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The velocity autocorrelatlon function and related quantities are investigated for the one- 
dimensional deterministic Lorentz gas, consisting of randomly distributed fixed scatterers and 
light particles moving back and forth between two of these at a constant given speed An 
expansion for the velocity autocorrelation function given by Grassberger, which is useful for 
short hmes, is reconstructed The long time behavior is investigated by Fourier transform 
techniques For large time t the velocity autocorrelaUon function decays as e x p ( - c t  112) and m 
addlhon oscillates with a period increasing as t 112 A velocity average over a Maxwelhan changes 
this long time behawor to exp( - c't2/3), while the oscillations are removed The Green's function 
is also investigated Its spatml and temporal Fourier transform, the incoherent scattering function, 
exhibits strongly non-Lorentzlan behavior 

1. Introduction 

The asymptot ic  long time behavior of correlation functions connected with 
t ransport  phenomena,  has been a subject  of appreciable interest for several 
years One of the best-known examples is the velocity autocorrelat ion func- 
tion, obtained by multiplying the velocity of a tagged particle at an initial 
instant of time by the velocity of the same particle at a given time t later and 
subjecting this product  to an equilibrium average. The time integral from zero 
to infinity of this velocity autocorrelat ion function, if it exists, equals the 
coefficient of self-diffusion or tracer diffuslonl). 

Contrarious to previous expectat ions the velocity autocorrelat ton function 
of a tagged particle in a fluid exhibits a long time behavior  proportional to t-a/2 
in d dimensions 2) (at least for d > 2, for the subtle corrections occurring if 
d = 2, see ref 3 and 4) as a result of conservat ion of particles and momentum 
For  diffusive systems in which momentum is not conserved but  particles are, 
the asymptot ic  long time behavior  reduces to a t -~d12÷l) law A well-known 
example of such a system is the Loren tz  gasS'6), m which mutually nonin- 
teracting point particles move at constant  speed among fixed hard spherical 

* Permanent address Dept of Chemistry, Umversity of Oregon, Eugene, Or 97403, USA 

0378-4371183/0000-0000/$03 O0 0 1983 North-Holland 



198 R M MAZO AND H VAN BEIJEREN 

scatterers,  making specular collisions with the latter on collisions. For  low 
densities of scatterers Ernst  and Weyland 7) derived the above mentioned 
t-td/2÷~)-law for this system, subsequently this was confirmed in computer  
simulationsS-l°). 

A direct consequence of a t -~ long time behavior  of the velocity autocor- 
relation function is the occurrence  of a term proportional  to t 2-~ (or log t if 
a = 2) in the mean square displacement of the tagged particlel~). Hence,  for  
ct <~ 2 the mean square displacement increases indefinitely with time. There  
are systems, however ,  in which this cannot  occur  For  example,  if in the 
Loren tz  gas the scatterers are allowed to overlap each other,  there exists a 
critical density of scatterers,  called the percolation density, above which all 
moving particles are trapped within finite volumes bounded by scatterersl°'~2-~4). 
At scatterer  densities above this percolat ion density the mean square 
displacement of a tagged particle, determined by averaging over  all free 
volumes in the system, is strictly bounded for all times since large volumes 
have a probabili ty of occurrence  that decreases rapidly as their diameter  
increases From this point of view it is remarkable that Alley and Alder ~°) 
found a t -~ long time behavior  of the velocity autocorrelat ion function, with 
t~ < 2 ,  for  a two-dimensional Loren tz  gas with overlapping scatterers,  at 
densities far beyond the percolation density. One cannot  but  conclude that 
this result  represents an intermediate time behavior  and not an asymptot ic  
law. Theoret ical  explanations for such intermediate time behavior  are lacking. 

An extremely simple system with similar features is the one-dimensional 
Loren tz  gas. In this system point scatterers are Poisson distributed on a line 
and the light particles simply keep running back and forth between two 
neighboring scatterers.  To get beyond this simple behavior  Grassberger  ~5) 
recently proposed a stochastic version of the one-dimensional Loren tz  gas, in 
which the moving particles at an encounter  with a scatterer have probability p 
of being reflected and probabili ty 1 - p  of betng transmitted with unchanged 
velocity It could be shown 15'16) that for this stochastic model the velocity 
autocorrelat ion function of a moving particle exhibits the t -3/2 long time tail, 
to be expected for a one-dimensional diffusive Loren tz  gas In the limit p --* 1 
the stochastic Lorentz  gas reduces to the deterministic Loren tz  gas described 
above,  which provides some interest to the properties of the latter. 

