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We discuss a conjecture of Alley and Alder predicting a relation between the 
four-point and the two-point velocity autocorrelation functions for fluids and 
Lorentz models at sufficiently long times. If the conjecture is correct a modified 
Burnett coefficient can be defined, which has a finite value, contrary to the 
ordinary Burnett coefficient, which is divergent. The conjecture is tested for four 
classes of models with different methods: for three-dimensional fluids mode- 
coupling theory yields a negative result. The conjecture is confirmed for the 
d-dimensional deterministic Lorentz gas (d > 2) and for a class of d-dimensional 
stochastic Lorentz models (d ~> 1) by low-density kinetic theory, as well as by 
rigorous results, available for one dimension. For yet- another class of one- 
dimensional stochastic Lorentz models, which are exactly solvable in one 
dimension, the result is negative again. All four classes of models show long-time 
tails in the velocity autocorrelation function and have a finite diffusion coeffi- 
cient. 

KEY WORDS: Random walk on random lattice; waiting time (hopping) 
model; Lorentz models; hard sphere fluid; long-time tails; 2- and 4-point 
correlation function; Burnett coefficient. 

1. INTRODUCTION 

1.1. Definitions 

In  g e n e r a l i z e d  h y d r o d y n a m i c s  (1-4) s e l f - d i f f u s ion  in  e q u i l i b r i u m  m a y  b e  

d e s c r i b e d  b y  the  e q u a t i o n  

2 f '  t 
O,F(k ,  t )  = - k I_ d~-4,(k, ~-)F(k,  t - ~') (1. I a )  
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o r  

C(k,~)  = [z  + k2O(k,z)] -' (1.1b) 

Here F(k,t)  is the spatial Fourier transform of the probability density 
P(r, t)  to find a test particle at position r, with initial condition P(r,0) 
= 8(r). G(k, z) is the Laplace transform of F(k, t) and ~(k, t) is the memory 

A 

function. Its Laplace transform U(k,z) is the generalized diffusion coeffi- 
cient. Equation (1.1) may be viewed as a generalization of Fick's law. The 
phenomenological  coefficient of self-diffusion D is obta ined from 
U(k, z) as 

A 

D = lim lim U(k, z) (1.2) 
z ~ 0  k ~ 0  

provided the limits exist. Furthermore, one may introduce the k-dependent 
velocity autocorrelation function 

C(k,t)  = (j~(O)jk(t)) o = (vx(O)vx(t)e-i~ax(O)o (1.3) 

where the x axis is taken parallel to the k vector. The currentjk(t ) = vx(t ) 
e ikx(t) and the displacement kx(t)  = x(t) -- x(0), where x(t) and vx(t ) are 
the x components of position and velocity of the test particle at time t, and 

A 

the asterisk denotes complex conjugation. The function U(k, z) is connected 
to the Laplace transform of C(k, t) by the relation 

s = z C ( k , z ) / [  z - k2C(k,z)] (1.4) 

as derived in Ref. 3. By expanding ~(k,t) in Eq. (1.1a) in powers of k we 
obtain 

BtF(k,t)= ~ (-1)"k2ns - t') (1.5) 
n = l  

and we have similar k expansions for 
^ A 

O(k, z) = U0(z) - k2U2(z) + - . .  
(1.6) 

d(k ,z )  = C o ( z ) -  k2d2(z) + - . .  

Odd powers vanish for reasons of symmetry. The functions qa2n(t ) or their 
Laplace transforms U;n_2(z ) can be expressed in multitime velocity auto- 
correlation functions by expressing U in terms of C by means of (1.4), 
expanding C in powers of k and using the relation Ax(t) = f'oVx(t')dt', so 
that 

Oo(Z) = do(Z) 0 ,74  ) 

O~(z) = d ~ ( z ) -  (1 /~ )d~(z )  
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and in time language 

~ ( t )  = Co( 0 = (v~(O)v~(t)) o 

~4(t) = 62(t) -- (tdr (,dr, Co(r')Co(T - "c') 
dO dO 

where 

(1.7b) 

f0'f0 
_ ! / c 2 ( t )  - dr dr (1.8) 

Equation (1.5) can also be brought into a form resembling the ordinary 
form of Fick's law, (3) i.e., 

0,F(k,t) = [ - k 2 D ( t )  + k4B(t) + . . .  ]F(k,t)  (1.9) 

with 

B ( t )  .~- O4(t ) - f o t d f [ O ( t ) -  O ( t t ) ] O ( t -  t ')  

D(0 = fo'dr,2(C) (l.10) 

D4(0 = fo'at',4(r) 
This can be seen most easily by making in Eq. (1.5) the replacement 

2" F ( k , t -  t') = F(k, t) + d r O , F ( k , t -  "r) (1.t 1) 

followed by iteration and expansion in powers of k. If the correlation 
functions q,2n(t) decay sufficiently fast for long times, D(t) and B(t) will 
approach, respectively, the ordinary diffusion coefficient D and the ordi- 
nary super Burnett coefficient B, provided they exist. However, the correla- 
tion functions ~2n(/) decay in general very slowly, (4 9) proportional to t -B, 
where fi depends on the models and on the number of dimensions consid- 
ered, and the coefficients D(t), B(t) or higher-order ones can be shown to 
diverge for long times, in a manner depending on the values of ft. 

