be difficult to compute. However if the
system is ergodic, the time average can be replaced by an
ensemble average over all allowed positions and velocities
of the moving particle, i.e.

λ+ = v〈
1

ρ(r,v)
〉 (3)

where ρ(r,v) is the limit of ρ(r,v, t) for fixed final coor-
dinates and t → ∞ (this limit is independent of ρ0). A
further important simplification is obtained by averaging
also over all allowed positions of scatterers (which we will
assume to be non-overlapping). In that case we obtain
an expression for λ+ of the same form as eq.(3), but now
the brackets imply an average over the scatterer positions
as well as over the position and velocity of the moving
particle. It is this expression that we wish to evaluate
for the cases described above. For the case of a large
system with periodic boundaries, there is no conceptual
difficulty with imagining ρ to be generated by an infinite
number of collisions in the past. For the open system,
we consider the limit for t → ∞ of the set of trajectories
that do not escape through the boundaries of the system
before time t. Gaspard and Nicolis identify these as tak-
ing place on the fractal repeller of the system. On this
set of trajectories we can imagine an infinite number of
past collisions generating ρ.

We calculate λ+ using eq.(3) by expressing the aver-
age value in terms of a distribution function P (r,v, ρ, t)
such that Pdrdvdρ is the probablility of finding a parti-
cle in the indicated ranges of variables at time t . The
Lyapunov exponent can be expressed in terms of P as

λ+ = lim
t→∞

v

N(t)

∫

1

ρ
P (r,v, ρ, t) dr dv dρ (4)

where N(t) =
∫

P dr dv dρ. For the closed system the
function P does not depend on r,v, or t, but for the
open system it does, as we shall see presently.

The probability distribution P changes in time both
through free streaming of the moving particle and
through its collisions with the scatterers. In a low den-
sity Lorentz gas these collisions occur with an average
frequency ν = 2anv. A collision of the moving parti-
cle with a scatterer produces an instantaneous change in
the radius of curvature according to the result quoted in

point (c) above. As a result of these considerations one
can easily show that the time evolution of the probability
distribution P is described by a Lorentz-Boltzmann type
of equation, of the form

{∂/∂t + v · ∇}P (r,v, ρ, t) = −v∂/∂ρP (r,v, ρ, t) +

+ν{−P (r,v, ρ, t) + 1/2

∫ π/2

−π/2

dφ

∫ ∞

0

dρ′ cosφ

δ(ρ −
a cosφ/2

1 + a cosφ/2ρ′
)P (r,v′, ρ′, t)} (5)

The first term on the right hand side of eq.(5) describes
the change in ρ due to free streaming and the last two
terms describe the changes in P resulting from collisions
of the moving particle with scatterers. The loss term
assumes the simple form −νP because both the speed of
the moving particle and the density of the scatterers are
constants. The gain term counts collisions transforming
precollisional coordinates (r′,v′, ρ′) into postcollisional
coordinates (r,v, ρ). The relationship between v and v′

is given by v′ = v− 2(v · φ̂)φ̂ , where φ̂ is the unit vector
in the direction from the center of the scatterer to the
point of impact of the moving particle at the collision
(see Fig.1). The usual Lorentz-Boltzmann equation [1]
is obtained from eq.(5) by integrating it over all values
of ρ, provided P satisfies the condition that P → 0 as
ρ → 0. We require that the solutions to eq.(5) satisfy
this condition, since the free streaming current always
leads to larger ρ, and there is no influx at the origin from
negative values of ρ.

In this paper we only want to solve eq.(5) to lowest
order in a systematic expansion in powers of the reduced
density of scatterers, ñ = na2. Since the typical values
of ρ′ in eq.(5) are of the order of the mean free path
` = v/ν = 1/(2na), the term a cosφ/ρ′ occurring in the
denominator in the delta function in eq.(5) is of order ñ
and may be neglected compared to 1. The corrections
can be shown to be of relative order ñ ln ñ. Then the
integration over φ can easily be performed and eq.(5)
reduces to the simpler form

{∂/∂t + v · ∇}P (r,v, ρ, t) =

= −v∂/∂ρ P + ν{−P +
1

a
Θ(1 − σ)