Grassberger  investigated by Monte-Carlo simulations the velocity autocor- 
relation function of a particle moving at a given constant  speed, for  a number 
of values of the reflection parameter  p For  p = 0.5, and more strongly for 
p = 0 75, he found fairly persistent oscillations with a period that seemed to 
increase with time and which he attributed to the p = 1 limit making itself felt 
already Similar results were obtained, but not pubhshed,  by Erpenbeck  17) and 
by Dtimcke TM) Grassberger calculated the velocity autocorrelat ion function in 
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the deterministic limit p = 1 analytically in the form of a series expansion By 
numerical summation he found that indeed the velocity autocorrelat ion func- 
tion keeps oscillating over  an appreciable time range. However ,  the questions 
whether  these oscillations persist for all times and how do their period and 
amplitude change with time, cannot  easily be answered on the basis of this 
series expansion. It is our goal in this paper to investigate the asymptotic  
behavior  of the velocity autocorrelat ion function and some closely related 
functions,  of the deterministic one-dimensional Lorentz  gas. Although basic- 
ally simple, the mathematics of this problem is amusing and, in view of the 
above considerations,  the results to our feeling are of some, albeit perhaps 
restricted,  interest. The main results are as follows: the velocity autocor- 
relation function keeps oscillating indefinitely, the amplitude decreases as 
exp - ( to0 t )  1/:, with tOo the average angular f requency of the light particle 
motion, and the period of the oscillation of the velocity autocorrelat ion 
function increases as 4"it(t/to0) ~/2 with time. One may hope that these results 
will also give a qualitative indication of the long time behavior  of the velocity 
autocorrelat ion function in higher dimensional Lorentz  gases at above-per- 
colation densities Then the next  step would be to consider the motion of 
localized but  locally mobde particles in glasses or other  disordered dense 
systems. In that case, however ,  one cannot  assume, as in the model cal- 
culations, that all moving particles have the same speed; instead a Maxwell 
distribution is called for. We have applied such a distribution to our velocity 
autocorrelat ion funct ion and find it decays even faster  than for the case of a 
single speed. 

In the remainder  of this paper we will consider the velocity autocorrelat ion 
function, its Fourier  t ransform or power spectrum, the Green's  function P(x, 
t) describing the probabili ty to find a particle starting off at the origin at time 
t = 0, at position x at time t, and its Fourier  and Laplace transform, the 
incoherent  scattering function. 

We will assume the intervals between neighboring scatterers to be Poisson 
distributed with an average length L. For  the light particles, moving at 
velocity --- v, we will consider two types of distributions: first the equilibrium 
distribution, in which the probability to find a light particle in a given interval 
is proportional  to the length of the interval, and secondly a "quenched  
distribution", obtatned by first freezing in the scatterers at a high density, 
leading to an exponential  distribution of interval lengths with average spacing 
L, and next  injecting light particles of a diameter a-> L. In this case the 
probability of finding intervals that can hold two light particles is negligible 
and the light particles may be assumed to be distributed uniformly over  the 
few intervals large enough to hold one. The free length (the distance over  
which the light particle can move) of an interval of length x equals l = x - a, 
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and the distribution for l is again an exponential distribution of the form 
L-t(exp( - l/L)). 

In the next chapters we consider the equilibrium distribution first, the 
changes resulting from passing to the quenched average are presented 
separately. 

