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Hydrodynamic Correlation Functions 
Hard-Sphere Fluids at Short Times 
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of 

The short-time behavior of the coherent intermediate scattering function for a 
fluid of hard-sphere particles is calculated exactly through order t 4, and the 
other hydrodynamic correlation functions are calculated exactly through order 
t 2. It is shown that for all of the correlation functions considered the Enskog 
theory gives a fair approximation. Also, the initial time behavior of various 
Green Kubo integrands is studied. For the shear-viscosity integrand it is found 
that at density na3= 0.837 the prediction of the Enskog theory is 32% too low. 
The initial value of the bulk viscosity integrand is nonzero, in contrast to the 
Enskog result. The initial value of the thermal conductivity integrand at high 
densities is predicted well by Enskog theory. 

KEY WORDS: Neutron scattering function; shear viscosity; bulk viscosity; 
thermal conductivity; Green-Kubo integrand; hard-sphere fluid; short-time 
expansion. 

1. I N T R O D U C T I O N  

Several kinetic theories can be based on short-time properties of correla- 
tion functions. Notably, linearized revised Enskog theory (RET) (1) may be 
obtained by extending the short-time decay of the one-particle distribution 
function to arbitrary times. (2-4) The same applies to the linearized version (5) 
of the square-well kinetic equations derived recently by Karkheck et  a/. (6) 

Apart from this, exact short-time expansions of correlation functions 
are of importance as a reference point for checking more general, but 
necessarily approximate theories. Short-time estimates of Green-Kubo 
integrands may be helpful in the calculation of transport coefficients; in 
most cases the dominant contributions to Green-Kubo integrals come 
from a short-time interval. 
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The pioneering work in this field was done by de Schepper and 
Cohen, (7) who calculated the velocity autocorrelation function of a hard- 
sphere fluid exactly through order fl, thereby correcting a preceding 
calculation by R6sibois. (8) A more detailed derivation was given by 
de Schepper et al., ( S E C )  (9) who,  moreover, extended this work to a 
calculation of the incoherent scattering function through order /4. 

Here we generalize the results of SEC so as to treat wavelength- 
dependent hydrodynamic correlation functions, such as the coherent inter- 
mediate scattering function. Comparing to RET, we find that the latter 
describes the wavelength dependence of the initial decay reasonably well. 
The limit of long wavelengths yields the initial values of the Green-Kubo 
integrands. Comparing again, we find RET to give good predictions for the 
initial values of the thermal conductivity integrand, but not so for the 
integrands of shear and bulk viscosity. 

The plan of the paper is as follows: In Section 2 we introduce 
hydrodynamic time correlation functions, in Section 3 we identify several 
contributions to their short-time behavior and work out explicit expres- 
sions for these. In Section 4 we compute numerical results for a few den- 
sities and compare these to the predictions of Enskog theory. Concluding 
remarks are made in Section 5. 

2. T I M E  C O R R E L A T I O N  F U N C T I O N S  

Consider a fluid of N classical hard-sphere particles of mass m and 
diameter a at a temperature T confined in a volume V, so the density is 
n = N/V .  Here we consider time correlation functions of the hydrodynamic 
densities, which can be distinguished into longitudinal and transverse ones. 
Transverse velocity correlations will be treated in Section 3.5. 

Microscopic definitions of the longitudinal hydrodynamic densities 
are: the particle number density 

1 
n--k = a I [ N S ( k ) ]  1/2 ~. exp(ikrj) (2.1) 

J 

where S ( k )  - 1 is the Fourier transform of the pair correlation function; the 
longitudinal velocity and the microscopic temperature 

v~ = a2, Tk = a3 (2.2) 

where 

1 
ai = - -  ~i(vj), i>~ (2.3) xfl ~ ~ [exp(ikr/)] 2 
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and 
r = (tim) 1/2 (vj-~) (2.4) 

~b3(v/) = ~ - ~  ( f lmv 2 - 3) (2.5) 

where ~ = k/k. We will also need ~bl(v ) = [S(k)]  1/2. 
The longitudinal correlations can be arranged into the matrix Fu(k, t) 

correlating particle density, longitudinal velocity, and temperature to them- 
selves and to each other 

F~(k, t ) =  (a i l a j ( t )  > -  (a*a j ( t )  > 

= (a*eC+taj> ( i , j =  1, 2, 3) (2.6) 

Here ( . . .  > denotes an average over the canonical ensemble PN, 

( .. .  ) = f dFpN, eq... (2.7) 

and L + is the forward streaming pseudo-Liouville operator (1~ for hard 
spheres. The pseudo-Liouville operator consists of two terms 

Here 

L -+ = L  o + L )  (2.8) 

L o = ~  vi -Or- ~ (2.9) 

is the free streaming operator, which describes free particle motion, and 

L? = Z T/f (2.10) 
i < j  

where 

T + = e x p ( L o O + - ) c S ( r o - a ) I v 0 - ~ 1  0 ( T v ~  .f,7)(Bij - 1) (2.11) 

is the collision operator. The operator exp(Lo0-+) is needed to define the 
behavior at discontinuities. The operator B o. acts on functions of the 
velocities vi and vj by replacing their precollisional values by the postcolli- 
sional ones, 

B~jf(vi, vj)= f(v;, vj) (2.12) 

with 
v~ = vi - ~,;/(v~ -f0) (2.13a) 

vj = vj + f~(vij, f,j) (2.13b) 
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The function 0 in (2.11 ) is the unit step function defined as O(x)= 0 if x < 0, 
and O(x) = 1 for x ~> 0. 

The microscopic densities ai are normalized in the sense that 

Fu(k, t = O) = 6ij (2.14) 

Between al and a2 we have the relation 

ik 
~,al = L + al - [ f lmS(k)]  m a2 (2.15) 

This implies that F~I and Fie can be found by taking the time integral of 
Fi2 and F2~, respectively. For  this reason we will restrict ourselves to 
i, j = 2, 3 till the end of section 3.2. 

Invariance of the equations of motion under time inversion yields the 
symmetry relation 

F~(k, t ) = e i g j F * ( k ,  t ) =  Fj~(k, t) (2.16) 

where e~ denotes the parity of a~ in velocity space. For  the second equality 
to hold it is essential that Fa is a complex matrix. 

3. S H O R T - T I M E  BEHAVIOR 

This section closely follows the treatment of SEC.  (9) Using the defini- 
tion (2.6), we readily obtain 

O,Fo-(k, t)l,=o+ = (a*(Lo + Lr (3.1) 

The right-hand side of this equation defines another matrix, consisting of 
matrix elements of Lo and Lc, given explicitly in Eqs. (3.6) and (3.7). The 
second time derivatives at t = 0 + are more delicate. To be careful, we 
consider the limit t ~ 0 + and obtain 

32tFij(k, t)lt=o+ = lim ( a * L + e L + % + a i )  
t ~ O  + 

= - ( (Loa*) (Loa j ) )  

-- ( (Loa*)(L + aj) ) + ( (L,7 a*)(Loaj) ) 

+ lim ( ( L s  a*) eL+'(L, + aj))  (3.2) 
t ~ 0  + 

Here we have used the Hermitean conjugates * L o =  - L o ,  (L,+)* = L~ - , and 
the relation ~1~ 

L PN, eq=PN,  eqL - (3.3) 

Equation (3.2) consists of three physically different terms: one with L~, 
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called the kinetic-kinetic or simply kinetic term; one with (LoL c + LcLo), 
called the kinetic-potential or cross term; and the last one contains LcLc,  
and is called the potential-potential or simply potential term. The relative 
importance of these contributions depends both on density and wave- 
number. For  long wavelengths it is determined by the ratio of the mean 
free time t e and the hard-sphere diameter traversal time t~ = a(flm) 1/2. For 
high densities (na 3 >0.3) the potential term is found to be largest. For  
shorter wavelengths, the potential and kinetic terms at high densities are of 
the same order when kl  e _~ 1, where le = [21/27rng2g(~)]-1 is the mean free 
path. 

