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We consider a system of hard spheres in thermal equilibrium. Using Lan- 
ford's result about the convergence of the solutions of the BBGKY 
hierarchy to the solutions of the Boltzmann hierarchy, we show that in the 
low-density limit (Boltzmann-Grad limit): (i) the total time correlation 
function is governed by the linearized Boltzmann equation (proved to be 
valid for short times), (ii) the self time correlation function, equivalently the 
distribution of a tagged particle in an equilibrium fluid, is governed by the 
Rayleigh-Boltzmann equation (proved to be valid for all times). In the 
latter case the fluid (not including the tagged particle) is to zeroth order in 
thermal equilibrium and to first order its distribution is governed by a 
combination of the Rayleigh-Boltzmann equation and the linearized 
Boltzmann equation (proved to be valid for short times). 

KEY WORDS: Time correlation functions; low-density limit; linearized 
Boltzmann equation ; Boltzmann-Grad limit. 

1. I N T R O D U C T I O N  

In order to motivate the limits studied in this paper we consider first a fluid of 

hard spheres of diameter  one and  uni t  mass at low densities p~ = Ep, E --+ 0. 

In  many  cases of physical interest  one expects in this regime typical spatial 

variat ions of the fluid to be of the order of a mean  free path, ~ l/e, and typical 

time variations to be of the order of a mean  free time, ~ 1/E. Therefore, in 

order to study the dynamics of the fluid on its proper  time and space scale, 
it is convenient  to rescale t ime and  space as 

t '  = Et, q '  = Eq (l.1) 
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Here t and q are the dynamical variables appearing in the equations of motion 
and t '  and q' are the rescaled variables. The velocities and the mass of the 
particles remain unscaled. 

In the rescaled t', q' variables typical time and space variations are of 
order one. On this scale a particle has diameter e and the number of particles 
per unit volume increases as E -2 in three dimensions. The E -+ 0 limit is called 
the Boltzmann-Grad limit, since Grad (1~ first wrote down and discussed this 
limit as the appropriate one for the exact validity of the Boltzmann equation. 
Subsequently, Lanford indeed proved (2,3~ that, at least for short times, the 
nonlinear Boltzmann equation becomes exact in the Boltzmann-Grad limit 
for a rather general class of initial conditions on the n-particle correlation 
functions. The purpose of this paper is to study in the same limit equilibrium 
time correlation functions. 

The self time correlation function can be regarded as describing the 
dynamics of a test particle in the fluid; e.g., imagine particle one painted red. 
Therefore this correlation function is governed, in the low-density limit, by 
the Rayleigh-Boltzmann equation, which is obtained from the nonlinear 
Boltzmann equation by replacing in the quadratic collision term the distribu- 
tion function that is integrated over by the Maxwellian equilibrium distribu- 
tion. The total time correlation function describes the time-dependent 
fluctuations of the fluid in thermal equilibrium. It is therefore governed, in 
the low-density limit, by the linearized Boltzmann equation which is obtained 
by linearizing the collision term at the Maxwellian. (4-6~ 

Our results are quite analogous to the fluctuation results obtained for 
the Vlasov equation by Braun and Hepp (7~ (and for its quantum counterparts, 
the mean field models as studied by Hepp and Lieb(8)). They are only less 
complete in the sense that we can prove convergence only for short times and 
that, instead of proving a central limit theorem, we can show only convergence 
of the covariance. 

2. T H E  L O W - D E N S I T Y  L I M I T .  L A N F O R D ' S  T H E O R E M  

We describe Lanford's result (2~ about the convergence of the solutions of 
the BBGKY hierarchy to the solutions of the Boltzmann hierarchy. Since we 
will use an iteration argument later, we state the theorem as in King's thesis. (9) 

We consider a system of hard spheres of diameter E and unit mass inside 
a bounded region A with smooth boundary ~A. The spheres (particles) are 
elastically reflected among themselves and at the boundary ~A. Let the state of 
the system be specified by the absolutely continuous probabilities of finding 
exactly n particles at dxl ... dx~ 

I f~ (x  ~ ..... x~) l dx~ ...dx~[n >~ O} 
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Here x~ = (q~, p~) ~ A x R 3 stands for the position of the center and the 
momentum of the ith particle. Then the distribution functions {p,~]n >1 0} 
corresponding to this state are defined by 

0#(xl,..., x0  = ~ .  
m ~  ' J ( =  0 A x R,a) m 

(2.1) 

The time evolution of a state of the hard-sphere system is studied by means of 
the time evolution of the corresponding distribution functions. A straight- 
forward computation, which is, however, nontrivial to justify rigorously, (1~ 
leads to the following evolution equation: 

-~ p~(x~,..., x~, t) 
~t 

= H.~p~C(xi .. . . .  x~ ,  t )  

s d p . + i  dco oJ'(p.+i - p j ) p ~ + i ( x i  ..... x . , q j  + eco, p .+i ,  t) 
j=IJR ~'$2 

(2.2) 

Here ~o is a unit vector in R a and dm is the surface measure of the unit sphere 
S 2 in three dimensions. H .  ~ describes the evolution of n hard spheres of 
diameter e inside A. Equation (2.2) is the B B G K Y  h ierarchy  for hard spheres. 
The solutions of the BBGKY hierarchy are denoted by 

# ~ ( x l , . . . ,  x , ,  t )  = ( V ( p ~ ) ~ ( x l  .... , x , )  (2.3) 

for the initial vector of distribution functions 0 ~ = (pJ, p2%...). 