2. The velocity autocorrelation function 

2.1. Grassberger's series expansion 

For a light particle moving at constant  speed v on an interval of fixed length 
l, the velocity autocorrelation function is obtained by averaging over all initial 
positions on the interval and the two possible initial velocities, with the result 

(v(O)v(t)) = v2 ~ [{~9(t_nT)_ ~k(t_(n + 4(t--nT))T 

+ {O(t -- (n -- ½)r) -- (9(t-- nl",}(1--4(n'r--t.r ))]" (1) 

Here  we introduced the period ~- = 21/v and the unit step function O(x), which 
equals unity for x/> 0 and vanishes for x < 0  The brackets indicate an 
averaging and the subscript ~" is used if this averaging is an equilibrium 
average over an interval with period "r. The time argument t may be positive 
or negative. By a simple algebraic rearrangement the above equation may be 
rewritten as 

- { ( 9 ( t - ( n  +½)7)-O( t - (n  + 1)~-)}(1 2(t-(n~. + ~),).) 

\ T / 

=- ~ f,(t,~) (2) 
t l =  - ~  

Note  that the series in both eqs. (1) and (2) are absolutely convergent. Next  
this purely periodic expression must be averaged over the distribution for the 
period 1". In equilibrium, where the interval lengths are Poisson distributed 
and, in a fixed configuration, the probability to find a light particle on an 
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interval of length 1 is proportional to 1, the distribution for T assumes the form 

Peq(q') = ~-2 exp( - "r/T), (3) 

with T = 2L/v and L is the average length of an interval between neighboring 
scatterers Combining (2) and (3) one finds for the ve loo ty  autocorrelation 
function 

(v(O)v(t))eq = f d'r(v(O)v('r)),Peq ('r) 
0 

= f dcPCq(¢) ~ f .(t , 'r) 
n =  -o¢  

0 

= vz[3 e x p ( -  21tl/r)- 2 e x p ( - I t l / T )  

+ ~ ( -  1)"{(n 1) - - Z - ~ - 2 n  exp -21tl  
- e X P ( n -  1)T nT 

n = 2  

- 2 l t L / ] ,  
+ (n  + 1) exp ( n + 1)T J ]  (4) 

which IS Grassberger 's  result 15) The sum in (4) is absolutely convergent,  as 
follows from 

f d'rP('r) ~.  ]f.(t, "r)] = v 2 f  d ' rP( ' t )= v 2 
0 0 

If one would rewrite (4) into the apparently simpler form 

(v(O)v(t))~q = ~ ( - 1)"+14n exp - 21tl, ( 5 )  
n = l  n 

the absolute convergence would have been lost. For not too long times the 
convergence of the series in (4) is fairly rapid Grassberger used it to evaluate 
the velocity autocorrelation function by numerical summation up till t = 5T. 
The form of eq. (4) is not suitable, however ,  for extracting the long time 
behavior m a simple way 

2.2 Fourier series representation and long time behavior 

Since the velocity autocorrelation function for a fixed interval length is a 
periodic function, as made explicit in eqs. (1) and (2), it is a natural throught 
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to look for its Fourier series representation. This is well known, and easily 
constructed, with the result 

4v 2 
(v(O)v(t)). = .=~_~ [(2n + 1)~] z exp{(2n + 1)27r it~r}. (6) 

Notice that this sum is absolutely and umformly convergent again Averaging 
(6) with Peq(r), one obtains 

4v 2 
(v(O)v(t))eq = f dr  ~-~ e - ' r  . ~  [(2n + 1)w] 2 exp{(2n + 1)27r it/T} 

0 

= .=~_~ (2n16V2+ 1)~rTit K2{(1 + i)X/(2n + 1)2~oot}, (7) 

where K2 is a Bessel function of imaginary argument, too = 2"rr/T and the 
integrals over ~- were found in Gradshteyn and Ryzhik ~9) In the same source 
one finds for the asymptotic long time behavior of K f°),  

l~ r  T Re(K.{(1 + i)~/(2n + 1)2~oot})___ ~ (~_),/2~ ],/4 
t (2n + 1)t J 

× cos(~cr + [(2n + 1)2toot] l/z) exp - [(2n + 1)2toot] 1/2, (8) 

where Re indicates the real part The result does not depend on the index v. 
For large t the term with n = 0 (corresponding to the terms with n = 0, - 1 

in (7)) dominates and the magmtude of the velocity autocorrelation function is 
seen to decay as tS/4exp -(2w0t) 1/2 In addition it keeps oscillating, with a 
period that increases as (4~rtT) 1/2 with time. 