σ

(1 − σ2)1/2

∫ ∞

0

dρ′[P (ρ′, r,v′

+, t) + P (ρ′, r,v′

−, t)]} (6)

where Θ is the unit step function and σ = 2ρ/a. The
velocities v′

± both are precollisional velocities, with scat-

tering vectors φ̂± satisfying v · φ̂± = vσ.
We first consider the equilibrium system with periodic

boundary conditions. In this case the solution to eq.(6)
does not depend on r,v or t, and this equation reduces
to

(v∂/∂ρ + ν)P (ρ) =
2 ν σΘ(1 − σ)

a(1 − σ2)1/2

∫ ∞

0

dρ′P (ρ′) (7)
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The solution to this equation is simply obtained as
P (ρ) = c0n

e
mf0(ρ)δ(|v| − v) where ne

m is the equilibrium
density of the moving particle, and c0 = 1/(2πv) is the
normalization of the velocity distribution. To lowest or-
der in ñ, f0 is

f0(ρ) = (1/`)e−ρ/` ρ > a/2

f0(ρ) = (1/`)[1− (1 − σ2)1/2] ρ < a/2 (8)

Notice that up to corrections of relative order ñ, this
solution is continuous at ρ = a/2, and satisfies the proper
normalization condition,

∫ ∞

0
P (ρ)dρ = c0n

e
mδ(|v| − v).

From eqs.(4) and (8) the Lyapunov exponent follows
immediately as

λ+ = 2nav(1 − ln 2 − C − ln ñ) for ñ � 1 (9)

where C is Euler’s constant. By Pesin’s theorem for
closed systems, it follows that hKS = λ+. This result
agrees with the conjecture of Krylov, and we have deter-
mined both the terms of order ñ ln ñ as well as of order
ñ. The coefficient of the ñ ln ñ term agrees with an sim-
ilar result, [7], [8], obtained for the periodic case as the
radius of the disks becomes small. The coefficient of the
order ñ term is new.

Next we turn to the calculation of the Lyapunov expo-
nent for the fractal set of trapped trajectories on a finite
area with absorbing boundary [9]. Since almost every
trajectory of the moving particle starting on this area
leads to escape, we have to construct a non-equilibrium
solution of eq.(6) and compute λ+ using eq.(4), taking
the limit t → ∞. The appropriate solution of eq.(6) is
the Chapman-Enskog hydrodynamic solution [10] which
is completely determined by the local density of the mov-
ing particle, and the density gradients. Thus, we look for
solutions of the form

P (r,v, ρ, t) = c0δ(|v| − v){p0(r,v, ρ, t) +

+p1(r,v, ρ, t) + p2(r,v, ρ, t) + · · ·} (10)

where pi is proportional to the i− th gradient of the local
density of the moving particle. The lowest order solution
is the local equilibrium solution

p0(r,v, ρ, t) = nm(r, t)f0(ρ) (11)

where f0 is given by eq.(8). The first order equation is
obtained by consistently keeping all terms in eq.(6) which
are first order in the gradients, and is given by

f0(ρ) (∂(1)/∂t + v · ∇) nm(r, t) =

= −v∂/∂ρ p1(r,v, ρ, t) + ν[−p1(r,v, ρ, t) +
1

a
Θ(1 − σ)

σ

(1 − σ2)1/2

∫ ∞

0

dρ′[p1(r,v
′

+, ρ′, t) + p1(r,v
′

−, ρ′, t)] (12)

Here the term ∂(1)/∂t nm(r, t) is the first order gradient
term in the hydrodynamic equation for the local den-
sity of the moving particle. This term is zero, and is

dropped. As the collision operator does not change the
tensorial character in v of the functions on which it oper-
ates, we may set p1(r,v, ρ, t) = f1(ρ)v · ∇nm(r, t), with
f1 satisfying

f0 + (v∂/∂ρ + ν)f1 = Θ(1 − σ)
2νσ(1 − 2σ2)

a(1 − σ2)1/2

∫ ∞

0

dρ′f1(ρ
′)

(13)

The solution to eq.(13) can be determined to lowest
order in ñ by noticing that f1 must be continuous at
ρ = a/2 since the right hand side of the equation contains
no delta functions. We then find that

f1(ρ) = −(1/v`)ρe−ρ/` + (1/4v)e−ρ/` ρ > a/2 (14)

f1(ρ) = (1/4v){1− (1 − σ2)1/2(1 + 2σ2)} ρ < a/2 (15)