Rornork .  The phase space of n hard spheres in A is 

W(n, e) = {(ql, p~,..., q~, p~) e (A x Ra) ~1 Iq~ - q,[ >I ~ for i r j, 

dist(q~, aA) >1 e/2} 

In this space, boundary points of W(n, E) corresponding to a collision with the 
wall 0A and to a collision between two spheres are identified. E.g., if qj = 
q~ + ew, i # j, and with incoming momenta p~, pj going over to p~', p / i n  a 
collision, then (ql, p~ .... , q~, p~ ..... q~ + eoJ, pj ..... q,, p~) is identified with 
(q~, p,,. . . ,  q~, p/ ,  .... q~ + ~o,p/, , . . ,  q,, p=). There remains a set of " b a d "  
points in a~(n, e) corresponding to triple and grazing collisions. In the 
interior of W(n, e) the time evolution is defined by free motion with infini- 
tesimal generator - ~ =  ~ p j  O/aqj. This prescription extends smoothly through 
the points of aY'(n, e) corresponding to pair collisions and to collisions with 
the wall aA. Points lying on trajectories leading to the bad points of W(n, e) 
form a set of Lebesgue measure zero. On this set the time evolution remains 
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undefined. (Cf, the thesis of  Alexander (12~ for a detailed treatment of  the time 
evolution of hard spheres.) 

At this stage we can formally lift the restriction that A has to be a boun- 
ded region. So A may be, for example, a slab or the whole three-dimensional 
space. It  is also clear that specular reflection at ~A is only one choice out of 
many possible boundary conditions: we could consider, for example, a 
stochastic boundary condition at ~A corresponding to a wall with a certain 
temperature. All these boundary conditions would be included in the definition 
of H ,  '. 

We want to study the low-density limit of  the solutions of  the BBGKY 
hierarchy. The low-density (Boltzmann-Grad) limit is obtained by letting the 
fraction of volume occupied by the particles ~ pe3, with t' the average density, 
go to zero while keeping the mean free path of  the hard spheres, ,~ 1/e2p, 
constant. This requires that, as E -+ 0, the density is increased as e-2. There- 
fore for each hard-sphere diameter �9 one chooses an initial state with dis- 
tribution functions p~' such that O,' "~ E-2,. With this in mind we define the 
rescaled distribution functions 

Then (2.2) reads 

r # ( x ~  . . . . .  x . )  = ~ 2 % ' ( x ~  .... , x . )  (2.4) 

d r~(t)  = H~rn~(t ) + C~.,+lr~+l(t) (2.5) 
dt 

where the collision term in that equation is abbreviated as C~,n+I. 
Regarding the sequence {r,~ln >1 0} as the vector r ~, one can write (2.5) 
compactly as 

d r~(t) = H~r~(t) + C~r~(t) (2.6) 

where H ~ is a diagonal matrix with entries H ,  ~, and C ~ is a matrix with entries 
C~ ~+1 and zero otherwise. 

Let us now consider H ~ as the unperturbed part  of  the operator H ~ + C ~ 
and C ~ as the perturbation. The time-dependent (Dyson) perturbation series 
for the solution of (2.6) then reads 

= ~ f dtm ... dtl S~(t - t~)C ~ ... C~S~(tl)r ~ (2.7) r~(t) 
m=0~ JO <~tl <~...<~tm <.t 

where r '  stands for r'(0), and where (S'(t)r ')~ = ([exp(H't)]rO~ = 
[exp(H~'t)]r~" gives the evolution of n hard spheres of  diameter E inside A, 
always including the specular reflection at ~A. Solutions of  the B B G K Y  
hierarchy are always understood in the sense of  (2.7). Of  course, one has to 
say in what sense (2.7) converges. 
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For t >/0 the time evolution of r~(t)  is determined by backward stream- 
ing. Therefore it seems natural to replace, for a collision, the phase point 
(xz,..., qj, pj,..., qj + ew, P,+I) with outgoing momenta by the phase point 
(xl .... , q j ,p / , . . . ,  qj + e~o,p~+l) with incoming momenta. (As explained 
before, these are just two different representations of the same phase point.) 
This leads to 

_o rZ(x l  .... , x . ,  t) 
~t 

= H.~r.r  .... , x . ,  t)  

+ ~ f + d P = + l d c ~ 1 7 6  
j = l  = 

8 t r x {r,+l(xl ..... q j , p j  ..... qj - e~o,p=+l , t)  

- r ~ + l ( x l , . . . ,  qj, pj  ..... qj + ~ o ,  p ~ + ~ ,  t)} (2.8) 

where f+ indicates that the integration over ~o is restricted to the upper 
hemisphere ~. (pj - p ,  + 1)/> 0. Formally, the limiting form of (2.8), which the 
limiting distribution functions r( t )  = lims~0 r~(t) might satisfy, for t >i 0, is 

8t 

Y=I e r.(xl t) 
= - -  P ~ -~q 3 X n ~  

, =  

+ dpn+l dco co.(pj - P~+I) 
j =  

x {r~+l(xl .... , q j , P / , . . . ,  qj,  P'~+l, t)  

- r ,+ l ( x l  ..... qj, Pj .... , q j ,  P , + l ,  t)} (2.9) 

(Implicitly, the free motion -7:~=~ pj 0/~qj includes the specular reflection 
at ~A.) 

For  t <~ 0 the time evolution of r ~ ( t )  is determined by forward stream- 
ing. In that case, for a collision, the phase point (xl  .... , qj,  p j  .... , qj + ew, p ,  + 1) 

with incoming momenta should be replaced by the phase point 
(xi,..., qj, p / ,  .... q~. + eco, p', + 1) with outgoing momenta. The formal limit of 
the resulting equation is then again (2.9) but with the sign of the collision term 
reversed. 

Equation (2.9) for t >/ 0 and Eq. (2.9) with the sign of the collision term 
reversed for t ~< 0 is called the Bol t zmann hierarchy, which can be written in 
the form 

d r . ( t )  = H~r . ( t )  + C,.=+lr=+l(t) 
dt 
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or compact ly  

d r(t) = Hr(t) + Cr(t) (2.10) 
dt 

Lett ing (S(t)r)~ = (emr)~ = e~#r, denote the free mot ion  of  n particles 
inside A, the t ime-dependent  per turba t ion  series for the Bol tzmann hierarchy 
reads 

= ~ ~ dtm "" dtl S( t  - tm)C... CS(h)r  (2.11) r(t) 
m=O ,]0 <~l <~...<~tm<~ 

To prove  that  r~(t) defined by (2.7) indeed converges to r(t) defined by 
(2.1 l) as E--+ 0, we need two conditions. 