For the first time derivatives of F U we need to know the matrix 
elements of the operators Lo and L + on the basis (al,  a2, a3). For the 
kinetic and cross term in (3.2) it is useful also to consider the matrix 
elements of Lo and L~ + for the so-called kinetic currents, for if one knows 
these, the kinetic and cross terms can be obtained from a matrix multi- 
plication. For  the potential term this approach does not work out, 
as will become apparent further on. The kinetic currents can be obtained 
by letting Lo act upon a2 and a3, projecting the resulting functions 
orthogonal to a~, a2, and a3, and normalizing. One obtains the longitudinal 
part of the kinetic stress tensor a4, defined through (2.3), with 

~4(V) = ~ 2 2  [3(V" ~)2 -- V 2] (3.4) 

and the kinetic part of the heat current as, defined through 

( t i m  ~ 1/2 (u "~)(fl m u  5) (3.5) 
~5(v) = \ 10 J 

The matrix elements of Lo and L~ + on the basis (al,  a2, a3, an, as) follow 
from a lengthy, but straightforward calculation. They are given in the 

/'k 
L~ - (flrn) 1/2 

matrices 
0 IS(k)]  1/2 0 0 0 

1/[s(~)] 1/2 0 , / 5  0 

0 ( 3 2 _ o o s  

2 
0 x/~ 0 0 

o o 

(3.6) 

822/57/3-4-12 
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and 

1 

- ikt e 1 - S(k) 
0 (tim)l/2 [S(k)]l/2 0 

0 _ 2  (1 - J 0  +2J2) i Jl 
3 

�9 //g'~ 1/2 . 2 
0 l ~ g )  J1 - -3  (1--Jo) 

0 ~ (2J~ - 3j3) - 5  .2 )2 

0 - 1  ( -Jo 
�9 3 x f - ~  2 \ 5 J  j '  

0 O 

i(7~) 1/2 --1 (1 --Jo + 2j2) 
~ (2j, - 3j3) 3x / i -  6 

- 3 2  21/2j2 ~ i (37~) 1/2 - -  Jl 

16 4 8 24 i { 37c'] 1/2 
~ + - ~ J ~  5 \ l O J  (2J' -- 3J3) 

i ( 3 ~  1/2 59 27 
5 \ 1 0 /  ( 2 j ~ - 3 j 3 )  60 I- ~-~ (jo - 2j2) 

J 

(3.7) 

Here j ,  =_ j , (ka)  is a spherical Bessel function of the argument ka, and te 
is the (Enskog) mean free time between two subsequent collisions, 

t~ = 4na2g(a ) 

Here n = N/V, and g(a) is the pair correlation function at contact. Notice 
that, even though Lo and Lc are not symmetric, their sum is symmetric, in 
agreement with (2.16). The matrix elements L44 , L45 , and L55 do not occur 
in the expressions for the second derivatives at t = 0 +, but we have given 
them for completeness. 

There remains the potential part 

= e tLc  a j ) )  (3.9)  F~. t~lim+ ((L,. a*) c+,,~+ 
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This term is considerably more difficult than the kinetic or the cross term, 
due to the contributions from correlated collision sequences. The same 
difficulty was encountered and resolved by de Schepper and Cohen (7) in 
their calculation of the t 2 term in the expansion of the velocity autocorrela- 
tion. A more detailed treatment has been given by SEC. Here we extend 
their calculations, considering all wavelength-dependent hydrodynamic 
correlation functions. 

Using the definitions of ai and Lc, we find 

F P = , 4 0 + l i m / ( N - 1 ) ( a ~ < b T ~ { [ e x p ( - i k . r a ) ] 0 i ( v a )  
N 

[ e x p ( - i k .  rb)] ~bi(%)}) + 
/ 

x [exp(L+t)]{T~2 [exp(ik "r l)]  ~bj(Vl)}) (3.10) 
t 

where we have used that T12~b(v3)= 0. We split F,~ into three terms, one 
where (a, b ) =  (1, 2) and one where a equals either 1 or 2 and b is larger 
than 2, and a term where both a and b are larger than 2. So 

F p = F~ 2) + F!3 / + F! 4) (3.11) 
t j  U 

For the three-particle term we may take b = 3 in (3.10). The limit t ~ 0 + 
can be taken without complications and we find 

FI ] )=  ( ( N -  1)(X-Z)(T13{Oi(vl)+ [exp(ik.  r13)] q~i(u 

+ T~3 {~bi(v2) exp(ik,  r12 ) + ~bi(v3) exp(ik,  r~3)})[Tl~ ~bj(Vl)] ) 

The four-particle contribution is given by 

F(4)= ( ( N -  1)(N-2)(N-3)(Tf4{[exp(-ik "r3)] ~bi(v3)}) 

x { T +  [exp(ik �9 rl) ] ~j(u ) 

(3.12) 

(3.13) 

and the two-particle contribution is 

F,~2) = lim ( ( U -  1)(T12 { [ e x p ( - i k .  r l ) ]  @i(Vl) -]- [ e x p ( - i k .  rz) ] ~bi(v2)}) 
t ~ O  + 

x [exp(L + t)] {T~2 [exp(ik" r i)]  q~j(V 1 )} ) (3.14) 

For the two-particle contribution we must leave the limit t ~ 0 +. The three 
contributions defined in the last equations will be treated separately in the 
next subsections. 
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3.1. The Three-Part ic le  Contr ibut ion 

In order  to evaluate (3.12), we first notice that  ~b2 and ~b 3 are collision 
invariants, i.e., 

T ~  [~bj(v~) + ~bj(v2)] = 0 ,  j = 2 ,  3 

Exchanging the dummy indices 1 and 2 in the T23 term 
repeatedly using (3.15), we find 

(315) 

of (3.12) and 

If for ~(3) 1 '  22 we take the limit k ~ o% we recover a result of Resibois (8) and 
SEC. 