1.2.  M o d e l s  

We will consider the long-time behavior of the quantities discussed 
above for four different classes of models. 

The first class consists of three-dimensional one-component fluids with 
short-range spherically symmetric pair interactions, for which we quote the 
existing mode-coupling results. (3'1~ In the same class of models molecular 
dynamics results are reported for the special case of hard spheres. (5'11'12) 
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The second class of models consists of d-dimensional (d/> 2) deter- 
ministic Lorentz models in two or more dimensions, which is the standard 
Lorentz gas. (8'~3) This system consists of fixed spherical scatterers of radius 
~, randomly distributed in space according to a certain probability distribu- 
tion. In addition there is a light point particle, which moves at constant 
speed and is reflected specularly upon collision with a scatterer. These 
models are studied by means of low-density kinetic theory, following the 
method of Ernst and Weyland. (7) Molecular dynamics results for these 
models are discussed in Refs. 14-18. 

The third class of models are d-dimensional (d/> 1) stochastic Lorentz 
models. (19'2~ These models are similar to the deterministic Lorentz models, 
but the reflection law describing the collision of a light particle with a 
scatterer is of a stochastic nature--i.e., if the light particle with velocity vr 
and position r hits a scatterer centered at position R, it is reflected with 
velocity v~' with a probability described by a kernel K('~',,~,6), where 
6 = (r - R)/[r  - R[ and ~ is a unit vector in the direction of a. A special 
case is a diffuse reflection law, where the outgoing velocity is completely 
independent of the incident one, i.e., 

(r 6) 0(r 6) 
Kdiff(V' , V, t~) = fdvt(r 6) 0 (r 6) (1.12a) 

Here O(x) is the unit step function. Actually, deterministic Lorentz models 
may also be considered as a special case with 

Kspec(~',~,6 ) = 8(~ - 2 6 ( 8 "  r - ~)') (1.12b) 

In the one-dimensional case stochastic Lorentz models have nontrivial 
dynamics, whereas in deterministic Lorentz models the light particle simply 
keeps running back and forth between two neighboring scatterers. (21} The 
low-density kinetic theory methods apply equally well to the deterministic 
and stochastic Lorentz models. (7'22) In addition some rigorous results are 
available in the one-dimensional case, (t9'2~ and molecular dynamics data 
have been published for two-dimensional (t4-18) and one-dimensional sys- 
tems.(22) 

The fourth class of models to be considered are waiting-time Lorentz 
models (19) in one dimension. In these models the scatterers are distributed 
along a line according to a given probability distribution; the light particle 
does not move at constant speed, but sits instead on one of the scatterers 
and jumps instantaneously to a neighboring scatterer after a stochastically 
distributed waiting time. The concept "neighbor" is well defined in one 
dimension; in higher dimensions it should be specified more precisely. 
These models are very similar to ordinary random walks with a waiting 
time distribution. (23) An essential difference however, responsible for long- 
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time tails, arises from the stochastic spatial distributions of the scatterers. A 
large subclass of waiting-time Lorentz models can be solved exactly in one 
dimension, (19) by virtue of their close resemblance to ordinary random 
walks. 

1.3. Long-Time Behavior 

After this introduction of models we briefly review the long-time 
behavior of some of their time-correlation functions. In the three- 
dimensional fluid one has 

eo2(t)~t -3/2, B(t)~t 1/2 (1.13) 

The result for ~2(t) was obtained in Refs. 5, 6, and 9 and for B(t) in Refs. 3 
and 10. 

For the d-dimensional deterministic Lorentz gas (d >1 2) and for the 
d-dimensional stochastic Lorentz gas (d/> 1) one has (7'19'2~ 

~2(t) ~ t - 1 -- d/2 

B(t)~logt (d = 2) (1.14) 

B(t)~t 1/2 (d = 1) 

The result for B(t) is new, and will be derived here from low-density kinetic 
theory. 

For the one-dimensional waiting-time Lorentz models one has (19) 

~b2(t)~t 3/2 

B(t) ~t'/2 (1.15) 

as will be briefly derived here. 