First, the initial distributions r ~ have to be uniformly bounded  in e. This 
guarantees the uni form convergence of  the per turba t ion  series (2.7) for some 
interval It[ ~< to. Ifh~ denotes the normal ized Maxwell ian at inverse tempera-  
ture/3, then a suitable choice for this bound  is as follows: 

(C1)  There  exist a pair  (z,/3) such that  
n 

r,~(xl .... , x , )  <~ Mz"]--~ hB(p~ ) (2.12) 
j = l  

for  all e < Eo with a positive constant  M independent  of  e. 
Second, r ,  ~ has to converge to r~ in such a way that  the series (2.7) 

converges t e rm by te rm to the series (2.11). For  the initial phase point  
x (~) = (xl, . . . ,  x~) ~ (A x Ra) ~ let qj(t, x(~)), j = 1 ..... n, be the posit ion of  the 
j t h  point  particle at t ime t under  the free motion.  Then  

s = {x (") = (xl ..... x~) ~ (A x Ra)"lqi(s, x (~)) r qj(s, x (~)) 

f o r /  C j  = 1,..., n a n d  - t  ~< s ~< 0 i f t  >1 0,0 <~ s <~ - t i f t  <~ 0} 

In  words,  P~(t) is the restriction of  the n-particle phase space to the set of  
phase points  that  under  free backward  s t reaming over  a t ime t, if t is positive 
(or free forward  s t reaming over a t ime I t [, if t is negative) do not lead to a 
collision between any pair  of  particles, regarded as point  particles. By this 
restriction only a set o f  Lebesgue measure  zero is excluded f rom (A x Ra) '~. 

No te  that:  (i) s depends only on the free mot ion,  (ii) r~(t)  c I'~(t') 
for  t '  = at, a / >  1, (iii) r.(t) # r . ( -  t), and (iv) x ("~ c r.(t) is equivalent  to 
~ )  ~ I ' , ( - t ) ,  where )7 (~ is the phase point  obta ined f rom x (~ under  the 
reversal  p j ~  - p j .  In  part icular  I'~(t) is not  invar iant  under  reversal of  
velocities. 

The  suitable choice of  convergence is then as follows: 

(C2)  There  exists a cont inuous function r ,  on (A x R3)" such tha t  

lim E2~p~ ~ = lim r ,  ~ = r~ (2.13) 
E ~ 0  s  

uniformly on all compac t  sets of  I'~(s) for  some s /> 0. 
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T h e o r e m  (Lanford). Let {p~]n >1 0} be a sequence of initial distribu- 
tion functions of a fluid of hard spheres of diameter e inside a region A and let 
the sequence {r.~ln >t 0} of rescaled distribution functions satisfy (C1) and 
(C2). Let r.~(t) be the solution of the BBGKY hierarchy with initial conditions 
r.  ~, and let r~(t) be the solution of the Boltzmann hierarchy with initial 
conditions r. .  

Then there exists a to(z,/3) > 0 such that for 0 <~ t <~ to(z, p) the series 
(2.7) and (2.11) converge and such that r~( t )  satisfies a bound of the form 
(C1) with z' > z and/3' </3. Furthermore, 

lim r . ' ( t )  = r.( t)  (2.t4) 
E~0 

uniformly on compact sets of P.(s + t). 
For -to(z,/3) <~ t ~ O, (2.14) holds provided that s ~< 0 and that in the 

Boltzmann hierarchy the collision term C.,~+~ is replaced by -C~,~+z. 

Romork. It is the conditions for the validity of the limit (2.14) that make 
the irreversible nature of the Boltzmann hierarchy consistent with the 
reversibility of the BBGKY hierarchy (cf. Appendix A). 

We now describe three interesting properties of the Boltzmann hierarchy. 
The first one is the well-known "propagation of chaos." 

Property 1. If  the initial conditions of the Boltzmann hierarchy factor- 
i z e ,  

= f(xj)  (2.15) 
j = l  

then the solutions with this initial condition stay factorized, 

r~(x~ ..... x . ,  t) = ~-~ f ( x j ,  t). (2.16) 
j = l  

f ( x ,  t) is the solution of the Boltzmann equation 

 f(q, t) = gqf(q, t) + dpl (p - pl) P, LO' 

x {f(q, p', t ) f (q,  p~', t) - f (q ,  p, l ) f(q,  p~, t)} (2.17) 

with initial conditionf(q, p). 
The second property comes from considering one of the fluid particles as 

a test particle, e.g., imagine particle one painted red. 

Property 2. If  the initial conditions of the Boltzmann hierarchy are of 
the form 

r.(xl  .... , x~) = f ( x l )  ~ {zhB(pj)} (2.18) 
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corresponding to an initial test particle distribution of the form f (x l )zhB(xl  ), 
then its solutions are 

rn(xl .... , xn, t) = f ( x l ,  t)]--[ {zh~(xj)} (2.19) 
j = l  

f(x, t) is the solution of the Rayleigh-Boltzmann equation 

~ f ( q ,  a , 
( t) = --p -~qf(q, p t) + z j+ dp~ dco w. (p - pl)hB(pl ) P, 

x {f(q, p', t) - f (q ,  p, t)} = (Af(t))(q,  p) (2.20) 

with initial condition f ( q , p ) .  Equation (2.20) is also known as Lorentz-  
Boltzmann equation or linear Boltzmann equation. 