The collision opera tor  T acts on ~b2 and 43 as 

T ~ ( K . v l )  = -6 ( r12  - a) [vt2" f121 0(-T-vt2 "f12) 

X (~"  r t2 ) (v12"  r [2)  ( 3 . I 7 )  

(3.16) 

and 

T~2(v  2) ~- - (~(FI2 --  (9)IV12" r121 0(-~-v12 | r12) 

• I-(vl + v2)" 712](v~2 " f12) (3.18) 

Using (3.17), we find 

F(3)  ^ 22 = f l m ( ( N -  1 ) ( N - 2 )  6(rt3 - 0-) Iv,3 "r131 0(v13"f13) 

X (~"  1"13)(V13 ~ r13) ~(r12 - -  0 )  ]v12 "f121 0( --VI2 ~ ~12) 

• (~" f12)(v12 " f12)[1 - exp( - i k "  r12 ) 

- exp(ik �9 r~3) + exp( ik  �9 r23)] ) 

- 1  
< ( N -  1 ) ( N -  2) ~(r13 - -  0")(~ �9 r l3 )  ~(r12 --  0-)(~ �9 r12) 

= 3m 

• Vl(f12 "f13)[1 - e x p ( - i k . r 1 2  ) - e x p ( i k - r l 3  ) + exp( ik ,  r23)] ) 

(3.19) 

(3) Fij = ( ( N -  1 ) ( N -  2 ) ( T ~  {~bi(vl)[1 - exp( - ik ~ r12)] 

+ ~bi(v3)l-exp(ik" r13 ) - exp( ik"  r23)] } )[ T ~  ~bj (Vl) ] ) 

= ( ( N - -  1 ) ( N - 2 ) [ T ~  ~b,(vl)] [T~q~j(v~) ] 

• [1 - e x p ( -  i k .  r12) - exp(ik �9 r13) + exp(ik �9 r23)] ) 
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where V1 is defined as the velocity average 

V1('12 ''13):(flm)2f du f du f du fm(I)2) fm(1J3) 
)< (V13" r13) 2 0(u ~ r13)(v12 ~ f12) 2 0 ( - - v 1 2 .  r12) (3 .20)  

Here fm is the Maxwe l l -Bo l t zmann  velocity distribution. The ensemble 
average in (3.19) yields a three-particle equil ibrium correlat ion function, 
and we obta in  

T;'(3) drl2 dr13 6~(r12 - 0-) - 2 2  ~ ~ m  

X ~(r13 --  0") V1(r12 �9 f13) g 3 ( r l ,  r2,  r 3 ) ( ~ "  r13)( ~~  r12) 

x [1 - e x p ( - i k . r 1 2 ) - e x p ( i k . r 1 3 ) + e x p ( i k . r 2 3 ) ]  (3.21) 

It is more  convenient  to use the dimensionless quant i ty  ,2 ~-(3) which can ~e"t 22 
be writ ten as 

t 2 p ( 3 ) =  f l  dzVl(Z ) g3(z )  Fl(k , z) (3.22) 
1 

e-22 16rt --1 

where z = f12' f13, the function g3(z) is the reduced three-particle correla- 
t ion function 

g3(r12 " f 1 3 ) =  [ g ( a ) ]  2 g3(rl ' rl _ crfl2, rl _ o.f13) (3.23) 

and Fl(k, z) is given as 

Fl(k , z) = f d~12 f d~13 6(~12 . r13 --  Z)( ~~ F12)( ~" F13) 

X [1 -- e x p ( - - i k "  r12 ) -- exp( ik  �9 r13) + exp( ik  �9 r23)] (3.24) 

In a similar manne r  we arrive at expressions for the other  correlat ion 
functions. We find 

t2 it;.(3 ) --  1 ~l = j dz V2(z ) g3(z) F2(k, z) (3.25) "e --23 16~ l 

with 

V2(f12 " f13) = - -  

and 

(tim) ' /2 
~-6 f dv1 f dv2 f dV3fm(Vl) fro(V2) fm(lJ3)(V13 ~ 2 

x 0(v13 �9 ~13)(v12 "f12)2[(vl + v2)" rl2] 0 ( - v 1 2 "  r12) (3.26) 

F2(k,z)=f d~12 f d r l3  ~(~12 ~ ~13 - z ) ( ~ "  f'13) 

x [ 1 - e x p ( -  ik"  r12 ) --  exp( ik  �9 r13 ) + exp( ik  �9 r23)3 (3.27) 
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Also, 

now with 

and 
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,2 ~,(3)_-1 fl dz V3(z) g3(z) F3(k, z) te l  33 -- 16n 1 (3.28) 

V3(I12 ~ r13) = (flm)3 f dvl f dv2 f dv3 6 
x fm(Vl) fm(V2) fm(V3)(Vl3 "r13)2 

X [(u + V3) ~ r13] 0(u ~ r13)(v12 "r12) 2 

x [(vl + v,,) 'L2] O(-Vl2 "~2) (3.29) 

F3(k'z):f dr l2  f dr13 r "r13 - - z )  

• [ 1 - exp( - i k "  r12) - exp(ik �9 r13 ) + exp(ik �9 r23)] (3.30) 

Calculation of the functions Vi is straightforward, but not trivial. Details 
are given in Appendix A. The functions Fi are calculated in Appendix B. 
The explicit results read 

2 1+-~ a r c c o s 2 - ~ z  1 -  (3.31a) VI(Z) = ~  

V2(z)- (6rQln z 1 -  (3.31b) 

1 [  /zzk2 3/1\ z 7 2( ~)~/2] 
: -  z t - : - + : j  arccos  1 -  3.3 ct V 3 ( z )  ~ . ~ -  g z 

and 

3 2z z Fl(k, z)= 8';c 2 - ~ -  [jo(ka)-Zj2(k~r)] +-~jo(kz) 

+ ( ~ - 6 )  j2(kz)} (3.32a) 

F2(k,z)=i8n2I(z--1 ) jl(ka)+(~"~)t/2jl(kZ)l (3.32b) 

F3(k, z) = 8n2[1 - 2jo(ko') + jo(k"c)] (3.32c) 
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where z = a ( 2 - 2 z )  1/2. For computing the L~(3) only g3(z)  is needed in 1' /j 
addition. In Section 4 we will present numerical estimates, based on simula- 
tion results and low-density approximations for g3. 

3.2. The  Four -Par t i c le  C o n t r i b u t i o n  

From (3.17) and (3.18) it follows that the four-particle contribution 
vanishes unless i = j = 2. For i - - j  = 2 the velocity integrals are trivial and 
we obtain 

1 
FI4)_ ( ( N - -  1 ) ( N -  2 ) ( N -  3) 22 tim 

• -a)(~'f12)6(r34 - cr)(l~" f34) exp(ik �9 r13)) (3.33) 

The expression (3.33) involves a four-particle correlation function. This 
expression can be simplified by using the third equation of the BBGKY 
hierarchy to 

F(~ ,= ; 2 ;  f drl f dr2 f dr3(~''12 ) 

x ~(r12 -- a) exp(ik - r13 ) 

+ [~  "~r3 -- 6(r13 -- r "1"31) 

-- ~(r23 -- 0-)(~ �9 r32)] g3(rl, r2, r3) (3.34) 

Using the second equation of the BBGKY hierarchy, this can be simplified 
to 

F(4)=-ikn f f 22 flmV dr1 dr3[exp(ik" r13)] 

X[~  c~ -r13)Jg2(rl , r3)  �9 Si r-6(r. 

n2G 4 
"F--~-- f drl2 f d,13(~ �9 r12)(~ .,13) 

• [exp(ik �9 r23 ) --  exp(ik �9 r~3)] g3(rl, r2, r3) 

_ k 2 kn~r 2 
- /?m I S ( k ) -  1] - - - ~ - -  4)zg(~r)j~(ka) 

n2G 4 1 
+~--pm [g(a)]2 ~_1 dz g3(z)F(k, z) (3.35) 
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For the function P we have 

Z ) :  f drl2 f drl3 ~(F12 ~ -- z) 

x (1~" f12)(~ "f13)[exp(ik" r23) - exp(ik �9 rl3)] 

= 8~2 - 5  [ J ~ 1 7 6  2jz(k~ 

In obtaining (3.36), we have used results from Appendix B. 

