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Mode-Coupling Theory for Purely Diffusive Systems 
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A mode-coupling formalism is developed for multicomponent systems of parti- 
cles performing diffusive motion in a uniform host medium. The mode-coupling 
equations are derived from a set of nonlinear fluctuating diffusion equations by 
expanding the concentration-dependent diffusion constants about their equilib- 
rium values. From the mode-coupling equations the dominant long time behav- 
ior of current-current and super-Burnett correlation functions is derived. As 
specific applications I consider the long time behaviors of these correlation 
functions for collective and tracer diffusion in a one-component lattice gas with 
particle-conserving stochastic dynamics. The results agree with those from 
exactly solvable models and computer simulations. 

KEY WORDS: Mode-coupling equations; diffusion; long time tails; Ka- 
wasaki dynamics. 

1. INTRODUCTION 

Mode-coupling theories have proved their great value both in the descrip- 
tion of dynamical critical phenomena (1) and in calculations of long time 
tails in time correlation functions such as the autocorrelation function of 
the velocity of a tagged particle. (2) Here I want to concentrate on the latter 
type of applications. For the current-current correlation functions related 
to transport coefficients in a fluid, mode-coupling theory predicts a long 
time decay proportional to  t - d / z  , with coefficients that can be expressed 
explicitly in terms of transport coefficients and thermodynamic func- 
tions. (2'3) Agreement of these predictions with other theories (2'4-7~ as well as 
with results of computer simulations (s) is good; real experiments so far 
have failed to provide reliable information on long time tails. Up until 
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recently no comparable mode-coupling theory has been available for purely 
diffusive systems; for example, systems of noninteracting particles moving 
in a random potential, a specific example of which is the Lorentz gas. O) At 
low scatterer density kinetic theory predicts for this model a t-(a~2+ 1) long 
time tail for the velocity autocorrelation function of the moving parti- 
cles, (l~ with a coefficient that can be expressed in terms of the diffusion 
coefficient. Computer simulations, however, show that this coefficient re- 
mains valid over a very restricted density range only, (11) hence it would be 
desirable to avail ourselves of a theory usable at general density. Ernst et 
al. (12) have developed such a theory for diffusive motion of mutually 
independent particles in a spatially fluctuating stationary medium, which 
can be applied to the Lorentz gas among other systems. Here I will develop 
a similar theory for the case of diffusive systems consisting of one or more 
species of interacting particles, moving in a uniform medium. Examples are 
lattice gas models with Kawasaki dynamics (13) and systems with interacting 
Brownian particles. 

The scheme of the paper is as follows: In Section 2 fluctuating 
diffusion equations are introduced and formal relations between correlation 
functions are discussed. In Section 3 the mode-coupling equations are 
derived and in Section 4 some applications are presented. In a concluding 
section the results are summarized and commented upon. 

2. FLUCTUATING DIFFUSION EQUATIONS. RELATIONS BETWEEN 
TIME CORRELATION FUNCTIONS 

Consider a system at fixed temperature T = ( k B f l )  - l ,  where k B is 
Boltzmann's constant, and with n particle species, to be denoted by an 
index a. The equilibrium concentrations c a are summarized into a vector c 
and the chemical potentials/~ likewise into a vector ~. Local fluctuating 
concentrations and chemical potentials are denoted as e(?', t) and /~(r', t), 
respectively. If energy (but not momentum) of the system is conserved this 
may be accounted for by identifying one of the c~ with energy density and 
one of the /~ with temperature. Assume that e and /L satisfy a set of 
fluctuating diffusion equations of the form 

De(;, t) 
- v .  E(c( ; ,  t ) )o  t)) + vL(;, t) (la) 

= V.  ~(c(~, t))o Vc(?', t) + FL(;, t) (lb) 

Here the closed dot denotes a contraction in real space and the open dot a 
contraction in "concentration space." 