2 3 Fourier transform of the veloctty autocorrelation function 

Another quantity of interest is the Fourier transform, or power spectrum, 
of the velocity autocorrelation function. It can be interpreted as a frequency 
dependent diffusion coefficient or conductivity 

o¢ 

f dt(v(O)v(t))e -'~'. D(to) = (9) 

For the calculation of this quantity &fferent routes are available. If one wants 
to start from (4) he needs definitions and a few properties of the /3-function, 
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which is closely related to the F-function, namely 21) 

/3(z) = ~ C--1)-" (lo) 
n=0 n + z ~  

1 
/3(z) - / 3 (  - z) - z = 1r/sin(crz). (11) 

Inserting (4) into (9) one obtains 

7rv 2 r 3 3 4 4 
D(to)=--~-- [-too+ilr-------~ + too- i l r~  too+2ilrto tao-2ilr to 

+ ~ ( - 1 ) "  too - iTrto ~ ( n - l ) :  2n 2 
.=2 too- (n - 1) icrto too + n icrto 

2n 2 (n + 1) 2 (n + 1) 2 
too - n icrto -~ too+ (n + 1) icrw t- ¢00--~ -q--Dicrto J 

o o  2V2to°2 [i'tr-----to-to + ~ ( -  1)"~ 1 1 }] 
= ~ t tOo ,=1 tn  + tOo/i~rto n - tOo/i~rtO 

_ 2v%0 ~ too - too 
- i~r-~rto--7 [/3 (i-~-~to) - /3  ( i--~-to ) - ilrto ] 

too _1 

2v%~ 
= rrto 3 sinh(to0/to)" (12) 

It is of interest to investigate the analytic structure of D(to) in the complex to 
plane. From the first line of (12) it is seen that the singularities of this function 
consist of an infinite series of simple poles, all located on the imaginary axis 
and with an accumulation point at the origin. Hence one may exclude 
exponential decay of the velocity autocorrelatlon function, faster than e-C', 
with c some positive constant, since in that case all poles would be located 
outside the strip IIm(to)l < c On the other hand one does not expect a power 
law decay either, because that would give rise to a branchcut along the 
imaginary axis. Indeed (12) suffices to show, without having to invoke the 
explicit result (7), that the velocity autocorrelatlon function decays faster than 
any inverse power of t. This is worked out in an appendix. 

The more mundane way to derive (12) starts from (6), with the result 

~o 2 f • __~_~((2n4+l)Tr)28( 21r(2n + 1)) D(to) = ½ d'r - ~  e-~lT2~ " tO -- . 
n 1" 

0 

__ 4V2to0 2 ~ ( 2 n  + 1)2"a" 
- ~ 2. exp ~ltol .~o ItoIT 

2v2tO 2 
= 1rto 3 sinh(too/tO)" 
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The Fourier transform of (x(O)x( t ) )  can be easily obtained from D(to) by  
multiplying by 2to -2. This function is of interest because it would give the 
spectrum due to the translational motion of the impurity particle, were it 
charged and thus spectroscopically active. Notice that the spectrum is very 
non-Lorentzian. 

2 4. Series in powers  o f  t ime 

To complete this section we give the representation of the velocity auto- 
correlation function as a power  series in t. This may be obtained by expanding 
the exponentials in (4) and recollecting powers  of t, with the result 

(v(O)v(t))eq = V2[1 - 2vt + 2(vt)  2 log 2 

+ 4  m=3 ~ ( 1 -  2-m)~(mm! - 1)(vt)m ] '  (13) 

where ¢(x) is Riemann's  zeta function, and v = l I T  = to0/2~r 

3. The Green's function 

The Green 's  function P(x,  t) is defined as the equilibrium average 

P(x,  t) = (8 (x ( t )  - x(O) - x)) ,  (14) 

where x ( t )  is the position of the moving particle at time t. For a particle 
moving on a fixed interval the calculation of (14) is trivial again and the result 
is 

× ~ {8(2hE + Ixl-  vltl) + $ ( 2 n L - I x l -  vltl)} 
t l  = - - z c  

1 {O[vltl- (Ix] + 2L)]-  O[vltl- {(2n + 1)L-Ixl}]}] 
+ L , ,=_~  

(15) 