Leegwater and van Beijeren 

(3.36) 

3.3. The T w o - P a r t i c l e  C o n t r i b u t i o n  

From the arguments presented in ref. 9, it follows that besides the 
three- and four-particle contributions, the two-particle contribution defined 
in (3.14) is also nonvanishing. At first glance this may seem surprising as 
T~eL~ vanishes (the same two particles cannot collide twice without 
the intervention of a third particle). So one needs an intermediate collision, 
and seemingly (3.14) is proportional to t and would vanish in the limit 
t -* 0 +. This is not the case, however, because of the large probability that, 
if an intermediate collision occurs in a certain short time interval, particles 
1 and 2 will recoUide in the same time interval. Details are described in 
SEC. In the cases considered by de Schepper and Cohen and by SEC the 
numerical importance turned out to be small. As the two-particle contribu- 
tion comes from recollisions, F!  2) is also called the recollision contribution. ~J 

Here we closely follow the treatment by SEC and just sketch the 
details of our calculation. Using that ~b 2 and ~b3 are collision invariants, we 
find that 

F! 2) = lim ( ( N -  1)(1 - exp(ik .r12))[T~2 ~bi(Vx)] 
U t~0+ 

x e L+'[ T ~ ~bj(v i )] ) (3.37) 

Using the binary collision expansion, SEC showed that the relevant con- 
tribution to the second derivative at t = 0 + is 

F!? ) = lim d t l ( ( N -  1 ) ( N - 2 ) [ 1  -exp(ik.r12)][T12~bi(v1) ] lJ t~0+ 

• { e x p [ L o ( t -  t l )]  } (T~  + T~3)[exp(Lot~)][T~2~bj(v,) ] ) 
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/ 
2 ( N -  1 ) (N-  2)[1 - exp(ik, r12)] 

\ 

0 ( - - ~ 1 2  " r13)  
• 6( r12 - -  ~7) ~(r13 - -  0-) 

]r12 "f131 

• "L~)Ivl~'L~t [ ( B ~ 2 - 1 )  

• lv~ "~121 [(8,~ - 1) ~j(v~)]) (3.38) 
/ 

The velocity integrals in (3.38) are independent of both K and f~2. 
Replacing the integral over f~2 by one over K and performing this integral 
yields the wavelength dependence of F~ 2>. In a manner similar to that used 
in Section 3.1, the ensemble average can be taken. The velocity integrals are 
treated in Appendix A. The final results of these steps are 

0 
,2p(2) 7t E1 -jo(ka) + 2j2(kcr)] f_l dz WI(Z ) g3(z) (3.39a) teJt 22 ~ - - - ~  

0 
~e--23t2p(2) ~-- iTrjl(kcr) f dz W2(z ) g3(z) (3.39b 

1 

0 
"e--33t2 t7(2) ~--- -reEl - jo (ka ) ]  f dz W3(z ) g3(z) (3.39c 

1 

where 

( _ _  z 3 ( 2 _ z  ~) 1 -  (3.40a Wl(z)= 2 (6_4z2+z4)arcsin ~ 
7rz 

z 5 

W2(z) = 2(67z)1/2 (3.40b) 

An expression for W3(z ) is given in (A.19c). 
The results for the correlation functions Fo.(k , t), with t ~> 0, obtained 

so far can be summarized as 

2 ~ t 2 
Fz2(k, t )=  1 - ~  E1 -jo(ka)+2j2(ka)] +C(ka)-~+O(t 3) (3.41) 

k 2 
C(k~r) = - ~-~ [4 - S(k)] 

2 k , / ~  
5te(flm)l/2 [3jl(ka)-2j3(ka)] + rPz(k~r) (3.42) 
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- -  ik 1/2 

+F~3(kcr) ~-+ O(t 3) (3.43) 

2 1 1 - j o ( k a ) ]  t 
F33(k , t )=  1 

3 t e 

(_7k2 ),2 
+ \  3rim 3re(tim) 1/2jl(kG)+f~3(ka) 2 -+O(t3)  

(3.44) 

with F o.p -F~- (2) -I- F~3) + 6g2 ,~ vj2a22 ,~'(4)" and -~JF(2), r0~(3), and -22P(4) are given in 
(3.39), in (3.22), (3.25), (3.28), and in (3.34), respectively. By time integra- 
tion of (3.41) and using the initial conditions for Fll(k, t), we arrive at 
the following result for the normalized coherent intermediate scattering 
function: 

k 2 t 2 2 k 2 t 3 

F~l(k, t)= 1 rimS(k) 2 + 3  [1 - jo (ka)+ 2j2(ka)] fimS(k~) 6te 

k 2 t 4 

- C(ka) rimS(k) 24 + O(tS) (3.45) 

3.4. Enskog Theory 

The linearized wavelength-dependent Enskog operator (1~ acts on 
functions in one-particle velocity space. For forward streaming the Enskog 
operator is given by 

L (E)= L(o E) + L~ E) (3.46) 

where the free streaming term is 

L(oE) = ik "v (3.47) 

and the Enskog collision operator acts on a given function h(v) as 

= na2g(a) f dr12 f dv2f.,(v2) 0(I/12" r12)I]/12 . r12 I L~E)h(Vl) 

• (B12 - 1){h(v~) + [exp(ika~. r12)] h(%)} 

1 47zg(a) 3jl(k~ 
- i  1 S(k) na ) 

x j dv2fm(V2)(k, v2) h(v2) (3.48) 
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The first term is the collision term, the second term the mean field term. 
We have chosen to absorb the mean field term in the collision operator in 
order to keep the nomenclature consistent with the previous sections, We 
define an inner product in one-particle space through equilibrium correla- 
tion functions in N-particle space(5'11): Define 

N 
q~(h(v)) = (N) -1/2 ~ [exp(ik -ri)] h(vi) (3.49) 

i=1 

Then our inner product is given by 

(a(v)l b(v)) = <4~(a(v))l 4,(b(v))> = <4~(a(v))* 4,(b(v))> (3.50) 

In the context of equilibrium time correlation functions, this is a very 
natural definition of an inner product, for instance the full Enskog operator 
is symmetric under this inner product, but not the free streaming and colli- 
sion parts separately. The Hermitean adjoint of the Enskog operator (3.46) 
can now be found, and is given by 2 

( L ( E ) ) t  = (L(oE))-~ q_ (L c(E)), (3.51) 

with the adjoint of the Enskog collision operator being given by 

(L~E)) t h (v l )  = no2g(0-) f dr12 dv2 0(u f12) [V12" 1"121 

x (B12 - 1){h(v~) + [ exp( - ikaK"  r12) h(v2)} 

j l ( k O )  
- i4~zg(a) mr 3 ~ ; dv2fm(V2)(k" v2) h(u 

t" 
+ ik" u - -  1] J dv2fm(V2) h(v2) (3.52) 