Finally, we have the following property: 

Property 3. If the initial conditions of the Boltzmann hierarchy are of 
the form 

r~(xl ..... x~) = xj {zh~(xj)} (2.21) 

then its solutions are 

r~(xl,..., x , ,  t) = f ( x j ,  t) {zhB(xj) } (2.22) 
j = l  

f ( x ,  t) is the solution of the linearized Boltzmann equation 

, P 
f ~ f ( q ,  p, t) = - p  ~q f (q  t) + z j+ dp~ &o co.(p - pl)he(Pz) 

x {f(q, p~', t) + f (q ,  p', t) - f (q ,  Pl, t) - f (q ,  p, t)} --- (Lf( t))(q,  p) 
(2.23) 

with initial condition f (q ,  p). 
Property 3 is proved by inserting the Ansatz (2.22) in the Boltzmann 

hierarchy and then by using repeatedly the fact that the collision operator 
acting on the Maxwellian he vanishes. 

Properties 2 and 3 remain valid for l-~= 1 {zh(xj)} replaced by 1~= 1 g(xj), 
i.e., when the fluid is not in thermal equilibrium. In that case the analogs of A 
and L are time-dependent through the fluid distribution evolving according to 
the Boltzmann equation. 

It should be understood that properties 1-3 are subject to the conditions 
of the theorem; in particular, the initial conditions have to satisfy the bound 
(C1) and the results are valid only up to to(z, [3). However, in contrast to the 
nonlinear Boltzmann equation, existence and uniqueness of the solutions of 
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the Rayleigh-Boltzmann equation and the linearized Boltzmann equation in 
suitable spaces of functions have been proved for all times& a~ In particular, 
{eAelt /> O} and {eLtlt /> O} are contraction semigroups on the Hilbert space 
J {  = L 2 ( A  x R 3, he(p) dq alp). <~ 

3. E Q U I L I B R I U M  T I M E  C O R R E L A T I O N  F U N C T I O N S  

We consider the fluid of  hard spheres of diameter E to be in thermal 
equilibrium with fugacity z~ and inverse temperature 13; grand canonical 
ensemble. 

The Bol tzmann-Grad limit corresponds to letting E --+ 0 while increasing 
the fugacity as z~ = c 2 z .  Since the equilibrium distribution functions have 
the form 

p~q.~(xl ..... x , )  = ~ (&he(pi)}Gn(q~ .... , q~, &E 3) (3.1) 
j = l  

with G~ --+ 1 as z~e 3 --~ 0 for all qz .... , qn in which no two positions coincide, 
it is clear that as e -+ 0 the system will resemble an ideal gas at infinite density. 
In particular, the rescaled distribution functions converge to 

lim ~2,p~q,~t ~ ~xl,..., x~) = ] ~  {zhe(pj)} (3.2) 
~'~0 j = l  

uniformly on compact sets of  F~(O). [As mentioned in the introduction, this 
limit can be viewed alternatively by considering a spatial scale on which the 
diameter of a sphere equals one while q/  = E-~qj. On this scale the fugacity 
decreases as Ez and as c -~  0 the fluid reaches an ideal gas at zero density. To 
discuss time-dependent properties on this scale we would have to let t '  = 
e-i t . ]  

We now want to study the se / fand the total  equilibrium time correlation 
functions in the low-density limit. 

3.1. The Sel f  Corre la t ion  Funct ion 

We consider a bounded region A, but will later drop this restriction. Let 
f ,  g: A x R 3 -+ R be bounded and continuous functions of compact support. 
On (A x Ra)" let us consider the functionsfj(xl  ..... x~) = f ( x j ) ,  g j (x l  .... , x , )  
= g(%),  j <~ n. Then the time-dependent self correlation C ( g , f ;  t)  is defined 
as the grand canonical average of X~=I g ( x j ) f j ( x l  .... , xn,  t), 

C ( g , f ;  t)  = g J j ( t )  (3.3) 

wheref j ( t )  isfj. time-evolved under the dynamics of  n hard spheres in A. 
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We transform (3.3) into a somewhat more manageable form. Let 
e'(ql ..... q~) be the characteristic function, which is zero whenever tq~ - qJ[ 
~< �9 i r j, or d(q~, 8A) ~< �9 i, j = 1 ..... n, and which is one otherwise and 
let S, ' ( t )  denote, as before, the time evolution of n hard spheres of diameter �9 
inside A. Then, using the symmetry of the equilibrium distributions, we find 

l 
C(g , f ;  t) = d x l f ( x l )  (m - 1) t 

m = l  

m 

x (gl ~ Sm~)( - t)(xl ..... Xm)em~(ql .... , qm) 1-~ {z~hB(PJ)}Z-1 
j = l  

(3.4) 

where Z is the grand canonical partition function. Defining the signed initial 
distribution functions 

(p~,g)n(Xl ..... Xn) = g(x1)p~q,n(Xl .... .  Xn) ( 3 . 5 )  

one can rewrite (3.4) as 

C(g , f ;  t) = dxz f (xz ) (  g," p~,g)l(Xl) (3.6) 

where we have used the notation (2.3). 
One may interpret the quantity (V~'p~,g)~(xl) as the test particle distribu- 

tion function at time t resulting from an initial distribution g(x~)p~q,~(xl) (cf. 
Section 4). Strictly speaking, this interpretation is allowed only if g >/ 0 and 

if f dXl g(xl)p~q,l(Xl) = 1. 

Remark. In (3.6), Vt ' depends on the bounded region A. To obtain the 
result for an unbounded A, we choose a sequence of bounded regions Am 
such that Am -+ A. The infinite-volume limit 

lim Vte(Am)= gte(A) 
m ~ c ~  

can then be taken in the perturbation series (2.7) before taking the low-density 
limit �9 -+ 0. The infinite-volume limit causes no difficulty, since all estimates 
in the proof  of  the theorem are uniform in A. With this prescription in mind, 
we drop the restriction of A being bounded. 