A basic assumption to be made here is that in the systems under 
consideration concentrations will be the only independent conserved densi- 



Mode-Coupling Theory for Purely Diffusive Systems 401 

ties, this in contrast to the systems treated in Ref. 12. Then the matrix of 
Onsager coefficients L will depend on time and position only through the 
local concentrations. In addition these coefficients will satisfy the Onsager 
symmetry relations 

= (2 )  

The matrix D of diffusion coefficients is related to L as 

D = L o C (3) 

where the matrix ~ of direct correlation functions is defined by 

C ~ -  Oct, (4) 

The random forces driving the fluctuations are contained in FL(t) and are 
assumed, as usual, to be independent of the previous history. 

Before introducing the mode-coupling formalism it seems useful sum- 
marizing briefly how correlation functions of currents and their long time 
tails are related to time correlation functions of concentrations. Suppose the 
fluctuating concentrations satisfy an effective nonlocal noninstantaneous 
linear diffusion equation of the form 

o c(;,t) = - v . j  A o r e ( ; -  o , t  - ( 5 )  
Ot 

A Fourier transform with respect to space coordinates and a Laplace 
transform with respect to time yields 

A 

A ~ with ~(k ,z)  the Fourier and Laplace transform of d(r, t), e(k,z) that of 
- -+  A " - ~  r and e(k) the Fourier transform of e(/,0). Then the Fourier and 

Laplace transformed equilibrium time correlation functions between con- 
centrations satisfy the relation 

- 1  

@ ( -  ]~)~(/~,z)> = @(- /~) (z  + ka~(k,z)) o ~(/~)> (7a) 

- 1  

= (~(-#)~(/~)> o (z + k2~t(k,z)) (7b) 

where the brackets denote an equilibrium average over the initial fluctua- " 
ti_ons and ~ t  is the n X n matrix adjoint to ~. Next one may split up 
D(k, z) as 

D(k,z) = D + AD(k,z) (8) 
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where ~ = lim~_~01imk__,o~(k,z ) should satisfy ~ = D(e). Furthermore one 
has the compressibility equations 

lim (~( -/7)~3(k+)> = ~ = ~-~ (9) 
k - + 0  " 

Hence, by expanding (7) in powers of AD and using (2), (3), and (9) one 
finds 

<e(- #)e(#,~)> 

( ~ - 1  - -  - I  

=<e(_#:(#)>o z+:~t) -(z+ ~t) 

__ -I } 
o k~x~t(k,~) o (z + k~B,) + ..- (lOa) 

-I -I 

= <~(_#)~(#)> o (z + k~B t) -(z + ~B) o <~(-#:(#)> 

-I 

o k~aB*(k,~) o (z + k~B*) (lOb) 

-I 

= <~(- #:(#)> o (z + ~B*) 

-I 1 
- (z + ~2B) o ~2aE(k,~) o (~ + : B * )  (lOc) 

In (10b) and (10c) terms of O(A 2) were neglected. Furthermore for small 
___> __> 

k (~(-k)~.(k)) was re__placed by its limit as k--> 0, which is consistent with 
the assumption that D(~  and ~.(~ depend only locally on the concentra- 
tions. Finally AL is defined similarly as AD. 

The relation between concentration and current correlation functions 
may be established by starting from the local conservation laws 

0 ~ 0 V J ( ; , 0  (11) -OSc(~, =- . 

After Fourier transforming one obtains the following identity between 
correlation functions 

~ t  ~ a .  ~ 2 - ~  < = to + ,))> (12) 
^ 

with/~=//:/I/~l. By virtue of time translation invariance the left-hand side 
may be transformed to 

+ ~2 e(#, t o + t)> a a e(#, to + t)> = - <~( -  k, to) at ~ - <e ( -  #, t0) ~ 0  ~7 



Mode-Coupling Theory for Purely Diffusive Systems 403 

Then a Laplace transform yields 

Z 2 < C i  k)c(k- ,  z ) )  (c (  - ]~-)i]~ ~ ~ ~ - = j ( k ) )  + z(d(-  k)~.(k)) 
A ^ A A 