The adjoint of the (Enskog) free streaming operator is 

(L(oE/) * h(v,) = - i ( k  "Vl) h(v,) 

- i f  dv2fm(V2) { [ S(k)-  l ](k " vl) 

+ ( s ( l k ) - 1 ) ( k "  v2)} h(v2) (3.53) 

2 The operator (LeE)) t is identical to the operator Ae, s of Cohen and de Schepper, t~2~ but our 
separation into a free streaming term and a collision part is slightly different. This is connec- 
ted to the definition (3.47) of the Enskog free streaming operator and our choice of the inner 
product (3.50). 
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Within the framework of RET, the hydrodynamic correlation func- 
tions can be expressed as 

(E) F o (k, t) = (qt~] eL(EI'~j) (3.54) 

which is an approximation of the exact expression (2.6). The RET 
approximation of the first time derivatives 

O,F~E)(k, t ) =  (~b~l L ( E ) 0 j  ) (3.55) 

is easily shown to be exact, i.e., identical to (3.1). ~2 4~ 
The second time derivative can be expressed as 

~2 F(E) = ((L(E)) t ~bi(v) I L ~E) ~b/(v)) (3.56) 

As before, we can identify three different contributions. As the kinetic 
currents are one-particle densities, the kinetic and the cross terms as 
given by RET are identical to the exact results. The potential term is 
approximated. Using (3.48) and (3.52), we find that within RET the poten- 
tial term is given by (3.22), (3.25), and (3.28) if we set g3(z)  = 1. There is 
also a contribution F,~ E'er/due to the mean field term. This contribution is 
only nonzero if i = j = 2, and is given by 

F ~  E'mf) : --~i2 6j2 S(k ) -  2 + + ~e 2 [ j l (kO ' ) ]  2 (3.57) 

The recollision, or two-particle, term is absent in RET. 
A different expression for the Enskog value of the potential term of the 

second derivative at t =  0 § can be obtained from (3.56) as the expansion 

F,~ = ((L~E)) * ~b,(v) [ LI.E)~bj(v)) 

= E (~i(v)l LY~(v))(~o(v)l ZlE%(v)) 
n 

= ~  (a*L-a  3 4 - * r + a j )  (3.58) \ i c / / / \  u / 7 / ' ~ c  
n 

where the functions ~b n are a complete set of orthonormal functions on the 
one-particle velocity space, under the inner product generated by (3.50). 
We can approximate the infinite sum in (3.58) by only taking the five poly- 
nomials ~bi, i = 1,..., 5. This can be expected to be a very good approxima- 
tion, as (1) the five-polynomial approximation yields the same initial value 
for all Green Kubo integrands we consider in this paper as the full Enskog 
theory (see Section 3.6); and (2) the limit k ~  ~ for the second time 
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derivative of the longitudinal velocity correlation function Fz2(k, t) in the 
Enskog theory is known to be 0.4556592 (in reduced units). (9) In the five- 
polynomial approximation it is 41/90 = 0.45555. 

We found that the five-polynomial approximation is accurate within 
1% for all wavelengths for F22 and F23. For F33 the five-polynomial 
approximation is only accurate within 5 %. 

3.5. The Transverse Velocity Correlation Function 

An entirely analogous analysis can be made of the transverse velocity 
correlation function. Define a6 through (2.3), with 

~6(V) ~-- ( t i m )  1/2 (~ • " v )  (3 .59)  

The transverse velocity correlation function is then given as F66(k, t), 
defined through (2.6). In (3.59), [ l  is an arbitrary unit vector per- 
pendicular to [. For the kinetic and cross parts of the second time 
derivative we also need the kinetic part of the transverse stress tensor a7, 
defined through (2.3) and 

t~7(u ) = tim(K" v)(l~ • v) (3.60) 

The first time derivative of F66(k , t) at t = 0 + again can be represented by 
matrix elements of Lo and Lc. On the basis (a6, a7) we have 

and 

_ ik Lo (flm)l/2 (O1 ~) (3.61) 

2 . ) 
1 --~ (1--Jo--J'2) - ~ -  (Jl +J3) 

L c = ~  ix/-~ 16 4 4 16 (3.62) 
- - ~ -  (J~ +J3) 15 +i-~ J 0 -  ~~ J 2 -  ~-~ J4 

As to the second derivative at t = 0 +, the kinetic and cross parts follow 
again from a matrix multiplication of the matrices just presented. The 
potential part follows in an analogous manner as in Sections 3.1-3.3. For 
F~3) only the angular average is slightly different and is described in 66 
Appendix B. We obtain 

t2F(3) -- l ~.1 = j dz Vl(Z) g3(z) F4(k, z) (3.63) -e--66 16~ -1 



Leegwater and van Beijeren 

with 

8Tc2{ z - 3  } 
F(k, z) = T -z[J~ +j2(ka)] + zjo(kz) + T j2(kv) (3.66) 

and for the recollision term we find 

2p(2) ~ fo e~66 = - 3  [1 - jo (ka) - j2 (ka)]  dzWl(z) g3(z) (3.67) 
1 

Now we turn to the hydrodynamic limit. 

3.6. Hydrodynamic  Limit and Green-Kubo Integrands 

In the long-wavelength limit we obtain an exact result for the 
Green-Kubo integrands that determine the transport coefficients. For the 
shear viscosity the Green-Kubo expression is ~13~ 

f? rl=mn dt(JxyJJxy(t)) (3.68) 

with Jxy, the current associated with the shear viscosity, the transverse part 
of the stress tensor. This current is defined as 

J x y = l i m  1 =l i ra  1 L + (3.69) k~O -~ Ota6 k~O i-s a6 

(Our choice of the normalization of Jxy is somewhat unconventional.) For 
the current correlation function, (3.69) leads to 

(Jxy] Jxy(t)) = lim - 1 k - o  ~ ~32F66(k' t) (3.70) 

For hard spheres already the first time derivative at t = 0  § is nonzero, 
although F66 is an even function of time. This property leads to the 

612 

with 

8~2 " 2 v  zjo(kr)-(-~-~.  ) j2(kz)] (3.64) F4(k, z) = ~ -  Iz  - 2Zjo(ka ) - 2zj2(ka ) 3 z 

The four-particle contribution is given as 

F(4)_ 1 f l  
66 -- 16re -1 dzg3(z)/r  z) (3.65) 
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presence of a delta function in the current correlation function. Using the 
results of Section 3.5, we find for short times 

( Jxy [ Jxy ) = ~ t ~  ~ 26( t ) + -fi--~ + 7~-~ ~-fi-m) 

if2 
+ 7 ( S ,  + R ,  + P, )  + O(t) (3.71) 

where S, is given by 

f l  3z 2 - 1 (3.72) 
S'z =-2 - t  dz g3(z ) Vl(z) 30 

the four-particle contribution gives 

= dz g3(z ) P~ 2 1 
- -3Z2+Z+ 1 

30 
(3.73) 

and the recollision contribution is 

7 z f  ~ 
= dz Wl(z ) g3(z) (3.74) R. ~ -1 

The delta function in (3.71) is understood to be 26(t) = 6( t - 0 + ) + 6( t - 0 - ). 
The Enskog theory 3 reproduces the 6(t) term exactly as well as the 

kinetic and cross terms, represented by the second and third terms on the 
right-hand side of (3.71). The four-particle and recollision contributions are 
absent, and S~ is approximated by 

rc g.t 3z 2 -  1 ~z 
J dz Vj(z) - -  (3.75) 