Application of the equilibrium average over  ~" with the distribution (3) yields 

1 [e-NZLS(Ixl_ vt) P(x, t) = Y-E 

+,,N, ( i;i- 2 i) °=, ~O(vltl vlt[ - (2n2nL + 1)[xl - 2 n L  e x p  - v x + 

vlt I - (2n 2nL- 1)lxl + 2hE  exp(. - vltl2nL + Ixl'~j}]. + O(vlt] (2n 1)lxl) 
(16) 
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Just  as was done for the velocity autocorrelation function, eq. (15) may be 
expanded in a Fourier series. Here  it takes the form 

1 
<8(x(t ) -  x ( 0 ) -  x)>, -- .__E ~ O(w - 21xl) 

x 1 - cos - -  sin 2 xl exp(21r intl.r). (17) 
v1" / v~- 7rn 

Unlike for the velocity autocorrelation function the average over Pea is not 
easy to perform for the individual terms in the Fourier series. 

The intermediate scattering function F(k, t), the spatial Fourier transform 
of the Green's  function, for a fixed interval length can be written in either of 

the forms 

(e-'k(x("-x(°'))T : 0 ( 2 - t ) [ ( 1 - ~ ) c ° s ( k v t ) + 2 - ~ - s i n ( k v t ) ] k v ,  

+ O(t _.r~[2YL\~_(2t _ 1)cos(kv( f - t ) )+ ~ sin(kv(l--  t))], 

0 < ~ t < ~  - (18a) 

~-~ 8(kv'r) 2 ~ 1 _  ~ 
= .=~_~ {(27rn)2_ (kv.r)Z} z [ .  ( -  1y cos z j  exp(2w int[r). 

(18b) 

For times outside [0, ~) (18a) Is defined through its periodicity The incoherent 
scattering function S(k, oo) is defined as the temporal and spatial Fourier 
transform of the Green's  function. For fixed interval length it follows from 

(18b) as 

(f dtexp-l{~ot+k(x(t)-x(O))}>, 
16w(kvr) 2 ( 1 -  ( _  1), cos (~_~) )8  (~ ° 2~n )  

= ,  =~_= {(27rn)2 _ (kw)Z}2 (19) 

At this stage the average over Peq(~) is easy to perform. We just give the 
result 

21r(kL) z {cosh(oJ0/oJ) + 1}{cos(kL~o0/oJ) + 1} 
S(k, o~) = w{0r¢o/o~0)2 _ (kL)2}~ sinh(o~0/co0){cosh(oJ0/oJ) + cos(kLo~o/~O)} 

+ 2zr ln(1 + (kL) z) 6(~o). (20) 
(kL) z 

As a function of k at fixed w, S(k, ~) exhibits a minimum at k = 0, in marked 
contrast  to normal diffuswe behavior,  where one has a Lorentzian line shape 
centered around k = 0. 

Furthermore,  S(k, w) is analytic in k, with simple poles at the positions 
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k = (2~rnto/to0 + i)/L. Similarly, as a funct ion of to it has an essential  singularity 
at to = 0 and poles at to = too(kL +-- i)/27rn. Finally notice that  (20) satisfies the 
general relation limk_,o k-2(S(0, to) - S(k, to)) = 2D(to)/to 2. 

4. Different ensembles 

4 1. Quenched period distribution 

In this case the equilibrium distribution of periods Peq is replaced by  the 
"quenched  distr ibution" 

P q u ( T )  = ~- e -~/r (21) 

With this choice all averages may  be pe r fo rmed  just  as well. We just  give the 
form of the veloci ty autocorrelat lon function,  analogous to (7), as 

= 8v2(1 + i)(t/T)l/2 Kl{(1 + i)~/(2n + 1)2to0t}. (22) 
(V(0)v(t))qu = n= ~ -= {(2n + 1)~} 3/2 

Hence  the asympto t ic  long time behavior  remains of  order  exp- (2 to0)  ~/2, 
al though with a prefac tor  that  increases by  a factor  t -1/2 more slowly than in 

the equilibrium case. We will not bother  to give the quenched averages  of  other  
funct ions here. 

