
Commun. math. Phys. 40, 1--6 (1975) 
© by Springer-Verlag 1975 

Interface Sharpness in the Ising System 
H. van Beijeren* 

Institute for Theoretical Physics, Katholieke Universiteit Nijmegen, 
Nijmegen, The Netherlands 

Received July 22, 1974 

Abstract. A simple proof is given for the existence of a sharp interface in three- 
dimensional Ising systems, at least up to the critical temperature of the corresponding 
two-dimensional system. 

1. Introduction 

For the three-dimensional Ising model with nearest neighbour 
interactions on a simple cubic lattice Dobrushin has shown [1] that at 
low enough temperature there can exist a sharp interface between areas 
of opposite magnetization. A horizontal sharp interface is characterized 
by a vertical level 1 and a positive constant a, independent of the size of 
the system, such that the expectation values of all spins above I are > a 
and those of spins below 1 are < - a, or vice versa. The spin system can 
be forced into a state possessing such an interface by applying a positive 
magnetic field to all the boundary spins above the level 1 and a negative 
magnetic field to all the boundary spins below l. 

On the other hand for the two-dimensional square Ising model 
with nearest neighbour interactions Gatlavotti has shown [2-] that even 
at very low non-zero temperature no sharp interface exists. By low- 
temperature series expansions Weeks, Gilmer, and Leamy [3] found 
strong evidence that the three-dimensional system has a "'roughening- 
temperature" TR above which the interface is no longer sharp. For  this 
roughening temperature they find values of about 0.57 times the critical 
temperature T c. This is somewhat larger than the critical temperature of 
the corresponding two-dimensional system, which is about half of the 
critical temperature of the three-dimensional system. 

Here we give a very simple proof that the critical temperature of the 
two-dimensional system is a lower bound on the roughening temperature 
TR. We use a variant of Percus' method of the "'duplicate set of variables", 
which has recently been described by Lebowitz [4] 1. Moreover we will 
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discuss some simple generalizations of our result, as well as some con- 
sequences of the inequalities which were derived by Lebowitz in Ref. [4]. 

2. The Main Result 

We consider a simple cubic lattice on a cube of 2N + 1 horizontal 
layers numbered - N, - N + 1 . . . . .  N. The spins on the central layer, 0, 
are numbered am, o', .... those on the layers 1 . . . .  N are numbered ai, c~... 
and those on the layers - 1 ,  ... - N  are numbered a_i,a_j .... This 
numbering is chosen so that the sites i and - i  are each others mirror 
image with respect to the central layer. Furthermore we consider a two- 
dimensional square lattice of (2N + 1) x (2N + 1) sites with spins num- 
bered a,~, a" .... All the spins in both systems may assume the values + 1 
only. The Hamiltonians of both systems are given as 

H(~)~-J{[.j]((Ti(TJ~-f;-i(7-J)~- E Grn(~.'~ 2 Gm((Ti-~o'-i)} 
[m,l ~iml (1.a) 

+ 2 h i ( a i - a - i ) +  2 Hmam, 
i m 

H ' ( a ' ) = J  Z a~,a£+ 2 H , , a £ .  (1.b) 
Iron] m 

The square brackets denote that the summations are restricted to pairs 
of nearest neighbours. All the hi and Hm must be non-negative. We are 
especially interested in the case where hi and H,, are + Go at the boundary 
sites and zero at all other sites. Then at low temperatures we expect an 
interface between the layers 0 and 1. 

In analogy with the method of Percus 1 we change to the variables 

si = l ( a i  + G_ 3,  ti = ~ (~i - ~ -  3 ,  
(2) 

sm=l(am-[-a~), tm = 1 (O-m - -  O'~), 

which may assume the values - t, 0, l, with the constraint 

s i = + l = > t ~ = 0  and s~=O=~t i=_l .  (3) 

The sum of H and H' can be expressed in these new variables as 

U(a) + H'(a') = 2J ! ~ (sl sj + tl t j) + ~ (s~ s. + t~ t,) + ~ (si s~ + s i t~)} 
[ [ijl [m n] [i m] 

+ ~ 2hiti + ~ 2H,,sm. (4) 
i m 

In the same way as in Ref. [4] the Griffiths, Kelly, and Sherman inequali- 
ties [5] can be used to obtain the result: 

( t . , )  _>_ 0 ,  (5) 

1 In contrast  to Ref. [4] we do not  combine two identical systems, but  we combine 
one system partly with itself and partly with another  system. 
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where the brackets denote an expectation value with respect to the 
product measure of the canonical measures for ~ and a' respectively. 
This expectation value may be considered as a canonical average over 
the s and t variables with the Hamiltonian (4) under the constraint (3). 
This average on its turn can be written as a weighted sum of partial 
averages in each of which half of the s and t variables are kept fixed at 
zero and the remaining ones assume the values +_ i. Each partial average 
by itself is a canonical average for an Ising system with ferromagnetic 
interactions, to which the GKS inequalities apply. 