S f ) = 2  -1 30 225 

where we have used (3.31a). Numerical comparisons are made in Section 4. 
The other Green-Kubo integrands are slightly harder to obtain. This 

is due to the fact that the current defined as in (3.68) contains conserved 
parts which have to be subtracted. To be more precise, define 

= ~ L+a2 (3.76) 

3 In the hydrodynamic limit the standard Enskog theory ~ and RET for a one-component 
system yield identical results. 
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Then it follows from (3.6) and (3.7) that both In>(nJxx> and [ T > ( T J ~ )  
are nonzero and conserved. It is well known (~3) that these terms have to be 
subtracted to obtain the correct Green-Kubo integrand for the bulk 
viscosity. Define 

Jxx ---- f f x x  - -  n(nlJ~x> - T(T] Jxx> (3.77) 

The Green-Kubo expression for the longitudinal viscosity is then given as 

4 
r/1 = ~  r/+ s: = mn dt<JxxJx~(t)) (3.78) 

Here x is the bulk viscosity. The exact short-time result for the current 
correlation function is 

o .2 4 8a (~_~__) 1/2 
(JxxJxx(t)) = ~ 26(t) + 3 ~  + ~ \ t im /  

ty 2 

+ 7e (s, + R, + P,) + o(t) (3.79) 

with 

re f l  = dzg3(z) VI(Z ) - -  St ~ -1 
I q- 2z 2 7~z 

15 54 

= dz WI(z ) g3(z) Rz -~ -1 

(3.80) 

(3.81) 

and the four-particle contribution is 

Pt = t=o/~m~r~ nff3g(o ) + 1 

1 Z 2Z2'~ g 
- - ; f l  dzg3(z) ~ - ~ 6 + ~ - ) + ~  (3.82) 

A Green-Kubo expression for the bulk viscosity can be found by combina- 
tion of (3.68) and (3.78), 

;i x =mn dtJ~(t) (3.83) 

with the current correlation function J~(t) defined as 

JK(t) = <Jxx I Jxx(t) > - ~ (Jxy [Jxy(t) ) (3.84) 



Hydrodynamic Correlation Functions 615 

The exact short-time result for the current correlation function J~ is 

0 .2 0 -2 
J~(t) = ~ee 26(t) + ~ (S~ + R~ + P~) (3.85) 

with 

and 

: dzg3(z) VI(z) 7~ 

P,~ = ~ n0-3g(a) + 1 S(k = O) 

dz g3(z)(z - 2) 
+9+36 -1 

(3.86) 

(3.87) 

dz WI(z  ) g3(z) (3.88) R~r = i - 8  -1 

The Enskog theory gives S E = 0. 
The definition of the current correlation function occurring in the 

Green-Kubo integral for the thermal conductivity 2 again is complicated 
by the fact that a term has to be subtracted. Define 

1 
Je  = l i m  ~ L+a3 (3.89) 

The current to be used then is (13) 

JQ = ]Q -- vt <vz I JQ > (3.90) 

and the thermal conductivity is given as 

3 f? 2 = 5 nkB d t { J e l J e ( t  ) > (3.91) 

where k B is the Boltzmann constant. The exact short-time result for the 
heat current correlation function is 

0-2 5 
(JelJQ(t)> =~T 26(t) + 3-~ + 3-~/~/\~m] 

0-2 
+ -~ (S, + R J  + O(t) (3.92) 

822/57/3-4-13 
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with 

$2 =27t 1 1_1 dz g3(z) g3(z ) 3-54z ~ (3.93) 

and 

dz W3(z) g3(z) (3.94) 

The Enskog theory gives no recollision contribution, and S t is given by 

S E g fx dz V3(z) Z ~ ~ (3.95) 
= 2  1 3 5 4 - 6 0  

where we have used (3.31c). 

4. N U M E R I C A L  RESULTS 

Explicit evaluation of Fo(k, t) requires knowledge of the three-particle 
correlation functions. To lowest order in the density (n~3= 0) we have 

g3(z)=0 if z > 1 / 2  

= 1 if z~< 1/2 (4.1) 

The three-particle correlation function has been studied in the literature for 
intermediate densities (n~3= 0.421)~15) and liquid densities (ha3= 0.837). ~16) 
These three-particle correlation functions have been used in obtaining the 
results of this section. The three-particle correlation function is close to 
unity for z = - 1 ;  even at na 3= 0.837, important deviations occur only near 
z = 1/2. 

In Fig. l, 2 p teF66(k ) is plotted at the three densities mentioned. There is 
a noticeable density dependence of about 10 %. The density dependence of 
FP3 and FP3 is of the order of 5 %. In Figs. 2 and 3 we compare our exact 
results for 2 p teF22 with RET at two densities. For S(k) we have used the 
Percus-Yevick approximation with the Verlet-Weis correction (see e.g., ref. 
17). At the intermediate density RET performs very well and the deviations 
of the sum of the three- and four-particle contributions and RET are 
largely compensated for by the recollision term. This no longer holds at 
high densities, but RET is still a good approximation. The recollision term 
is small. 

2 p 2 p In Fig. 4 we present teF23, and in Fig. 5, teF33. In the latter RET 
gives too high a value; for large wavenumbers the deviations are of the 
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Fig. 2. T h e  po ten t i a l  p a r t  of  the s econd  t ime der iva t ive  a t  t = 0 ~ o f  the l ong i t ud ina l  ve loc i ty  
c o r r e l a t i o n  func t ion  F22(k, t) mul t ip l i ed  b y  t~ a t  a n  i n t e rmed ia t e  density�9 T h e  sol id line is the  
exac t  result ,  the  R E T  a p p r o x i m a t i o n  is g iven as the  d a s h e d  line�9 The  recol l is ion c o n t r i b u t i o n  
is a lso  p lo t t ed  separa te ly ,  a n d  is i nd i ca t ed  b y  (2)�9 
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Fig. 4. The  potent ia l  part of  the second t ime derivat ive  at t = 0 + of  the corre lat ion  function 
- - iF23(k , l )  multipl ied by t~ at h igh density.  The  solid line is the exact  result, the  RET 
a p p r o x i m a t i o n  is g iven as the dashed line. The  recol l is ion contr ibut ion  is also given 
separately,  and  is indicated by (2). 
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Fig. 5. As in Fig. 4, for the correlation function F33(k, t). 

order of 10%. At lower densities RET performs better, but the deviations 
2 p are still of the order of 5 %. In Fig. 6 we present t eF66. 

For long wavelengths the second time derivative tends to zero as k 2. 
In order to obtain information for long wavelengths, we present 
t2eF~6(k)/(kff)  2 in Fig. 7, as well as its various contributions. The striking 
feature is the relative importance of both the recollision and four-particle 
contributions. For wavenumbers larger than k(r = 5 these contributions are 
no longer numerically important. 