Remark. For the computation of transport  coefficients one has to 
consider such quantities as the velocity autocorrelation function ( p ( t ) . p )  in 
the infinite-volume limit. In that case one has to show first the existence of 

lim (1/]AI)C(Na,IA; t) = ( p ( t ) . p )  
A ~ R  3 

with fA(q, P) = gA(q, P) = x^(q)P, where XA is the characteristic function of 
the bounded region A. We have not studied this limit. The subsequent low- 
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density limit follows by the argument used in the proof of Theorem 3.4. In 
the low-density limit (p ( t ) . p )  is governed by the spatially homogeneous 
Rayleigh-Boltzmann equation. 

To obtain the low-density limit of (3.6), Lanford's theorem has to be 
applied to V,~p~,g. Therefore one has to check the conditions (C1) and (C2). 
Condition (C2) follows from (3.2) and (C1) from the following result: 

L e m m a  3.1 If  supxlg(x)] < 0% then E2~V, ~ ~ satisfies the bound 
�9 k t U s , g ) n  

(CI) for all t. 

Proof. For a bounded region A we dearly have, by the invariance of p~q, 

,..., ]-~ h -" (Vt'~ps,g)n(xl xn) ~< sup[g(x)l { e(PJ)}Peq.~(ql ..... q~) (3.7) 
x ] = 1  

Here ye~q.~ are the spatial parts of the equilibrium distribution functions at 
fugacity z,, for which it is known r that 

Fg,.,(qz ..... q,) ~< (z,)" (3.8) 

independent of A. [ ]  

The fact that C(g , f ;  t) ~ ~-2 can also be seen directly. Consider as a 
typical example the case where fand  g are of the form X~r with A c A, and r 
some function of the momentum. Then C(g , f ;  t) ~ ( N ) / I A  t, with (N)  the 
average number of particles in A, because the probability of finding a given 
particle initially within A is proportional to 1/[A t and the average number of 
particles contributing to this correlation is (N) .  In the limit as e--~0, 
( N } / { A  I ~ z~; hence C(g , f ;  t) ~ e -=. 

T h e o r e m  3.2. L e t f  g e ~ = L2(A x R a, hB(p) dq dp). Then, for t I> 0 

l!m(z,)-'(~ g , f ( t ) )  = f dx h,(p)f(x)(eA'g)(x) (3.9) 
X " E,B 

Proof. Let f g be continuous and of compact support. By Lanford's 
theorem, Property 2, (3.2), and Lemma 3.1, 

lira 2 ~  ~ E (V~ ps.g)~(xl ..... x~) = (eAtg)(xl)~-I {zhB(pr (3.10) 
E~O j = l  

uniformly on compact sets of F,(t) for 0 <. t <~ to(Z, fi). At t = to = to(Z, 13) 
the uniform bound (C1) is still valid by Lemma 3.1. Therefore, using (3.10), 
Lanford's theorem can be applied again to conclude that 

lim 2~ ~ ~ (V, (VioO~,~))~(x~ .... , x J  = (eA(t+t~ 0 ~  {zhAp3} (3.11) 
E~O Y=l 
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uniformly on compact sets of F~(t0(z, fi) + t) for 0 <~ t <~ to(z, p). Iterating, 
the result is valid for all times. In particular 

lim e2(VtEo~,g)l(Xl) = (eAtg)(xl)zhe(pl) (3,12) 

uniformly on compact sets for all t >I 0, which proves (3.9) for continuous 
f,  g of compact support. 

To extend (3.9) to all of . ~  we use Schwarz's inequality and the in- 
variance of the grand canonical equilibrium probability densities {f{q,nln >1 0} 
to show 

n=O i=1 

< n dx l  ... dx~f:q ,~(xl , . . . ,  x~)g(x l )2 |  
~ 0  

x dxl "'" dx~f:q,~(xl ..... x,)f(xl)2J 

< dXl Peq,l(Xl) g(xl) dxi p e q . ~ ( x x ) f ( x l )  (3.13) 

where we used (2.1) in the last step. Therefore (z~)-~(~ g~f(t))~. B is a boun- 
ded bilinear form on 24~ and, since continuous functions of compact support 
are dense in ~ ,  (3.9) extends by continuity. �9 

3.2.  T h e  T o t a l  C o r r e l a t i o n  F u n c t i o n  

We proceed with the total equilibrium time correlation functions. Let us 
define the sum ~ g of one-particle functions g, which are assumed to be 
continuous and of compact support, as 

. . . . .  . = 

j=l 

We define the total correlation functions o f f  and g as the grand canonical 
equilibrium average of 

In condensed form we write this average as 

~ ,  g ( ~ f ) ( t ) ~ ,  e (3.16) 
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It is not difficult to see that in the low-density limit 

(3.17) 

Therefore, a nontrivial result is only obtained upon subtracting out this limit, 
and the quantity to be considered is 

(3.18) 

where we have used the time invariance of the equilibrium measure. 
We may think of (3.18) as giving the expectation value of ~ f a t  time t 

when we start with a signed initial distribution obtained by multiplying the 
equilibrium density by 8g. Equivalently, if at t = 0 the distribution functions 
pg~ are given by 

Pg.~( 1,.. . ,  x , )  = g(x j  po~,~(x~,...,~ x~) 

+ f dx,~+l g(x~+l){pgq,.+l(xI .... , x . + O  

- p g q , . ( x l  . . . .  , x . ) p g q , ~ ( x .  + i)} (3.19) 

then 

To apply Lanford's theorem, the conditions (C1) and (C2) have to be 
verified for PS. By (3.2) and (3.8) the first term in (3.19) clearly causes no 
problem. The second term is estimated by 

dxn+l  g(x~+l){po~,~+l(xl , . . . ,  x~+O - poq,~(xl ..... Xn)Peeq,l(Xn+ l)} 

• ~< suplg(x)] I~I {hB(pj) } 
x ]=1 

• L dq [#&,~+l(q, qx .... , q,*) - P--.~q,~(q)P~q,.(q~ .... , qn)l (3.21) 

Then the uniform bound (C1) follows from the next result: 

Lernrna ;3.3. Let z' > ez. Then there exists a constant c > 0 and 
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�9 (z') > 0 such that 

f -8 -8 -~ sup �9 dq [Peq.~+~(q, qz ..... q~) -- Pea.~(q)Peq,~(q~ .... ,q~)l ~ �9 ~ 
qj.,.. . ,qnEA 

(3.22) 

for all �9 ~< �9 independent of A. 