The implication of (5) is that the average magnetization of the central 
layer is larger than the average magnetization in a corresponding two- 
dimensional Ising system with equal, positive, boundary fields. 

It is interesting also to consider the system with 2N layers and similar 
boundary conditions, where there is a symmetry between the upper and 
the lower half of the system. The 2N-layer system can be obtained in the 
following way: Start with a 2N + I-layer system with boundary fields 
+ oo above the level - 1  and - o o  below the level 0, and apply a field 
+ oo to all spins in the layer N - 1. The resulting system is antisymmetric 
with respect to the plane between the layers 0 and - 1. From the Fortuin, 
Kastelein and Ginibre inequalities [6] it follows that the average 
magnetization in the layer 0 is not decreased by applying a positive field 
to the spins in the layer N - 1, hence this magnetization is still larger than 
the average magnetization in the corresponding two-dimensional Ising 
system. By symmetry the average magnetization in the layer - 1  is 
exactly the opposite of that in the layer 0. [Notice that this magnetization 
was even more strongly negative in the (2N + 1)-layer case, as a con- 
sequence of the F K G  inequalities.] Hence we may conclude that under 
the given boundary conditions there is indeed a sharp interface between 
the layers 0 and - i. 

3. Some Simple Generalizations 

Some straightforward extensions of the result obtained in Section 2 
are listed below. In all these extensions (5) remains true if the central 
layer is compared with a two-dimensional Ising system of the same 
shape, with the same, ferromagnetic, coupling constants and with the 
same, nonnegative external fields. 

i. The lattice need not be a cube. Both the central layer and the 
other layers may be of arbitrary shape, as long as the layers n and - n are 
each others mirror image with respect to the central layer. 

2. The restriction to nearest neighbour couplings of equal strength 
may be loosened: First the strength of different nearest neighbour inter- 
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actions may be different, provided the couplings between pairs i, j and 
- i, - j  or i, m and - i, m remain equal. An interesting case is the so-called 
solid-on-solid model [3], frequently used in the theory of crystal growth, 
which has a coupling of finite strength J between horizontal nearest 
neighbours and a coupling of infinite strength between vertical nearest 
neighbours. It follows that also in this model TR is not smaller than the 
critical temperature of the corresponding two-dimensional Ising model. 
This is consistent with results obtained in computer experiments by 
crystal growth theorists [7]. 

Furthermore it is allowed to add arbitrary ferromagnetic interactions 
which do not involve spins both above and below the central layer, 
provided again the symmetry between above and below is maintained. 
For instance it is allowed to add ferromagnetic couplings anywhere 
between next-nearest and next-next-nearest neighbour pairs. It is even 
allowed to add an interaction between symmetric pairs of spins in the 
layers 1 and - 1 ;  such interactions give rise to terms of type s~ z - t~ 2 in 
the Hamiltonian (4), but these are allowed since they are constant in each 
partial average, where a given set of s and t variables is kept fixed to zero. 
It is not allowed however to add any other interactions which couple 
spins in vertical layers above and below the central layer, since this 
would introduce antiferromagnetic terms in the Hamiltonian (4). 

4 .  A d d i t i o n a l  R e s u l t s  

In this section we consider the three-dimensional system by itself 
without combining it with a two-dimensional layer. The Hamiltonians 
for the ( 2 N +  t)-layer case and the 2N-layer ease respectively can be 
written as 

H2N+l(G)=2J l2  (SiSjq-titj)q-1 2 (Tm~Tn-]- E SiGrn I 
([ijl [mnl [ira] J 

~- E (2hi~i + 2H~si) + E H~am , 
i m 

(6a) 

HeN(a) = 2J ~ (s isj + t i t j) + J ~, (s { - t 2) + ~ (2h it i + 2H is~), (6b) 
[O] i~(1) i 

where {t} denotes the layer i and where we have allowed for non- 
negative fields/4i and H,, acting upon s i and am respectively. 