Initial values for the Green-Kubo integrands excluding the delta con- 
tribution are given in Tables I-III. The recollision term is only weakly 
dependent on density for all transport coefficients. The four-particle con- 
tribution is both strongly density dependent and large. This density 
dependence is only partly compensated by the three-particle term. At high 
densities the Green-Kubo integrand of the shear viscosity is significantly 
larger than the Enskog value. A surprising result is that the bulk viscosity 
integrand is negative at short times. Due to the presence of the delta term, 
this does not lead to inconsistencies like negative transport coefficients. 
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Fig. 6. The potential part of the second time derivative at t = 0 § of the transverse velocity 
correlation function F66(k , l) multiplied by t~ at high density. The exact result (solid line) is 
compared with the Enskog theory result (dashed line). The recollision contribution is 
indicated by (2), and the four-particle contribution is indicated by (4). 

The initial value of the Green-Kubo integrand for thermal conduc- 
tivity is 15% larger than the Enskog value at tow densities. However, at 
these densities the most important contributions come from the kinetic and 
cross terms, which are given correctly by the Enskog theory. 

The only computer simulations for the initial-time Green-Kubo 
integrands of which we are aware are those of Alder et al/18) For shear 
viscosity at low and intermediate densities their results are consistent with 
ours. Both at n 6  3 =0.786 and n o  "3 =0.884 they found S, + R ,  + P ,  = 
2.30 • 10 -2, a value that is significantly different from our exact result. For 
thermal conductivity their results agree with ours, but their low-density 
value is almost equal to the Enskog value, and different from the exact 
value. 
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Fig. 7. The potential part of the second time derivative at t = 0 + of the transverse velocity 
correlation function F66(k  , l )  at high density, but now multiplied by t~/(ka) 2. The exact result 
(solid line) is compared with the Enskog theory result (dashed line). The recollision contribu- 
tion is indicated by (2), the three-particle contribution is indicated by (3), and the four- 
particle contribution is indicated by (4). 

Table I. Initial Value of Potential  Term of 
the Shear Viscosity Integrand Excluding the Delta Term 

na 3 S~ + R,~ + P, S, R, P~ 

0. 12.95 • 10 - 3  9.34 X 10 - 3  3.60 x 10 -3 0 
0.421 15.79 X 10 - 3  8.15 • 10 -3 3.58 x 10 -3 4.06 • 10 3 
0.837 18.53 • 10 3 6.90 x 10 _3 3.38 x 10 - 3  8.24 x 10 - 3  

(Enskog) 13.96 • 10 -3 
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Table I1. In i t ia l  Va lue of Potential Term of 
the  Bulk Viscosity Integrand Excluding the  Del ta  Term 

no -3 S• + R~ + P~ S~ RE P~ 

0. - 2 . 1 2  x 10 -2 - 2 . 7 2  x 10 -2 0.60 x 10 -2 0 

0.421 - 0 . 8 7  x 10 -2 - 2 . 2 7  x 10 2 0.60 x 10 -2 0.80 • 10 -2 

0.837 - 0 . 3 2  • 10 -2 --2.97 x 10 2 0.56 • 10 -2 2.09 x 10 -2 

(Enskog)  0 

5. DISCUSSION 

We have calculated exact results for the short-time behavior of the 
hydrodynamic correlation functions. We found that for the potential part 
there are three contributions which at high densities and long wavelengths 
are of the same order of magnitude. The revised Enskog theory yields the 
first time derivative exactly, as well as the kinetic and cross parts of the 
second time derivative. RET yields the potential part as a certain 
approximation of only the three-particle term. Nevertheless, RET gives a 
fair approximation to the potential term of the second time derivative. 
Based on this, one may hope that RET will give a reasonable approxima- 
tion of equilibrium time correlation functions not only for short times, but 
also for longer times, a hope that is supported by results of computer 
simulations of the hard-sphere system at not too high densities 
( r t o - 3 < 0 . 5 ) .  (19) At high densities there are large discrepancies, most 
noticeably at long times. These can probably be attributed to mode 
coupling effects. (2~22) For the Green-Kubo integrand of shear viscosity we 
have shown that already at t = 0 + there is a significant contribution from 
recollisions. 

In principle, the short-time expansions of the hydrodynamic correla- 
tion functions could be extended by including higher powers of t. However, 

Table III. In i t ia l  Va lue o f  the  Poten t ia l  Term of 
the  Thermal Conductivity Integrand Excluding the Delta Term 

na 3 S~ + Ra S~ R~ 

0. 6.05 x 10 -2  5.67 x 10 -2 0.38 • 10 -2  

0.421 5.99 x 10 -2 5.61 x 10 -2 0.38 • 10 -2 

0.837 5.47 • 10 -2 5.11 x 10 -2 0.36 • 10 _2 

(Enskog)  5.24 • 10-2  
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the dynamical  processes involved rapidly become more  and more  complex 
and in addi t ion one requires equil ibrium correlat ion functions of  
increasingly higher orders,  abou t  which little is known.  

Another  possible extension which could certainly be made  is to 
systems of particles interacting through a square-well  or square-shoulder  
potential.  However ,  here, too, the calculat ional  work  involved rapidly 
increases because of the four different types of collisions that  are possible. (6) 

A P P E N D I X  A. CALCULATION OF THE VELOCITY INTEGRALS 

Here we calculate the functions Vi which are defined in (3.20), (3.26), 
and (3.29). The  me thod  used is s traightforward,  but  somewhat  laborious.  
We t ransform as m a n y  integrals as possible to Gauss ian  ones using the 
substi tut ions given below. The  velocity integrals can be restricted to the 
two-dimensional  plane spanned by 212 and 213, as the integrals over  the 
other  direction are trivial. We have 

= u "t- u "t- u = 3v 2 -t- 3(u 271_ u _ u176 u 

with Vr = (vl + v2 + u Write 

and 

(A.1) 

212 ~ 213 = COS ~ (A.2a) 

2iL2 ' 213 = s in  4 ( A . 2 b )  

We now have 

with 

and 

a = v T ' r l 2 ,  s : u  "213 , x : v 1 3  "2~3 

b = VT" 21• t : V12 ~ 212 , Y : V12 ~ r~2 

q5 = 3(a 2 + b 2) + 2 i t  2 + y2 + s 2 + x 2 _ cos qk(ts + x y )  - sin (~(sy - t x ) ]  

(A.3) 

COS 2 
2 = 1 - -  (A.5) 

4 

sin ~b cos ~b 
)~ = Y - T s - - - ~ - -  x (A.6a) 

s t 
2 = x - ~-~ sin ~b cos ~b + ~ sin ~b (A.6b) 

= 3 ( a 2 + b 2 ) + ~  )7 + 2 f f 2 +  ( t 2 + s 2 - t s c o s ( b )  (A.4) 
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The integrals to be calculated are 

\ 2 . ]  

x exp ( - ~ -  q~) sZO(s) t20(-t) (A.Ta) 

U2(c~ ~) = ( N///~ fd2u k, 2. J 

V3(c~ f d2vl 

x [(v 1 + v2)" rla] [(vl + v3)" rl3] (A.Tc) 