The first term on the right-hand side of this equation vanishes 2 on behalf of 
the isotropy of the equilibrium current distribution. Inserting (7b) on the 
left-hand side and performing some algebra one finds with the aid of (3) 
and (9) the result 

r(k,z)-- 1--?-<(k.1(-s s >o~o 

At fixed z, L(k,  z) may be expanded as 

/~ , (k ,z)  = F,o(Z) - k2/~,2(z) + ' ' '  (15) 

with an inverse Laplace transform 

~,(k, t) = ~(2)( t)  - k2~(4)(t) (16) 

Ths shift of indices compared to (15) is made to conform to the existing 

literature. O1) The coefficients ~0 and ~2 may be interpreted as z-dependent 
ordinary diff_usion co_efficients and super-Burnett coefficients, respectively. 
For large t, ~(2) and d~ (4) describe the long time behavior of the correspond- 
ing correlation functions. The latter may be identified from (14). Set 

0)> = x0 0- + 

Then one has 

4,~(t)  = Xo(t) (1 s) 

- -  f ' t  t t ' t  ~ -  

r = -A2(t) - J 0  dt Jo d~'A~ ~ C o  A0(t' - T) (19) 

2 Strictly speaking this is only unambiguously true if no instantaneous jumps may occur. If 
such jumps are possible the density-current correlation function should be interpreted as 

(6( - k ) k .  j ( k ) )  = lira �89 (~( - k )k .  (j (k, t) + j (k, - t ) ) )  
t---)0 

Thisvanishes under time reversal symmetry. If in the limit t ~ 0 a correlation between fi( - /~)  
and j(k, t) remains, this is included as a frequency-independent term in the current-current 

correlation function ( j ( -  k)j(k, z)). 
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3. MODE-COUPLING EQUATIONS 

After these preliminaries the mode-coupling formalism is developed 
from (1) by expanding ~ ( r  ~, t) in deviations from its equilibrium value ~.  In 
order to obtain the leading long time tail contributions to the current- 
current time correlation functions it suffices to consider the first deviation 
from equilibrium. Using this approximation in (1) and applying a spatial 
Fourier transform one obtains the result 

~ ( k ,  t )  = - k Z D  o E(k, t) + -~ ~ ~((l, s : d(lc - q, t)~.(q, t) + Vr(k, t) 
q 

(20) 
where 

Ao~ (q, k)  = - (k -q )  3c v (21) 

Further (A o ~ B)~ = A~&Bv~,  with summation over repeated indices. Equa- 
tion (20) can be transformed into an integral equation 

f0 ^ 
4 ( k , t )  e "Bk2t ^ -*  td're -~k2~ FC(k , t  = o e ( k ,  o )  + o - ~) 

1 ~ ( t d ' r e  ~k2~o~(~ , /~ )o~  (22) 
+T ~-,0 

The first term on the right-hand side of this equation is the solution of the 
unperturbed diffusion equation, the other two terms result from fluctua- 
tions. Next, consider the concentration correlation functions, which can be 
obtained from (22) as 

-. ~ -. - _. l ~ f a t d r  (~( - k ,O)4(k ,  t)~ = (~( - k )e - ~ 2 '  o ~.(k )~ + --~ 
q - -  

x ~ ( - / ~ ) e - ~ o  if(q,/~) : ~ ( s  q, t - ~)~(q, t - ~)~ 

~00 -- A 'd.c (~ . ( -  s  -gk2* FC(k , t  "r)) (23) + o - -  

Now the equilibrium average runs both over all initial fluctuations ~:(-k) 
and over all the values of the random forces. The last term in (23) vanishes 
due to the properties of the latter. For the second term on the right-hand 
side of this equation it is convenient to use time-reversal symmetry in order 
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to recast it into the form 

( ~( - fc, O)~( ]c, t ) ) = ( ~( -- lc )e Dk2t o ~( fC ) ) 