The following inequalities, derived by Lebowitz in Ref. [4] can 
immediately be shown to hold here as welt: 
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(sit~) < (s~) ( t j )  , (7a) 

(amtj) < (am) ( t j ) ,  (7b) 

<sis~) >= (si)  (s j )  , (7 c) 

(siam) _-> (s i)  (am),  (7d) 

<titj) >= (t i)  ( t j ) .  (7e) 

Obviously (7 b) and (7 d) apply to the (2N + 1)-layer case only. 
Equations (7a)-(7c) imply that an increase of the field on site i, 

together with a decrease of the field on site - i  by the same amount,  
lowers the expectation value of sj or % and raises the expectation value 
of tj. A consequence is that in the (2N + 1)-layer system with + boundary 
above and - b o u n d a r y  below, the magnetization of the central layer 
increases as a function of N, whereas in the 2N-layer system the difference 
between the magnetizations of the layers 1 and - 1 ,  and hence the 
magnetization of the layer 1 itself, decreases with N 2 

Fur thermore it is possible to say something about  the behaviour 
of (o-(")), which will denote the average magnetization per site in the 
layer n. To this end consider the 2N-layer system. We start with a 
situation in which in (6b) hi = h > 0 if i is a boundary site, hi = 0 otherwise 
and H i = 0 for all i. Next we change H i to 2h for the boundary spins on the 
layer 1, which means that we create a situation in which the boundary 
fields on the layers - 1, 2, 3 ... are h, those on the layer 1 are 3h and those 
on the layers - 2, - 3 . . .  are - h. As a consequence of(6a) the expectation 
value of none of the t variables is increased by this change. The expectation 
value of a t variable in layer 1 is ½ ( a ( 1 ) - o  -(-1)) on the average. With 
the new boundary conditions however this corresponds to ½ ( a  (2) - a (1)) 
in the original situation, provided one takes the limits of h and N going 
to oe. By next increasing also the fields Hi on the boundary sites of the 
layers 2, 3 . . . .  the expectation value of all t variables is lowered again. 
Therefore we may conclude that in the limit of h and N going to oo 
(a(,+ 1)_ o.(,))< (o.( ,)_o.(,-1))for all n >  1; in other words ( a  (")) is a 
concave function of n for n > 0. 

5. Concluding Remarks 

By the simple method sketched in Section 2 we have obtained a 
lower bound for the roughening temperature TR of an interface in the 
three-dimensional Ising model, which is much higher than the lower 

2 Lebowitz has pointed out that (6a) can be used to prove our main result in an 
alternative way: By setting all the h~ (but not the tt,,) equal to + oo the central layer becomes 
equivalent to a two-dimensional Ising system. By subsequently relaxing the h i values the 
magnetization of the central layer is not decreased. 
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b o u n d  ob t a ined  by  comple te ly  different me thods  by Dobrush in .  O n  
the o ther  hand  D o b r u s h i n  ob ta ins  several  add i t iona l  results which are  
no t  r e p r o d u c e d  by ou r  me thod .  

App l i ca t ion  of  our  m e t h o d  to the phase  separa t ion  line in a two-  
d imens iona l  Ising system yields no in fo rmat ion ;  in that  case it comes  
out  that  the magne t i za t i on  of  a centra l  row is not  lower than  the mag-  
ne t iza t ion  of a one -d imens iona l  Ising chain,  which is zero at  each non-  
zero tempera ture .  

It wou ld  be des i rable  also to have a non- t r iv ia l  upper bound for the 
t empera tu re  TR. If one could  find an upper  b o u n d  below the cri t ical  
t empera ture ,  this would  p rove  the poss ib i l i ty  of more  than  one phase  
t rans i t ion  in the th ree -d imens iona l  Ising model .  However ,  not  even for 
the so l id-on-so l id  model ,  where the cri t ical  t empera tu re  is infinite, such 
an upper  b o u n d  for T R has been found. On  the o ther  hand  the es t imates  
of T R p rov ided  for this mode l  by c o m p u t e r  exper iments  [7] a re  of the 
same o rde r  of magn i tude  as for the i so t rop ic  model .  
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