Proof. Cf. Appendix B. 

It is now easy to prove the following result: 

Theorem 3.4. Let f ,  g e ~.. Then for 0 <~ t <~ to(ez, 5) 

= f dx he(p)f(x)(eCtg)(x) (3.23) 

Proof. Let f,  g be continuous and of compact support. By Lemma 3.3, 
�9 2,pg., satisfies the uniform bound (C1) for the pair (ez, 5). By (3.2), (3.19), and 
Lemma 3.3 

lim 2,8 Ij~_~_l )]1-~ �9 pg,~(xl ..... x~) = g(xj {zhe(pj)} (3.24) 
~ 0  j = l  

uniformly on compact sets of r~(0). Therefore by Lanford's theorem and by 
Property 3 [Eqs. (2.21) and (2.22)] 

2 lim �9 t . . . .  pg )~txl ,..., x'~) = (eLtg)(xj) I - [  {zhB(xJ)} (3.25) 
E ~ 0  j=l j=l 

uniformly on compact sets of P~(t) for 0 ~ t <~ to(ez, 5). Hence it follows 

from (3.20) that the left-hand side of (3.23) converges to f dx h~(x)f(x)(eLt)(x). 
To extend (3.23) to all of ~ ,  we use again Schwarz' inequality 

Therefore for �9 small enough 

is a bounded bilinear form on ~ and (3.23) follows by continuity. 

(3.26) 
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Remark. Although eL*g is known to exist for all t >/ 0, we have been 
unable to extend Theorem 3.4 beyond to(eZ, fi). 

Remark. The result of Theorem 3.4 can be viewed in a somewhat differ- 
ent way, which we feel to be rather instructive. Let us define the random 
variables 

Xr ~ = ~ f  (3.27) 

on the phase space equipped with the equilibrium measure at fugacity z, and 
inverse temperature/~. For the particular cho ice f  -- x~, Xr ' is the number of  
particles in the region A c A x R 3. A straightforward equilibrium estimate 
shows that 

= [ dx zh~(p)f(x) lim(E2X{>~.e 
,~0 j (3.28) 

l im((e2X{)2)~ ,e -  (e2XJ)~,e  = 0 
E ~ 0  

for a l l f ~  ~ .  This means that the distribution of e2X~ converges to a 3-function 
as e -+ 0. In particular, the relative number of  particles in A has a sharp value 
in this limit. 

Let us now consider the fluctuations of  X r around its average value, i.e., 
the fluctuation observables 

~:~' = , ( X )  - (X{)~,.e) (3.29) 

and also their time evolution ~:f(t). One expects and can prove (~6~ that ~:{(t) 
has a Gaussian distribution as e - + 0  with mean zero and variance 

z f dx he(p)f(x) 2. In other words, the central limit theorem holds for the 

sequence of random variables ~:{(t). But one also expects that 
{se{(t)[t ~ R, f e  ~,~ff} become jointly Gaussian. Now Theorem 3.4 tells us that 
at least their covariance exists in the limit e --~ 0 for short times, i.e., 

= ~ dx zh~(p)f(x)(eL(t-~g)(x) (3.30) lim(~r'(t)~g'(s))~,.e 
E ~ O  J 

for t ) s, t - s <<. to(ez, B). So we conjecture that {~:{(t)lt s R, f e ~ }  con- 
verges as e - +  0 to a Gaussian stochastic process indexed by - ~  with mean 
zero and covariance (3.30). 

4. A T A G G E D  PARTICLE IN AN EQUIL IBRIUM 
H A R D - S P H E R E  FLUID 

As is well known, the self time correlation function can equally well be 
interpreted as describing the distribution of a tagged particle in a fluid. 
Thinking of this tagged particle as an external probe of the fluid, it is then of 
interest to consider also the response of the fluid to the perturbation caused by 
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the test particle. This in turn is related to the total time correlation function. 
But there are some new insights to be gained by looking at the problem from 
this point of view. 

We consider a tagged particle in a fluid of hard spheres of diameter E and 
mass one. The tagged particle is assumed to have the same properties. (We 
could allow the tagged particle to have a different mass and diameter. How- 
ever, it is necessary that its diameter also decrease in proportion to �9 The 
fluid plus tagged particle is enclosed in the region A. Initially, the fluid is 
assumed to be in thermal equilibrium at fugacity z~ = �9 and inverse 
temperature 13 c o n d i t i o n e d  on the tagged particle being located at ql while the 
tagged particle has the distribution f ( x l )  d x l .  Here xl = (ql, Pl) stands for 
the position and momentum of the tagged particle and x , =  (q~,p0, i /> 2, 
stands for the position and momentum of the (i - 1)th fluid particle. There- 
fore the initial probability density of the joint system is proportional to 

x l ) [ p g q . l ( x l ) ] - l e g + l ( q l  . . . . .  q~+l)  { z~h , (p j ) } ln  >>. 0 (4.1) 
. i = 1  

withf (x l )  /> 0 and f d x l f ( x l )  = 1; e~ = 1 if [q~ - qJI I> e, zero otherwise. 