1.4. Conjecture of Alley and Alder 

The purpose of this paper is to test an interesting conjecture made by 
Alley and Alder, (16-18) based on evidence from molecular dynamics experi- 
ments. For systems in which the diffusion coefficient D exists, these authors 
conjecture "that the four-point correlation function involved in ~ 4  decays at 
large times sufficiently fast that it can be expressed in terms of the 
two-point function ~2." More specifically, the conjecture implies that in 
Lorentz models at long times q54(t ) should be proportional to q~2(t), whereas 
a more speculative conjecture for the three-dimensional fluid implies that 
there should exist a similar proportionality between q52(t ) and q54h(t), 
defined as 

qb4h(t ) ----- ~b4(t ) -- D't~2(t ) (1.16) 
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where D '  = D~/(D + ~) and ~ is the kinematic viscosity. In fact Alley and 
Alder extend this conjecture to one involving q'2, (t) for general values of n. 
For the Lorentz gas this extension implies that ep2n(t)~qJ2(t ) for large t and 
all n/> 2; for the three-dimensional fluid a similar property is proposed for 
a set of functions ~2nh(t). Unfortunately, the definitions of q~2nh for n > 2 
are not clearly specified. For the time being we restrict our discussion to the 
case n = 2. 

An implication of the conjecture of Alley and Alder is that a modified 
Burnett coefficient exists, which reads for Lorentz models 

D 4 = lim D4(t ) = lim (tdt'do4(t') < ~ (1.17) 
t---~ ~ t ---> ~ J0 

and for three-dimensional fluids 

D4h = lim D4h(t ) = lira Ctdt'e~4h(t ') < m (1.18) 
t -~m t-~m J0 

We will investigate the conjecture for the four classes of models, discussed 
in Section 1.2, using the methods as specified before. Since arguments 
based on a rather complicated low-density kinetic theory may not be 
completely convincing, and since a phenomenological theory such as mode- 
coupling theory 3 could possibly predict the ~2(t) tails correctly but predict 
the eO4(t ) tails incorrectly, it is important to check the conjecture against 
rigorous results. 

The plan of the paper is as follows. In Section 2 we discuss the fluid, in 
Section 3 deterministic and stochastic Lorentz models, and in Section 4 the 
one-dimensional waiting-time Lorentz model. A discussion of the results 
and a comparison with molecular dynamics results is presented in Sec- 
tion 5. 

2. THREE-DIMENSIONAL FLUID 

For a fluid of particles with mass m in thermal equilibrium at a 
temperature T with an arbitrary density n, all necessary correlation func- 
tions have already been calculated by means of mode-coupling theory. The 
required results can be obtained from Refs. 3 and 10, and the conjecture 
can be tested directly. 

We quote from the literature the long-time behavior of the velocity 

3 A phenomenological theory for the long-time effects in a d-dimensional Lorentz gas at 
general densities has been developed recently by Dorfman, Ernst, and van Beijeren (to be 
published). It reduces in the low-density limit to known results for the tail of the velocity 
correlation function; it predicts correctly the exactly known coefficients of the tails in the 
one-dimensional stochastic Lorentz models; and it confirms the results for the Burnett  

coefficients obtained here. 



On a Conjecture of Alley and Alder for Fluids and Lorentz Models 7 

correlation function [Eq. (2.12b) of Ref. 3] 

kBT 
ep2(t ) = Co(t ) -  12~r3/Zmn( D + ~)3/2t3/2 (2.1) 

and of the Burnett correlation function 4 [Eq. (2.13b) of Ref. 3] 

kBrD(5  + 20) 1 
q~4(t) = U2(t) -- 60~r3/2mn(D + ~)5/2 t~/2 (2.2) 

These results have also been obtained from a low-density kinetic theory. (3) 
The correlation function dpah(t ) of Alley and Alder, defined in (1.16), 
behaves now as 

kB TD2 1 
~ 4 h ( t ) -  30~r3/2mn(D + ~)5/2 t,/2 (2.3) 

and the modified Burnett coefficient Dah(t ) diverges for large times ~ t  1/2. 
We can, therefore, conclude that for the three-dimensional fluid the conjec- 
ture is in conflict with mode-coupling theory, as well as low-density kinetic 
theory--the very theories that have been so successful in explaining the 
long-time tails themselves. 