4.2. Other period dzstributions 

Consider  first general gamma distributions of  the form 

~- I  

Under  these distributions the veloci ty  autocorrelat ion function remains of  the 
same structure as in (7), but  with K2 replaced by  K. ,  with the same argument  
and with a p re fac tor  proport ional  to (t/'r) ~12. 

Let  us consider  the more general case of an arbi trary funct ion f(t ,  T), that  is 
periodic in t with period -r, and which is averaged over  P.(~'). Such a function 
may always be expanded in a Fourier  series of  the form 

f ( t ,  ~') = ~ ,  an('r) e 2,'ntl~. (24) 
n =  - a o  

A common  occurrence  is that f(t, "r) IS a homogeneous  funct ion of order a,  
l.e it can be writ ten as f(t,  "r)=-r~(t/~ ") In that case all the Fourier  
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coefficients in (23) gre of the form a . ( r )=  a . (r /T)  ~ with a. independent of 
Then the average over P .  yields 

2 
f d'rP.(r).f(t, r) = 
0 

a.{(2n + 1)2rr i t ¢  ~+~)/2 
T / K~+.{2V(2n 4- 1) ito0t}. 

(25) 

In the case of the velocity autocorrelation function the function f( t ,  r) is 
homogeneous of degree zero The Green's function for fixed interval length is 
not a homogeneous function of t and r, however, its spatial Fourier transform 
F,(k, t) is seen from (15) to be of the form F,(k, t) = f(kvt)¢(tl 'r).  On the other 
hand one has the relation 

F(k,  t) = ~ (--k2)" .zg'=0 (2n)' ((x(t)-x(O))2")" (26) 

Hence one may conclude that the 2nth moment of displacement is a homo- 
geneous function of degree 2n, which for large time differs from its limiting 
value by t"+~/>tl4cos(rr/8+(2o~ot) t/2) exp-(2to0t)  t/2' as follows from (24) and 
(8) 

Next, consider what happens for less smooth distributions. As an example 
consider a distribution that is uniform for r0 < r < r, and vanishes elsewhere 
Suppose the function to be averaged is homogeneous in t and z, of order a 
Then the average of a typical Fourier component is of the form 

r I 2 7 r n r / r  0 

f d'r T" e2~rint/r = (2"rrrlt) a+t f du e'Uu-(>a) 

r0  2wnt/r I 

• , .  , >~.,/~o ¢Y(t-°+°))'l = ( 2 r r n t ) ~ + q ~ l  + 
[ U [ 2~nt/,rl 

I x (oscillating functions of periods n__ and ~ )  
t % " 

This result can easily be generalized" suppose the distribution of periods is 
n - 1 times differentiable but has a jump in Its nth derivative at • = r0 Then 
the long time behavior of the nth Fourier component of a periodic function 
with period r contains a term of the type t -(1+") exp(2rr int/ro). 

4.3. Maxwellian dtstribution of  velocittes 

Realistic models of statistical mechanics usually contain large numbers of 
moving particles, with speeds that are not all equal, but rather are dispersed 
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according to some velocity distribution. For  classical systems in equilibrium 
this is just the Maxwellian distribution (/3m/27r) ~n ex p ( -  ~ m v m [ 2 )  with /3 = 

1/kaY/', T is the temperature  and ka Boltzmann's  constant  To investigate the 
effects of velocity dispersion on our results we have to subject  the averages 
that were calculated for  a particle moving at constant  speed, to a fur ther  
average over  the velocity distribution Application of this average to Grass- 
berger 's  series (4) leads to a series of error functions,  which is not very 
convenient  again for  extracting the long time behavior.  Averaging of (7) with 
a Maxwellian distribution leads to complicated integrals, which do not seem 
to be well known, but the Fourier  series (6) for  fixed interval length can be 
averaged easily with the result 

f dv(-~w) .nexp(-f3mvm/2)(v(O)v(t))mL/M 

4 e x p ( _  [(mn + 1)'/rt]2]/1 _ [(mn + 1)'trt]2"~ 
(27) 