We want to study the time evolution of the distribution functions of this 
system for f ( x ~ )  <<. chB(xl  ). A straightforward computation shows that at 
t = 0 these distribution functions are 

[ O ~ q . l ( x l ) ] - l f ( x l ) p ~ q . ~ + l ( x l , . . . ,  x ~ + l )  = (p~s,~),+l(xl .... , x , + l )  (4.2) 

X - 1  e with g ( x l )  = [Peq.a( 1)1 ~f(xl) in the notation (3.5). As before, poq.~ are the 
unconditioned equilibrium distribution functions at fugacity z~ and inverse 
temperature p. Since 

lim �9  2[pg a,l(xl)] - 1  = [z~hB(pl)] -1  (4.3) 
E ~ 0  

we conclude from Property 2, (3.2), Lemma 3.1, and the iteration argument 
used in the proof  of Theorem 3.2 that the following result holds: 

T h e o r e m  4.1. Let (pg.~)~+l(xl .... , x , + l ,  t )  denote the time-evolved 
distribution functions of the fluid plus tagged particle system with initial 
distribution functions given by (4.2). Then for all t t> 0 

n + l  

�9 2 . . . .  , t )  = ( e A t f z - l h y l ) ( x l ) 1 - ~  z h e ( p j )  (4.4) lira tp~.g)~+l(xl  .... , x ,+~  
E~O /'=1 

uniformly on compact sets of F~+l(t). 
Integrating (pg.g)~+l(x~ ..... x~+~, t) over xl yields the fluid distribution 

functions (p~,,~),(x2 .... , x ,  + 1, t ) ,  which give the expectation of finding n fluid 
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particles at x2 ..... x,+~. From Theorem 4.1, by integrating over xl ,  one 
obtains that in the low-density limit 

lim ~2~ ~ .., t) = ~-~ {zhe(pj)} (4.5) ( p i , . g L ( x l , .  x~,  
c ~ O  / = 1  

In the limit the fluid is completely undisturbed by the presence of the tagged 
particle. This is of course to be expected, since in this limit the tagged particle 
will interact (directly or indirectly) during any fixed time interval only with a 
vanishing fraction of all particles in any fixed region. Consider now, however, 
the next order correction, i.e., the limiting behavior of 

(Sp~Lg)n(Xl ..... Xn, t) = e2n-2{(p~rLg)n(Xl,... , Xn, t) -- Peeq.n(X 1,..., Xn)} 
(4.6) 

Theorem 4.2. For  0 <<. t <~ to@z, 8) 

lim(Sp},.g)~(x, ..... x~, t) = ([e Le - eaq f z  -*hy  1)(xj {zhe(pj)} 
E ~ 0  

(4.7) 
uniformly on compact sets of F,(t). 

Proos  With g(x)  = [pgqa(x)] - l f (x )  and the notations (3.5), (3.19), and 
(4.6) one checks the identity 

~ x x . )  + (ap~, ,~)4x~ .... , x . )  
s = 1 ( 4 . 8 )  

The assertion now follows from Theorem 4.1 and the proof  of Theorem 
3.4. [ ]  

A P P E N D I X  A 

We wish to illustrate here by means of an example how the Lanford 
theorem, Eq. (2.14), can manage to get the irreversible Boltzmann hierarchy 
from the reversible BBGKY hierarchy. 

For the sake of clarity let us introduce some notation. We denote the 
velocity reversal operator by R, 

(Rp)n(ql ,  Pz ..... qn, P~) = p, (ql ,  - P l  ..... q~, - P n )  (A1) 

As before, Vt' denotes the solution operator of the BBGKY hierarchy and 
Vt ~ denotes the solution operator of the Boltzmann hierarchy. [We remind the 
reader that for t <~ O, Vt~ is defined as the solution of (2.9) with the sign of 
the collision term reversed.] 

Let us now consider a situation in which the box A is divided into two 
parts A1 and A2 and the initial state, at t = 0, corresponds to a canonical 
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equil ibrium state of  N particles of  d iameter  E all in A1. (We can imagine that  
there was an impenetrable  barr ier  between A~ and A 2 which was removed  at 
t = 0.) I t  is clear that, since the initial state is invariant  to reversal o f  velocities, 
its distr ibution functions p~ = (pl ~, pS,.. .) satisfy the equality 

V ( p  ~ = RV~_tp ~ (A2) 

Fur the rmore ,  

Vt~(RV(pO = p~ (A3) 

while 

V ( ( V ~ p O  = V~tp ~ (A4) 

This means that  if at t ime t we reverse all velocities, then the system, after 
ano ther  t ime interval t, will re turn to its initial state in which all the particles 
are in A1. 

Consider  now the sequence of  initial states with distr ibution functions pc 
in which as E--~ 0 the number  of  particles inside A1 increases with fixed 
N~ ~ = z. Then  

lim r162 .... , x~) = lira r~(x l , . . . ,  x~) = r~(xl .... , x~) 
s  ~ 0  

= ~ [  {XAl(qj)zhB(pj)} (A5) 
j = l  

on Fn(0), where XA1 is the characteristic funct ion of  the set A1, and, since (C1) 
and (C2) are satisfied, by Lanford ' s  t heorem 

lira E2"(Vt~pr .... , x~) = (Vt~ ..... x~) = ]-~ { f ( x j ,  t)} (A6) 
t o O  j = l  

on Fn(t) for  ]t[ < to(z,/3), where f ( x ,  t) is the solution of  the Bol tzmann 
equat ion with initial condi t ionsf (q ,  p) = XAz(q)zh~(p). 

Let us now reverse the velocities at t ime t, 0 ~< It[ ~< t0/2, and let us 
consider R V~p ~ as the new initial state. Clearly 

Vt~176 # r (A7) 

in contrast  to (A3), so the limiting r do not  have the t ime reversibility of  the 
r r Indeed,  the Bol tzmann H-funct ion  decreases up to t, remains unchanged 
by R, and continues to decrease as RVt~ is evolved for  a t ime interval t. 