In view of this conclusion let us consider the molecular dynamics 
evidence upon which the conjecture of Alley and Alder is based, i.e., the 
calculations by Wood of q,z(t) and D4(t ), as represented in Figs. (5.2) and 
(5.5) of Ref. 11. In Fig. 1, made available to us by Wood, ~'(s) = adB(t)/dt 
is plotted as a function of the dimensionless time s = pt, when t,-~ is the 
actual (Enskog) mean free time between collisions, and the normalization 
constant a = (2D0) -2 = (16/9)~rflmn2a 4, where D O is the Boltzmann value 
for the hard sphere diffusion coefficient and a the diameter of the sphere. 
Furthermore we find from (1.10) 

aB(t) 
d fooldt,[D(t)_ D( t ' ) ]D( t -  t') (2.4) dt  - ep,( t )  - 

Asymptotically the second term on the right-hand side of (2.4) behaves as 
- Dtq,2(t ), as can be deduced from (1.10) and (2.1), and on using (1.16) we 
obtain from (2.4) 

d B ( t )  b 2 t  (2.5) 
dt ~ 4 h  ( t )  D + 

According to Alley and Alder's conjecture one has asymptotically (~6-~s) 

D4h Dnh(D + t,) 
~4h ( t ) ~  ~ ~2(/) -- D2 q,2(t) (2.6) 

4 Equation (2.13b) of Ref. 3 contains a typographical error, viz., ~r should be replaced by ~r 3/2. 
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The correlation function ~#(s)= adB(t)/dt, defined in (2.4), as a function of the 
dimensionless time s = pt. 

where D4h has been determined in Refs. 16-18 as  D4h ~'~ 1.68D~/p and D e 
is the Enskog value of the hard sphere diffusion coefficient. 

Combining (2.4)-(2.6) leads to the prediction of the conjecture, as 
represented by the solid line in Fig. 1. Insertion of (2.3) into (2.5) leads to 
the prediction of the mode-coupling theory, as represented by the dashed 
line in Fig. 1. Both curves are consistent with the molecular dynamics data, 
as can be seen in Fig. 1. 

3. DETERMINISTIC AND STOCHASTIC LORENTZ MODELS 

3.1. Low-Density Kinetic Theory 

We will calculate the long-time behavior of the correlation functions 
@2(t), ~4(t), D(t), and B(t) from tow-density kinetic theory. Because of the 
restriction to low densities our results will not depend on short-range spatial 
correlations between scatterers, such as overlap exclusions. 

We need a few concepts from kinetic theory. (3'7'a) The Laplace trans- 
form C(k,z) of the velocity autocorrelation function, defined in Eq. (1.3), 
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can be expressed in terms of an exact propagator Fk(Z ), i.e., 
A 

= / 3  ( / 3 x r k ( z ) v x )  (3 .1 )  C ( k , z )  2 ^ A 

where the average without a subscript ( �9 �9 �9 ) = ( f d ~  �9 �9 �9 ) / fa  a is an aver- 
age over a d-dimensional unit sphere of surface area fa a = 2~ra /2 /F(d /2 ) .  
In the low-density limit Fk(Z ) reduces to the Boltzmann propagator 

r~(z)  = (z - ik- v - nT0) - '  (3.2) 

with a Boltzmann collision operator defined as 

nT0f(r = ,,vod-'f'd6f"d<e6lK(< e,6)[ f ( r  - f ( r  ] (3.3) 

where n is the density of scatterers. The 8 integration is restricted to the 
hemisphere #. 8 < 0 and the r integration to the hemisphere f / .  8 > 0. 
Furthermore, the kernel K obeys the obvious normalization f d r 1 6 2  r 6 )  
= 1, as can be seen in the two examples (1.12). The low-density diffusion 
coefficient D can be obtained from (1.10) and (3.1)-(3.3) as 

/3 2 
D =  d n ( r  T0r ) (3.4) 

Of course, its precise value depends on the kernel K, e.g., for diffuse 
reflection one obtains from (1.12a) 

t n 2 r  l I CA (3.5a) D = ( /32/dp)[1 + + 1))] -1 

and for specular reflection from (1.12b) 

D = ( v 2 / v ) ( d  + 1) /4d  (3.5b) 

Here v is the collision frequency, given in both cases as 

v = nvoa-l f 'dalr  = 
n/3o d -  l~( d-1) /2 

I?[ �89 + 1)] (3.6) 

and B ( x ,  y )  = F ( x ) F ( y ) / F ( x  + y ) .  
We are mainly interested in the small-k and -z behavior of the kinetic 

propagator, which for low densities can be represented as 

s F ~ ( z ) -  Fk(Z ) + Ff(z) (3.7a) 

with 

s ~ Pk (3.7b) r ~ ( z )  _ (~ + k2D ) - i  

Ff(z) "~ - Qk(ik �9 v + nT0)-IQk (3.7c) 

Hence F B is separated into a slowly decaying hydrodynamic part F ~ and a 
fast decaying part F f. The operator Pk = 1 -- Qk projects on the hydrody- 
namic mode ~bk(r ) of the Boltzmann propagator, i.e., P k f ( r  ~k(f)(ffk(r ) 
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f(r (Note the absence of complex conjugation inside the average.) The 
hydrodynamic mode satisfies 

( ik .v  + nTo)~k(r ) ~ { -k2D + O(k4)}l~k(V~) (3.8) 

and is easily found to be qJk~ 1 + ik. r + O(k2). 