N o w  the integrals over a, b, 2, and fi are Gaussian, and the trans- 
formation (vl, v2, v3) ~ (a, b, s, t, ~, •) has Jacobian one. Calculating the 
integrals over a, b, )?, and )7 and substituting 

/" tim "~ 1/2 
~=s~ - ~ )  (A.8a) 

. [fim'~ 1/2 7= - t ~ - ~  ) (A.8b) 

we arrive at 

Vl(cos ~b) = 1625/2122(cos ~b) (A.9a) 

V2(cos ~b) = - ~  2z(2 cos ~b + cos 2 ~b) I23(cos ~b) (A.9b) 
v 

V3(cos if) = 32-23/2[4 cos r ~b) - 4 cos 3 ~bI24(cos r 

- (cos 4 ~b + 4 cos 2 ~b) I33(c0s r  (A.9c) 

with 

[nm(Z)=~ f ds f dt(sn)(tm)O(s) 
x O(t) exp( - t z -  s 2 - tsz) (A.10) 
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The function I22 can be calculated by changing to polar coordinates, and 
is given by 

1 - 5/2 

x 1+  arccos z - 2 z  (A.11) 

d 
I~(z)  = - ~ , r~ (z )  (A .12)  

and 
3 z 

I24(z) = ~ I22(z) - ~ 133(z) (A. 13) 

The function 123 can be found by considering its symmetric and anti- 
symmetric parts. We have 

1 

I23(z) - ~1/2(2 + z) 3 (A.14) 

Combination of the expressions (A.9) and (A.11)-(A. 13) yields the results 
given in (3.31), 

Vl(Z)= + a r c c o s ~ - 2 z  1 -  (A.15a) 

V2(z ) = (6~c)v 2 z 1 - (A.15b) 

1 / z  2 1 \  z 7 z2 ztT+5)arccoss- 1- A.15c) 

The velocity integrals occurring in the recollision term F!2 ) are only U 
needed for cos ~ < 0. They are 

Wl(f"12 ' ' 1 3 )  = (-----~m)2 f d2u fd2u f d2v3 
IF12 ~ 

• fro(v1) fro(v2) fm(V~) 

• (V12 " ~12) 2 0(V~2 " ~ 2 )  

• (v1,2 " f12) 2 0( -Vl,2 " f12) (A.16) 

where vv = Vl - r13(v13 ~ r13) and Vl,2 = vl, - v2. Also, 

Furthermore, we have 
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(3m)5/~ 
W2('12 " ' 1 3 ) : N ~ 1 2 : ~ 1 3 1 / d 2 u  ; d2u f d2u 

X fm(t~l) f.,(V2) fm(1)3)(1/12 " 1"12) 2 

x 0(1/12" L2)(Vr2 "L2) 2 

x [(Vr + 1/2)" f12] 0 ( - V r 2 -  r12) (A.17) 

and 

(/~m)3 fd21/1fd21/2fd21/3 w3(~.~13) 6 f~,-~:~l 

x fm(Vl) fm(V2) fm(V3)(1/12" r12) 2 

)'( [-(1/1 "4- I/2)~ r12] 0(1/12 ~ r12)(1/1, 2 �9 1"12) 2 

x [(1/1, + v2)" r12] 0 ( - v v 2 "  r12) (A.18) 

These integrals can be treated in an entirely similar manner, now using 
vv2 "f12 instead of v13 "r13, We find 

Wl(z)=16z4 ( 1 - - ~ )  5/2122(2-- z 2 ) (A.19a) 

32 ( W2(z)= ~ z  1 -  I23 (2 -z  2) (A.19b) 

8 
[(2 -- z 2) 122(2 - -  

Z 2 ) 

- (2z 2 - z 4) h4(2 - z 2) 

q- ( -- 222 q- a 4 -- ~-)133( 2 -- Z2) ] (A.19c) 

From (A.19a) and (A.19b) the results presented in (3.40) can be obtained. 

A P P E N D I X  B. T H E  A N G U L A R  A V E R A G E  

The functions Fi(k, z) are defined as 

NiCk , 2)=  f drl2 f d~13 1~(~12 "r13 -- 2") 

X (l~'r12) ni([~ n: 

x {1 -exp(-ika~.ft2)-exp(ika~.f13)+exp[ika~.(fla-f12)] } 
(B.1) 
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with nl =n' l  = 1, n2 = 0 ,  n~ = 1, and n3 =n~ =0 .  We write (B.1) as 

Ft(k, z) = G i ( O  , O, z )  - G i ( O  , ka, z) 
- G~( - k a ,  O, z) + G~(-ka,  ka, z) (B.2) 

where 

Gi(2,1~,z)=(-i)ni+"i{ ~---~"i( O-O-]niH(2,1~,z) (B.3) 

In (B.3) we have in t roduced 

x e x p [ i 2 ( [  �9 r12)] e x p [ i # ( [  �9 ra3)] (B.4) 

The function H does not  depend on 1~, so instead of integrating over r12, 
we can also integrate over 1~. The function H can be calculated exactly. 
Write 

r12 =2 ,  (B.5a) 

= cos 03 + sin 0(cos ~b2 + sin ~b9) (B.5b) 

f13 = cos ~ + sin ~(cos fl~ + sin tip) (B.5c) 

We have 

H(2,/~, z) = dcos  0 &b dcos  
--1 1 

P 2~z 

x Jo dfl 3(cos ~ - z )  exp(i), cos 0) 

x e x p { i p [ c o s  ~ cos 0 + s i n  ~ sin 0 cos(~b- f l ) ]}  (B.6a) 

I' Io- =4re dcos  0 dfb{exp[i(2+l~z) cos 0]}  
1 

• cos[#(1  - z2) 1/2 sin 0 cos ~b] (B.6b) 

= 8X 2 d x  c o s [ ( ~  --[- ]~z)x] 

x do(p(1 - z2) 1/2 (1 -- x2) 1/2) (B.6c) 

= 8rE2jo(~C) (B.6d) 
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with/s 22_[_ 22#z +/,/2. The derivation of (B.6b) is trivial, and in obtain- 
ing (B.6c) and (B.6d) we have made use of standard integrals, t23) The 
results given in (3.32) follow by differentiation of H. 

For  the transverse velocity correlation function it is necessary to 
calculate the function F4(k, z), which is defined as 

F4(k , z ) = f  drl2 f d~13 ~(~12 "r13--Z) 

X (~• f12)(~ • r13){ 1 -- exp( -- i ka~ .  t12) 

-exp(ikr  r13) q- exp[iko-~. (f~3 - r1 2 ) ]}  (B.7) 

This integral does not depend on the choice of either ~ or ~ . ,  so we add 
integrations over these vectors. As before, we write F4 as a sum of four 
terms 

F4(k, z) = 121(0, O, z) -- ISI(O, kcT, z) 

- Kr(-ko-, 0, z) +/-?( -k~r, ker, z) (B.8) 

and because of the preceding remark, H can be given as 

X ~(~" ~• (~(f12" r13 --z)(  ~• r12)( ~• r13) 

x exp[i2(l~ �9 fl2)] exp[i#(~ �9 f13)] (B.9) 

Using the same standard integrals, we now obtain 

/-)(2, #, z) = 4re 2 z + jo(~C) (B.10) 

This yields the result given in (3.64). 
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