1 f o ' d r ( ~ ( _  ,r)e-~k~- + V E ; , t -  
q 

0 A ~ i f (q , /~)o  e(k - q)e(4 ) (24) 

A Inserting (4) into this equation for e ( -  k, t - "r) one obtains 

(e(-k,O)d(k,t))=(~(-k)e -Bk2t oe )> + T 

( (e -~k: ( ' -~ 'o  ~(-- fc))e-~k~o ff(~,/~) o ~ d ( l~ -  4)~(q)} 

i r  

( (e  -~'~'  2(1,  fc) ~ ~ ~ )) o - o e ( -  F< - z ,  t - .~ - . ~ ' ) e ( z ,  t - .~ - .~' 

• e-Bk2"o i f (4 ,  ]~) o ~ ~(/~-- 4)~(4))  (25) 

The dominant contribution to this expression is obtained by inserting for 
the time-dependent concentrations the leading order approximations, 
i(l, t - r - ~-') -- e x p ( - D l 2 ( t  - "c - ~")) o ~(/), etc. Furthermore one has to 
use the well-known property (l) that in the thermodynamic limit the domi- 
nant contributions to static four-point correlation functions are those that 
can be factorized into two-point correlation functions, viz., 

<r (4)eB ( ; -  4)r162 (- ; -  r)> 
= v[ ~q_,(c*:(4)c*~(- 4))(tB(sT- 4)4(4-/7))  

+ r 1 6 2  4)>~c~ (/< - 4 ) r  - 17)> 
+6s ) c ~ ( - f  ))] + O(1) (26) 

The last term between the square brackets is unimportant to us, because 

X ( 4 , 0 ) =  0, according to (21). I further introduce the symbols ~" with 

A"'~n v = A,~n; X*, with Aa~ ~ = A.tn<~ and A ~, with A~n ~ = Afi~ ~ . Then, apply- 
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ing a Laplace transform to (25) one obtain as dominant contributions 

(~ . ( - k )~ . ( k , z ) )  

- 1  - l  

-- <e(- #)~(#)> o (z + ~ @ )  +(z + k2~) 
- 1  

o I ~ (e(_l~)e(4)e(]~_ 4)> o Xt(#,]~) ~ (z + k2E t) 
v . o 

q 
--I 

o 1 ~I -" 

- 1  

~, (z + q2~(,) + Ik - 41~(2), ~ <e(')(- 4)e(2)(c~ - k)e(4)e(k -c~)) 

oO {xt(0, # ) + ~,(# _ ~,#)} o (z - ~>)-' (~) 
Here the  superscripts (1) and (2) serve to indicate that D(1) acts upon ~(1) 
and ~(2) acts upon ~(2) only.3 

On comparing (27) to (10c) one sees that the second term on the 
right-hand side of (27) at most contributes a term that is independent of z 
to AL, therefore is unimportant for the long time tails. The dominant 
small-z behavior of AL is entirely due to the last term in (27) and is to be 
obtained from 

A~(k,z) = 1 

- 1  

: {~*(~,/~)+ ~'t(#- 0,s (28) 
This is the central result of this paper. In the limit k---> 0 (28) generally 
assumes the form of an integral of type 

f d ~  - -{a(# ' /~)2  + bk2} 

z + cq 2 

which, after an inverse Laplace transform is proportional to 

a t-(d/2+ l) -{ ~ + bk~,-~ '~} 

3 In (27) the factorization given m (26) is left implicit in order to preserve the proper sequence 
of symbols in the double dot products. 
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This implies that the current-current correlation functions ~b(z)(t) in general 
decay as t -(d/2+~) and the super-Burnett correlation functions ~b(4)(/) 
decay as t -d/2 in d dimensions. It is possible, however, that a or b vanish 
for certain specific reasons. 