3.2. Ring Events 

The velocity autocorrelation function in the low-density region has a 
long-time tail, (7) which is expected to result from single ring events. These 
events consist of a sequence of collisions of the light particle with a 
scatterer, separated by free streaming, such that precisely two collisions 
occur with the same scatterer, Schematically, the sum of the contributions 
from all these events to the velocity autocorrelation function may be 
represented by n(v~FBT(1)FBT(1)F%~), and its asymptotic behavior reads 

~,2(0...,_ 2~D2 ( 1 ~,+d/2 - -  n ~ ] (3 .9 )  

as may be verified with the methods of the Appendix. Similarly, D(t) 
defined in (1.10) has a long-time behavior 

1 ,~d/2] 
D(t)--"~D 1 + ~d (~--~D-[ / j (3.10) 

For the calculation of ~4(t), defined in Eq. (1.7b), we consider first the 
four-point correlation function (1.8) and use the low-density kinetic theory 
of Ref. [3]. The dominant small-z singularities are expected to arise from 
diagrams of classes I and V, defined in Ref. 3. In the schematic notation, 
introduced above, the dominant low-density contributions to each of these 
classes of diagrams have the structure 

C2(I)(z) 
d2(II)(z) 

= .  (~r"[  T(1)r%~r%xrBT(1) l r %  ) 

= ,~ ( vxr"[ T(1)r%xr~T(1) ] 
• r~ [T(2)r%r"T(2)lr%) 

= .  ( v~r"[ T(I)r%~r"T(1) J r % r % )  C2(III)(2) 

d~v~( z ) = .  ( vxrBvxr"[ T(1)r%~r"T0/]r "vx ) 

d~V~(z) = (vxr~v~r%rBvx) 

(3.11a) 

(3.11b) 

(3.11c) 

(3.11d) 

(3.11e) 

3.3. Confirmation of Conjecture 

The line of argument will be that for the quantities defined in (1.7)- 
(1.10), the leading small-z singularity in s ) is the same as in C0(z ), or 
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that for the inverse Laplace transforms the dominant long-time tail in ~4(t) 
is the same as in ~2(t). Hence the diffusion coefficient D, as well as the 
modified Burnett coefficient, D4, exist, thus confirming the conjecture. 

We start our calculations by considering first the contributions of the 
class-V diagrams, i.e., 

d}v)(o  = v 4 ( ~ r o ( z ) ~ r o ( z ) ~ r o ( z ) ~ )  

2 ( a - 1 )  A A2 1 * 
- d + 2  Y2(z)C~ (3.12) 

Here the exact propagator F0(z ), is an isotropic operator acting on func- 
tions of t3. Its eigenfunctions are the (hyper) spherical harmonics 1, ~, 
{O3)s = ~ -  (1/d)~, . . . ,  where ~ is a unit tensor. Its eigenvalues ,~l(z) 
are, respectively, 

%(z) = z - 1  
A A .~  

vl( ) = ( r  = aCo(z)/v- (3.13) 

Y2(z)* - d-d 1 ((v'~}s : r0(z)(r162 
In the low-density and long-time limit the inverse Laplace transforms yt(t) 
behave like y/(t)~'~ct -a/2-l. For l =  1 we have the tail of the velocity 
correlation function; the result for larger l is a straightforward extension of 
the method of Ref. 7. The projection of the hydrodynamic mode ~bk(t3 ) onto 
the/th-order spherical harmonic is proportional to k z. The second line of 
Eq. (3.12) follows directly from the eigenvalues and eigenfunctions of F0(z ). 
We also observe that C{/z is canceled exactly by the subtracted term in 

A ^ 

U2(z ) or ~4(t) in Eq. (1.7). The remaining contribution to U2(z ) has the 
A 

same dominant singularity as C0(z); its contribution to q,4(t) is proportional 
to ~2(t) in the long-time limit, and does not contribute to D4(t ) a term of 
O(logt) for d = 2 or of O(t 1-a/2) for d v a 2. Since we are at present only 
interested in the leading low-density behavior of ~4(/) we should neglect the 
difference in position of a scatterer and a light particle, when calculating 
the contribution from the diagrams of class I. This implies that in a Fourier 
representation of the quantity between parentheses in (3.11a) the binary 
collision operators T k and T_ k may be replaced by To .(7'3) Then the 
contribution from the class-I diagrams is obtained as 

= v n(v ro(z)ToBx (z)Toro(Z)Vx) 

n ~ v~Bxx(Z)~x) (3.14) 