Again, we have used the condition that f1(ρ) → 0 as
ρ → 0. Proceeding to second order, we find that appli-
cation of v · ∇ to p1 leads to a term that as a function of
v can be separated into a traceless tensor of the second
degree in v and a scalar part. Consequently p2 can be
separated into a scalar part ps

2 and a part proportional
to the traceless tensor vv − (v2/2)1. For the determi-
nation of the Lyapunov exponent only the scalar term is
important since the traceless tensor part yields zero on
integration over v. Thus we write

ps
2(r,v, ρ, t) = ∇2nm(r, t)f2(ρ) (16)

and we find that f2(ρ) satisfies the equation

f0(ρ)D + (v2/2)f1(ρ) + (ν + v∂/∂ρ)f2(ρ) = 0 (17)

Here we have imposed a solubility condition in
the Chapman-Enskog method which requires that
∫ ∞

0 f2 dρ = 0. The quantity D, appearing in this equa-
tion is the low density value of the coefficient of diffusion
of the moving particle, which is given by D = (3/8)`v.

From eqs.(4,11 and 16) one finds the positive Lyapunov
exponent as

λ+ = λ+
0 + lim

t→∞

κ2 v
∫

∇2nm(r, t)d r

N(t)
(18)

where λ0 is the closed system value, (9), and
κ2 =

∫ ∞

0 1/ρ f2(ρ) d ρ = −`/4.
Using Fick’s law expressing the diffusion current as
j(r, t) = −D∇nm(r, t), defining the escape rate as
E = lim t→∞ 1/N(t)

∫

Λ j(r, t) · n̂ dS, with Λ denoting the
boundary of the system and n̂ the unit vector pointing
outward from the boundary, and employing Gauss’s law,
one can reexpress λ+ in terms of E as

λ+ = λ+
0 − κ2 vE/D = λ+

0 + (2/3) E. (19)

We have thus shown that the Lyapunov exponent for a
random, two dimensional Lorentz gas can be calculated
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for both closed and open systems, that this calculation
can be done using standard methods from the kinetic the-
ory of gases, and that the results are consistent with the
escape-rate formalism employed by Gaspard and Nicolis
in their discussion of diffusion [5]. Finally we can obtain
the KS entropy for the system with absorbing boundaries
from the well-known relation [11] hKS =

∑′

α λα − E,
where the sum runs over the positive Lyapunov expo-
nents only. Collecting the previous results we find

hKS = h
(0)
KS − (1/3) E (20)

with h
(0)
KS the KS entropy of the closed system.

We conclude with a few brief remarks. (1) This method
can be extended to higher dimensions, to higher densi-
ties, and to more complicated processes where all of the
particles are moving. One needs to work out the kinetic
theory for the appropriate Boltzmann-like equation to do
so. Work in these directions is in progress. (2) One of the
most remarkable conclusions to be drawn is that for a two
dimensional Lorentz gas the Lyapunov exponents and KS
entropy can be expressed as ensemble averages of a static
local quantity, the local curvature 1/ρ(r,v). In how far
this can be generalized to higher dimensional systems is
presently under investigation. For the two dimensional
Lorentz gas Lyapunov exponents and KS entropy can be
defined for arbitrary non-equilibrium ensembles through
eq.(3), and the approach to equilibrium of these quan-
tities can be obtained from the time evolution of these
ensembles. (3) In our derivation of the relationship (19)
between the nonequilibrium positive Lyapunov exponent
and the escape rate we only used Fick’s law and we did
not have to specify the precise nature of the boundary
conditions. Hence, this relationship is generally valid, as
long as the state of the system can be described by a
Chapman-Enskog type hydrodynamic distribution func-
tion. The system size must be large so that higher or-
der gradient and boundary layer corrections may be ne-
glected. We may also conclude that deviations from the
equilibrium values occur only for a non-vanishing escape
rate, at least in the absence of external force fields. (4)
Our results are the analogs for a continuous system of
closely related calculations for Lorentz lattice gases by
Ernst, Dorfman, Nix and Jacobs, reported in a compan-
ion paper [12]. The Lorentz lattice gas is simpler to study
since it can be studied as a Markov chain, and it is very
amenable to computer simulations. The two systems are
close in spirit, and the methods to treat them have many
similar features. Finally, it is a pleasure to note that
Boltzmann’s equation is useful for determining features
of the chaotic dynamics of many particle systems that are
ultimately responsible for the irreversible behavior that
Boltzmann understood at a very deep level.
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