4. APPLICATIONS 

The simplest system to which to apply (28) probably is the one- 
component lattice gas. For collective diffusion all matrices reduce to scalars 
and one has D = D(c) and A (~, k) = - ( k .  ~(OD/3c). Switching from ~ to 
~ + � 8 9  for the integration variable in (28) and using (21) for A, one 
immediately sees that ~(2)(t) vanishes. By similar arguments one can show 
that also all higher-order mode-coupling contributions to ~(2)(t) vanish for 
a one-component system. 4 The dominant long time contribution to ~b(4)(t) 
takes the form 

~(4 ) ( t )  = ((~D/~c)limk~o(O(_2(2qr) d ; ) ~ ( ] ~ ) ~  }2 f d~e-2Dq2t 

= 2-(a+,){ OD 12(2~rDt)-~/2 (29) 

Next consider tracer diffusion in a one-component system of N parti- 
cles in a volume V, N~ of which are tracer particles, identical in properties 
to the other particles. Now one has to introduce a two-component concen- 
tration vector e(r~,t). I will set c~ = c, and c 2 = c t, the concentration of 
tracer particles. The Onsager coefficients form a 2 • 2 matrix. The equilib- 
rium values of its matrix elements are given as 

1 ( dt E E (;'~i(0) "~j-(t)) ~: Z (30) Ll1=  V a0 i = l j = l  

L22=-V ao i = l j = l  

= ( c , / c ) 2 L  + c,(1 - c,/c)D  (31) 

1 ~ d t E  E k'vi(O) .vj(t) = ( c , / c ) L  (32) 
L12 = L21 = ~-V \J0 i=1 ]=1 

4 This conclusion has to be relaxed in case the diffusion coefficient depends nonlocally on 
density. However, in order to obtain a nonvanishing long time tail, one has to couple the 
density fluctuations to products of at least three modes with a nonlocal vertex function. This 
gives rise to a long time behavior not slower than a t -d-3 power. 
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with /~ chosen in an arbitrary direction and the self-diffusion coefficient 
given as usual by 

The matrix of correlation functions is given as 

lim 1 -' + ~e c k-+O -V (~( - k)~(k))  = = (34) 
7 (t~)+~, 1 -  7 

where ( ~ )  = limk__,O(1 / V)(e(__-k)e(k)). After inversion of this matrix one 

obtains the diffusion matrix D through 

. ~ =  F, o aft# D 0 
= c, ( 3 5 )  

c 

The eigenvalues of ~ are D, with right eigenvector ~i = ]~l/~) and the left 

eigenvector (~ = (~[; and n~, with right eigenvector r = [0) and left eigen- 
vector ~n = (~c'/r 

Noteworthy relations between these are 

O~)u/3c = - c - l ~ O u ,  O ~ / a c  = c -tffuc)~ ~ (36)  

It is useful to expand A in terms of matrix elements 

A ( 4 , k  ) = ~,Aia,(4,~:)C,,~q,fih (37) 
/fl 

with 

+ + aD o r  A~,(q,1,) = - ( 4 . ~ ) ~ , ,  o W o 

= - ( 4 . s  a 

= = aq, t )  
o D o e t - + i o D o  ~ o ~ j  

The explicit forms for A~j l are given by 

A222=A, ,2=0 ,  A2,, = _ (4 . /~ )  ct_ 0D 
c Oc 

- ( ~ . s  - D~) ~Ds 
& ' 2 = ( - q ' # r  Oc ' A22,= c 

aD 
~ ' "  = - ( q ' / ' )  ac 

(39) 

(40) 
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Inserting these results into (37) and substituting back into (28) using (26), 
(34), (41) and the transformation ~ t] + (Dz/(D I + Din)k, and passing to 
the limit V ~  m, one obtains 

ALq(k,z)  = ~ o AC(k , z )  o ~. 

1 
- 2k2(2elg)d f dql~,~ (ajlm( ~-JC - 

Dt 
D t + D m 

+ 4 ~ , ( - 4  + - -  

{( X Ailm - q  D I + D , k ,  - ~  

+ Aimz q D t + D m 

D l + D m 

(e,a,><amam> 
• (41) 

z + (D t + Din)q2 + (DIDm/(D t + Dr ~))k 2 

Especially interesting is ALII ~i containing the long time behavior of the 
tracer diffusion coefficient. Since the coefficient of self-diffusion generally 
satisfies the relation Ds(k, z) = Lll n(k, z)/[ct(1 - c,)], as follows from (30)- 
(32) and (41), one can define a time correlation function ~s(k,t) as 
eps(k, t) = e~ n n(k, t)/[ct(1 - c,)], with ~II II the inverse Laplace transform of 
Ln Ii. Then, performing the usual expansion in powers of k 2 one obtains 
from (41) the following types of long time behavior: 