To lowest order in the density the operator Bxx (z) is 

Bx~(z)=f ' . j  dk B A B * 8 (3.15) 
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The prime indicates that the integration over wave numbers k is restricted 
to Ikl <~ k0, which is on the order of the inverse mean free path. In deriving 
the second equality in (3.14) we have used that the spherical harmonics are 
eigenfunctions of the isotropie operators r0(z ) and T o with T0~ = 
- ~(v2/dnD). To evaluate (~xBxx(Z)~x) we separate the Boltzmann prop- 
agators into their slow (s) and fast ( f)  part as defined in (3.7). The 
following combinations of slow and fast parts ((sss), (ssf), (sfs), (fss), (fsf)} 
all contribute singular terms for small z, which behave as z(a-2)/21ogz for 
even d, and as z (d-2)/2 for odd d. However, the sum of the coefficients of 
the leading singularity vanishes. The details of the calculations can be found 
in the Appendix. Therefore, the dominant singularity in C~I)(z) is the same 
as in Co(z), in agreement with the conjecture. It should be stressed that in 
the kinetic theory for a three-dimensional hard sphere fluid the contribu- 
tion C~I)(z) has a dominant singularity proportional to 1/z  1/2 with a 
nonvanishing coefficient, leading to the results of Section 2. (3) 

The contributions from the diagrams II, III, and IV can be analyzed in 
much the same way. They do not contribute to the dominant small-z 
singularity. Inserting our results for C2~)(z) . . . . .  c~V)(z) into (l.7a) we see 
that U2(z ) has the same small-z singularity as Co(z ), so that ~4(t) is 
proportional to ~2(t) in the long-time limit. 

In conclusion, we have confirmed in the low-density limit the conjec- 
ture of Alley and Alder, stating that ~4(t).-~b2(t) for long times, for 
d-dimensional deterministic Lorentz models with d >/2, and stochastic 
Lorentz models with d >/ 1. This implies the existence of the modified 
Burnett coefficient D 4 in the same limit. 

For a class of one-dimensional stochastic Lorentz models, as discussed 
in Section 1.2, van Beijeren and Spohn (19'2~ have shown rigorously that for 
small z the functions U2(z ) and Uo(z), as defined in (1.6), both have a 
leading singularity proportional to z 1/2. Hence, the modified Burnett coeffi- 
cient exists for this model. 

3.4. Ordinary Burnett Coefficient 

From Eqs. (1.10) and (3.10) we can deduce the low-density behavior of 
the ordinary Burnett coefficient, 

D2t (d= 1) 

B(t)  ~ ~ n  log(vt) (d = 2) 

D 2t ) a/2 (d >/3) 

(3.16) 
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where B is some constant. For d = 1,2 the Burnett coefficient B(t) shows 
the expected long-time divergence. 

For a comparison with numerical data it is also convenient to give the 
Boltzmann values of the ordinary and modified Burnett coefficients for the 
deterministic Lorentz gas in d dimensions, i.e., 

( d -  l ) ( d +  3) D3 
D4 --- d + 2 v 2 

(3.17) 
B =  3 D 3 

d + 2  v 2 

where D 4 is directly given by the limit as z ~ 0 of the first term in the 
second equality of (3.12), and ,~2(0), in the low-density limit, follows from 
(3.13) and (3.2). B is calculated similarly from Eq. (1.10) and the low- 
density limit of Co(t) in (3.13). 

4. WAITING-TIME LORENTZ MODEL 

4.1. Distributions for Interval Lengths and Waiting Times 

We consider another one-dimensional stochastic Lorentz model, char- 
acterized by a waiting-time distribution, which is symmetric for jumps in 
the right or left direction, independent of the scatterer on which the light 
particle is located, independent of the previous history, and given by �89 ~(t), 
with Laplace transform �89 We refer to it briefly as the waiting-time 
Lorentz model. 

The scatterers are labeled ( . . .  - 1,0, 1,2 . . . .  ) in sequence of their 
positions on the real axis, and it is assumed that the lengths of the intervals 
between neighboring scatterers are independent variables with a probability 
density ~(x), satisfying 

fo~176 = (1) = 1 

fo~176 xl~(x) = (x)  = l (4.1) 

~o~176 - / ) 2 / ~ ( x )  = ( X  2) -- ( X )  2 ~--- A 2 

This model is a special case of a class of more general one-dimensional 
waiting-time Lorentz models, introduced in Ref. 19, for which the Green's 
function G(k,z) of Eq. (1.1) was calculated explicitly. Here we want to 
repeat this calculation for our special case insofar as it is needed to test the 
conjecture. 
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is 
The probability density P(x, t) for the light particle to be at x at time t 

P(x , t )= ~ ffn(t)#,(x) (4.2) 

Here I~,(x) is the probability density of finding the nth scatterer at x, with 
/Xo(X ) = ~(x), and P,(t) is the probability that the light particle sits on the 
nth scatterer at time t. The Fourier-Laplace transform of P(x,t) can be 
expressed as 