~-" [(mn + 1)¢rlm/3m t 2(3ml 2 I \"  [3ml 2 ]" n = - c o  

Notice that in this expression no oscillatory behavior  IS left. In order  to obtain 
the final expression for the velocity autocorrelat ion function, one has to 
average (26) over  the interval length distribution P~q(l) -- (l/L 2) e x p ( -  I/L). To 
our knowledge the resulting integrals of type f o d x x "  e x p - ( a x  + [3tZlx 2) are 
not known in closed form, but  for  large t they can be evaluated by the 
s teepest  descent  method,  as the exponent  has a pronounced minimum at 
x = (mf3tmla) 113 The dominant  contribution to the long time behavior  of the 
velocity autocorrelat ion function comes from the terms in (26) with n -- 0, - 1. 
Its asymptot ic  form is 

, 7rmt2 ~516. 2 .1/z 8 3 " "n'et 2 _113 

Naively one might have expected a long time decay as t -3, since after  a time t 
a large fract ion of all particles with velocity < Lit have maintained their 
initial velocity without colliding and their contribution to the velocity auto- 
correlation function readily follows to be proportional  to t -3 Apparently,  
however ,  these contributions are almost completely cancelled by those from 
particles that have completed just one collision, etcetera.  Remarkably the 
remaining velocity autocorrelat ion function decays even faster  than in the 

case of a single speed w 
Application of the velocity average to the Green 's  function is possible in 

principle, but  we have not worked this out. From the structure of (17) 
nevertheless,  it appears that, except  for the n = 0-term describing the limiting 
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long time behavior,  all terms in the Fourier  series, after averaging over  v and 
l, decay likewise as e x p ( -  ct 2/3) for  large t 

5. Conclusion 

We have shown that for  the one-dimensional Lorentz  gas, consisting of 
Poisson distributed fixed point scatterers and light particles moving at a given 
constant  speed between two of such scatterers,  the velocity autocorrelat ion 
function, decays asymptotically roughly as e x p ( - c t  1/2) for  large time 
Superimposed on this behavior  are oscillations with a period increasing as t 1/2 
with t~me. This type of behavior  manifests itself also in stochastic Loren tz  
models 15) with not too small reflection rates. It seems plausible that a similar 
asymptotic  decay will arise for  higher dimensional Loren tz  gases above the 
percolat ion density, but we expect  that in that case the oscillations will be 
washed out since the motion of the light particles is not strictly periodic. 

An asymptot ic  decay as e x p ( - c t  t/2) IS rather unusual It IS noteworthy in 
this context  that this type of decay is also found for the velocity autocor- 
relation function of a particle moving diffusively in one dimension between 
two reflecting boundaries22). More generally, if a periodic function of period ~- 
is averaged with a weight of type ~-~ e x p ( - , r / T ) ,  an asymptotic decay as 
t~/2+t/4exp(-ct ~/2) results, with oscillations superimposed. However ,  an 
average over  a weight function having a jump in the nth derivative at ~" = To 
gives rise to slowly decaying oscillations of type t -~n÷~) exp(27r imt/~o) with m 
an integer 

Finally, an average over  velocities with a Maxwellian distribution reduces 
the asymptot ic  behavior  of the velocity autocorrelat ion function to t 513 e x p ( -  
c't 2/3) with c' some constant  again. In addition it suppresses the oscillations 
completely 
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Appendix 

To prove that the velocity autocorrelat ion function decays faster than any 
power  of t we need the following theorem: 
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Theorem. Let the function f^ be C” on (- W, a~), let the inverse Fourier 
transform f of f^ exist and let 

d”fW 
-= ~(Iw~-(‘+~)), dw” as [o/+w, n = I,2 . . . 

Then f satisfies t”f(t) < C,, n = 1,2. . 

Proof One has 

t”f(t) = i dw e’“‘(i -$-) “p(w) 
-m 

by repeated partial integration Hence 

It”f(t)ls i^ d,lwl +2b, j dw,&l+E)= C,, 

-0, 0” 

where a,,, b, and C, are positive constants dependmg on n. 
The expression for D(w) given in (12) satisfies the requu-ements of the 

theorem. It has an essential singularity at the origin, yet 1s infinitely dlfferentlable 
on the real axis At +- 0~ the n th derlvatlve decays as w-‘~+*). Hence It follows that 
the velocity autocorrelation function decays faster than any power of t for 
t+*m 
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