, ? ( o  = o,,,  7 ac (42) 

ep~4)(t) = +2-a{ r r (D  + Ds)t ) -d/2(~.~) 

[{ o oos os o_os}2 
• D + D  s O~ + D + D ~  c 

DD s {aDs  D - D ~  }2 l 
2(D + D~) 2 ~c c (43) 

The results obtained above can be tested against a number of models for 
which explicit results are available. For several lattice gas models with 
dynamics of the Kawasaki type, the collective current correlation function 
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is known exactly to be proportional to a 6 function t~(t). (t4) This is 
consistent with the prediction that long time tails will be absent from this 
function, or at most be very weak. Furthermore, even for lattice gas models 
not having this property computer simulations do not seem to give evidence 
for the occurrence of long time tails in the collective current correlation 
function.(15) 

The long time tail in the velocity autocorrelation function can be 
calculated theoretically for certain models. For one-dimensional systems 
subject to a single filing constraint (particles cannot pass each other), 
causing D, to be zero, (16) a simple argument given by Alexander and 
Pincus (17'18) can be used to prove (42). Computer simulations (!9) indicate 
that for these systems ~}4)(t) is proportional to t -3/2, consistent with the 
vanishing of the coefficient of t - t / z  on the right-hand side of (43). For 
lattice gases with Kawasaki dynamics at very high concentration (which 
implies very low concentration of vacancies) ~s(2)(t) and ~}4)(t) can be 
calculated at arbitrary dimensionality. (2~ The results are in agreement with 
mode-coupling predictions. Kutner (21) has performed computer simulations 
on two-dimensional models at different concentrations. He found that for 
long times the velocity autocorrelation function decays as t-2, as predicted 
by (42). A comparison of the coefficients is presently under way, 

5. C O N C L U S I O N  

In this paper mode-coupling equations were derived that are valid for 
purely diffusive systems. The starting point was a set of fluctuation diffu- 
sion equations and the basic assumptions made were (i) diffusion coeffi- 
cients depend on space and time through the local concentrations of the 
diffusing species only and (ii) time-reversal symmetry holds. The mode- 
coupling equations are of the general form to be expected for a mode- 
coupling expansion, (22) but the occurrence of density derivatives of trans- 
port coefficients in the vertex functions to my knowledge is a new feature, 
originated in Ref. 12. The predictions of the mode-coupling theory could be 
checked against some models for which exact results are available and 
against some Monte Carlo results. So far in all cases agreement was found. 

I want to conclude with a few small remarks: Firstly for anisotropic 
systems all diffusion coefficients have to be generalized to spatial tensors, 
which, at least in principle, can be done without any great problems. 
Secondly the use of time-reversal symmetry to evaluate (23) seemingly can 
be avoided by using an iterative solution for the time-dependent concentra- 
tions. In that case, however, one has to use higher-order dissipation 
fluctuation theorems to evaluate averages involving two random forces. To 
construct those theorems one has to invoke time-reversal symmetry again, 
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bu t  then the appl icat ion of this to (23) as it s tands is by far simpler a nd  

more  direct. In  addi t ion  the value of these higher-order f luctuat ion dissipa- 

t ion theorems b e y o n d  their restorat ion of t ime-reversal invar iance  seems 

quest ionable.  The trouble is that one does not  know how good it is to 
approximate  the time evolut ion of a pair  f luctuat ion by factorization. No 

doub t  in most  cases there occur interactions,  which are no t  necessarily 

described correctly by the correlations of r a n d o m  forces as derived from 

time-reversal invariance.  
F ina l ly  I want  to men t ion  that  the possible relevance of the mode-  

coupl ing formalism developed here in the ne ighborhood of critical points  is 
presently under  considerat ion.  
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