G(k,z) = f__2dX fo~176 

=Po(z)+ ~ [P,(z)M"(k)+ P n (z )M"( -k ) ]  (4.3) 
n = l  

with 

and 

oo i 

M(k) = fo dx e- kxl~(x ) (4.4) 

o r  

Y(t) = ft mdt' ~(t') (4.7a) 

s(z) = ( l / z ) [ 1  - @(z)l (4.7b) 

The probability YoU) that a light particle remains at the same scatterer in 
the time interval from 0 to t is 

YoU) = ~ ~ t~ ( t') (4.84) 

Pn (z) = fo ~176 e - ztff n ( t) (4.5) 

First we need the waiting-time distribution /~(t) for the first jump of the 
light particle, which has been discussed by Tunaley. (24) In equilibrium the 
initial time has constant probability to be anywhere between two subse- 
quent jumps, and Feller (25) has shown that 

h(t) = P ft ~dt' ~(t') (4.6a) 

or in Laplace transformed language 

h(z) = ( p / z ) [  1 - ~(z) ]  (4.6b) 

where 1,-1 = f~dt t~(t) is the average waiting time. Similarly, the probabil- 
ity Y(t) that the light particle, after arriving at a scatterer at time zero, does 
not jump within a time t is given by 
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o r  

So(Z ) = ( I / z ) [  1 - h(z) ]  

15 

(4.8b) 

4.2. Probabilities of Return and Site Occupancy 

Suppose the light particle jumps from scatterer 0 to a neighboring 
scatterer, say 1, at the initial time t = O, then the Laplace transform X(z) of 
the probability density for a first return to scatterer 0 satisfies the equation 

~. �89 ~p(z) (4.9) X(z)  �89 2 - +(z)X(z) 

The nth term in this series contains the contributions from those processes 
where the light particle returns precisely n times to scatterer 1 (from the 
right) before jumping back to scatterer 0. From (4.9) X may be solved 
immediately, with the result 

1 [ [l ~2(Z)] I/2} X(z) = ~ [1 - - (4.10) 

It follows then that the Laplace transform R(z) of the unconditional 
probability density to return to scatterer 0 after an initial jump at t = 0 is 
given as 

X (4.11/ 
= . = 1  - 1 -  (z)X 

Combination of the previous results yields for the Laplace transform of the 
probability density to end up at scatterer 0 

Po(z) = So(Z ) + h(z)R(z)s(z) (4.12) 

Similarly the Laplace transform P.(z) of the probability density to end up 
on scatterer n at time t is found as 

P~(z) -- P _ . ( z )  = 1 ---~-~X 1 - �89 s 

+ h R  l _ W ( ( x  s 

[ ] = ap(z)[1 ---~-(z)X(z)] 2 - •(z)X(z) s(z) 

(4.13a) 

(4.13b) 

where the terms account for all possibilities without [first term in (4.13a)] or 
with [second term in (4.13b)] intermediate returns to the origin; the factor 
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h ( 2 - + X )  -1 in (4.13a) accounts for the first jump from the origin to 
scatterer k - -  _+ 1, and all possible subsequent returns to k, avoiding the 
origin, whereas q~(2- ~X) -1 accounts for any subsequent jump from 
scatterer ( k -  1) to k [if k > 0, otherwise from - ( k -  1) to - k ]  and all 
possible subsequent returns to + k avoiding +_ (k - 1), where k runs from 1 
to n; the factor hR in the second term of (4.13a) accounts for all possible 
returns to scatterer 0. Finally, one has to multiply both terms in (4.13a) by 
a factor s(z), as given in (4.7b). 

4.3. Green's Function and Time Correlation Functions 

Finally G(k,z) is obtained from (4.3), (4.12), and (4.13) as 

a(k,z)=so+ l_q----2+ ~(1 q,X) ,=1 2--~X +c.c. 

= s ~  1 -  X 2 - + M - ~ X  + 2 - ~ M * - + X  (4.14) 

where c.c. stands for the complex conjugate of the first term between 
square brackets. Hence we have expressed G(k,z) in terms of the given 
functions +(z) and M(k). 

In order to calculate correlation functions it is convenient to rewrite 
(4.14) introducing the quantities 

A(k) = M(k)+ M ( - k )  - M ( k ) M ( - k )  - 1 (4.15a) 

B(k) = M ( k ) M ( - k ) -  1 (4.15b) 

which, in the limit k ~ 0, satisfy the equalities 

lim A (k ) / k  2 = - l 2, lim B ( k ) / k  2 = - A 2 (4.16) 
k ~ . 0  k -~0  

After some algebraic rearrangements, employing (4.10), the result is 

G(k,z) - _1 + (4.17a) 

with 

z z(1 - t~) 

1 1 + ~  1/2 

To test the conjecture of Alley and Alder we have to calculate /)(k, z) from 
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(1.1b), which results in 