At  first sight, Lanford ' s  t heo rem seems to assert that  

lira E2~(V( (RV(pO) ,  = (V~~176 # r,  
8 ~ 0  

However ,  there is no such contradiction.  The  answer lies in the fact that  while 

lim E2"(V(p%~ = (Vt~ on F~(t) (A8) 
6 '~0  
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it is also true that 

lim E2'~(RV(p~)~ = (RVt~ = (Vt~ on F ~ ( - t )  r P~(t) 
E'-*O 

Therefore, continuing in the same time direction as before the reversal of 
velocities, R V ( p  6 no longer satisfies the second condition (C2) of  Lanford's  
theorem. The theorem asserts nothing about  the convergence of 
~2'~(Vt~(RV(p~))~ as ~ ---> 0. [Of course, by (A3), we can say something about 
this limit. The point is that we cannot conclude from Lanford's theorem that 
the limit is (Vt~176 since condition (C2) is violated.] For the theorem 
still to be applicable at time t one has only the two choices to consider, either 
V( (V(o  6) or VS~(RV(p~). In both cases the system evolves further toward 
equilibrium. 

The irreversible Boltzmann hierarchy is consistent with the reversible 
BBGKY hierarchy, since the approximation by the Boltzmann hierarchy is 
valid only for a particular class of initial states. The condition (C2) excludes 
highly correlated initial states such as the one just constructed by reversal of  
velocities. 

A P P E N D I X  B. PROOF OF L E M M A  3.3 

Relation (3.22) is transformed to a spatial scale on which a sphere has 
diameter one. Then 

f -E -6  -E sup E 2" dq ]P.a.,+l(q, ql,..., q,) - Peq.l(q)Pea,~(q~,..., q,)l 
q l , " % q n ~ A  ,l A 

= sup ~t" dq ~-(~+~) 
q l '  " " ' q n  E~ - IA J6 - IA 

• ]p~%~(q, ql,..., q,; ~-~A) - p~(q; ~-1 A)p,6~(q~ ,..., q,; ~-~A) I 
(B1) 

Here p,~Z(ql,... , q~; E-1A) represents the spatial part  of  the grand canonical 
equilibrium distribution functions of  hard spheres of diameter one inside the 
region ~ - IA at fugacity e3z6 = Ez. Lemma 3.3 follows now from the result: 

L e m m a  B1. There exists an % > 0 such that for all E < % 

sup E-("+I>~ dq ]p~+l(q, ql .... , q,; e- IA)  
q l ' ' " ' q n  6~ - lz'k ~ 6 -  XA 

- p~(q; e-~A)p~Z(q 1 .... , q,; ~-IA)[ ~< M(z')"  (B2) 

where M is a constant and z' > ez. 

Proof. We consider the particles at q~ .... , q, as providing an external 
field and denote the equilibrium distribution functions of  this system by 
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PX" [ql,..., qn; A). Then, expanding in z, 

p~(q]ql,..., q~; A) - plY(q; A) = ~ cj(q[q~ .... , qn)z j+ ~ (B3) 
3'=0 

In terms of the zero-field Ursell functions Uj+ ~ the expansion coefficients are 

cj(qlq~,..., q,) = ~ dql' ... dqj Uj+ ~(q, ql', .... q/)  = h(q - qk) 

• (q i  - q ~ )  - 1 ( B 4 )  
i=1  

where, we let h be the overlap function, h(q) = 0 for ]q] ~< 1 and h(q) = 1 
otherwise. The second factor is negative and, according to Ref. 15, Chapter 4, 
(5.14), for a positive pair potential ( -1)J+IUj  /> 0. Therefore 

( -  1)J+ lcj(qlql ..... q,O >i 0 (B5) 

and for z > 0 

Ip~(qlql .... , q,~; A) - p~Xq; A)[ ~< ~ ]cj(qlq~,..., q,~)lz j+~ 
j=O 

= ~ cj(q[ql ..... qn)(-1)  j+lzj+l 
y=O 

= pi-~(q[ql ..... q,; A) - ps A) 
(B6) 

For small enough E, p~(q~ .... , q,; ~-~A) r 0 and therefore we have for z > 0 

f ,  dq [P~,%~(q, ~-~A) - o~(q; ~-lA)p,~(ql q,~; ~-IA) 1 ql q,~; 
- 1/k 

<~ p~(qz q,~; ~ - l A ) f  dq ]P~(qlq~ .... , q~" E-1A.) E -  1A_)[ 
~.,.~ ~ / "1 ~ / ,  

I 

J~ - 1  A 

<< p~(q~ ..... q, ; ,-  A ) f,_ dq [Ps ,..., qn ; ~-~A) - ps E-1A)] 

= p~(ql,..., q,; ~-IA)[p~"Xq~,..., q,j ~-IA)]-~ 

x ( dq{pY~.](q,q~ ..... qn; ~-~A) - ps ~-lA)p;'~(q~,... ,q,; ~- 1A)} 
- " t A  " 

= { p ~ ( q ~ , . . . ,  q,~; ~ -  ~A) [p? '~ (q~  .. . .  , q,~; ~ -  ~ A ) ] -  1} 

d ~ /  
x {-np~'~(qz , . . . ,q , ;  , -~A) + z-~p~ tqz, . . . ,q,;  "-ZA)} (B7) 
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(B7) is estimated using the Mayer expansion. For small enough E the first 
factor is uniformly bounded. The second factor is bounded by 

- np~ ~(qz d I .... , q~; ~ -1A)  + z-d- ~ p;~(ql ..... qn; ~ - I A )  

<~ ~ Ib~.m(qz .... , q~; , - 1A) I  I - n  + n + ml [,zl ~+m 
m = 0  

<<. n(n + m ) m - l m  ~.~ [Ez] ~+'~ < M 1 - 4rr[ezl/3 ne'~l~z["+~ 

(B8) 

where we have used the uniform bound on the coefficients b,~.m(q~ .... , q~; ~- ~A) 
[cf. Ref. 15, Chapter 4, (4.30)]. Relation (B8) together with (B7) proves the 
lemma. [ ]  

Remork. Lemma B1 holds for any positive pair potential V with 
fdq (1 - e - B ~ %  < o~. 
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