U(k , z )  = ~-2 1-Z ~ 1 + ~ (4.18) 

Since we want to expand ~f(k,z) according to (1.6) up to O(k  2) included, 
we have to consider the small-k behavior of M(k) .  Formally one has from 
(4.4) 

(-  ik)" 
M ( k )  = ,=0 n! ( x ' )  (4.19) 

For our purposes it is sufficient that all moments up to (x4) exist. In Eq. 
(4.6) the existence of an average waiting time p i was already assumed; 
hence ~k(z) may be expanded as ~(z)  = 1 - z~ -J + o(z) for z tending to 
zero. After some algebra we find for the velocity autocorrelation function 
~2(t) in (1.7), 

U ~  2 1 1 - - - ~ z ) 1  12+A2 l ~ ( z )  (4.20a) 

1 A2[1-r '/2 
= D + ~- 1 7 r  (4.20b) 

In (4.20b) we have used Eq. (1.6) and introduced the diffusion coefficient 
D = U0(0) = �89 ul 2. The explicit form for U2(z) is more complicated, and will 
not be given explicitly, since only its small-z behavior will be needed. For 
the small-z behavior we deduce 

Uo(z ) ~ D  + �89 1/2 (4.21) 

~" 1 U2(z ) ~.,�89 /2 (4.22) 

The "velocity" correlation function ~2(t), which should be interpreted as 
the second derivative of the mean square displacement, has, according to 
(4.21), a long-time tail (19'2~ 

A2[ p ~1/2 1 (4.23) 
~2(/) ~'~-- -~- \ ~ ] t3/2 

which is in general agreement with the prediction for the deterministic 
Lorentz models. The coefficient A 2 =  (x  2) - - ( x )  2 represents the fluctua- 
tions in the interval length, which corresponds to density fluctuations, and 
( x )  = l = n-1. If one takes for these fluctuations a Poisson distribution 
iz(x) = l - l e x p ( - x / l ) ,  as is correct for a dilute gas, one finds from (4.23) 

02(0 ~'~- ~ n (  D ) ' / 2  1 (4.24) 
t 3 / 2  
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in agreement with Eq. (3.9), for d = 1. According to Eq. (4.22) the Burnett 
correlation function behaves for long times as 

44(0 ~"~r189 DA2(P /2qrt) 1/2 (4.25) 

so that the conjecture of Alley and Alder is not satisfied for this model. The 
modified Burnett coefficient, Da(t)~DA2(pt/27r) 1/2, as well as the ordinary 
one, B(t)--~ '~ 3DA2(vt/2~r) U2, diverge for long times. 

4.4. Periodic Lattice, Montroll-Weiss Model 

For the existence of a long-time tail in the velocity autocorrelation 
function 0:(t) and for the even stronger tail in ~4(t) it is very essential that 
there exist fluctuations in the density of scatterers. For a periodic lattice no 
tail exists. This can be seen very simply in the case of a sharp distribution 
/t(x) = ~(x - l) for the interval length. In that case the coefficient of the 
tail, proportional to the variance A 2, vanishes. Likewise the quantity B(k), 
defined in (4.15), becomes equal to zero for all k. As a consequence of this 

A 

Uo(z ) becomes entirely frequency independent, irrespective of the form of 
~(z), as was first noted by Tunaley (24) and as can be seen immediately 
from (4.20). This implies that Oe(t) has no long-time tailo 

The special case of a sharp interval distribution for the waiting-time 
Lorentz model is also a special case of the Montroll-Weiss random walk 
with a waiting time, (e3) when the probability distribution p(x) for a step 
size is sharp, i.e., p(x )= 8 ( x -  l). Tunaley treats the general Montroll-  
Weiss model with a waiting-time distribution/~(t) for the first jump that is 
chosen independent of the waiting-time distribution ~(t) for all following 
jumps. He then shows that the Laplace transform Co(z ) of the velocity 
autocorrelation function is of the form 

A ^ zh(z) (4.26) 
c0(z) = U 0 ( z ) -  

with a proportionality constant independent of z in complete agreement 
with (4.20a) with A = 0. If one chooses h(t) to be equal to +(t) (this is the 
only case considered by MontroU and Weiss in Ref. 23) and if in addition 
one assumes that ~(t) has a long-time tail proportional to t - " ,  with a > 2, 
so that the average waiting time exists, then U2(z ) contains a leading 
nonanalyticity ~ z  ~-1 for z tending to 0. This corresponds to a t - "  
long-time tail in the velocity autocorrelation function, and it is easily shown 
that in this case all functions O2,(t), as introduced in (1.5), have a similar 
long-time tail proportional to t-5.  It was this observation, besides the ev- 
idence from molecular dynamics results, that motivated Alley and Alder's 
conjecture. (17'~8) However, in equilibrium the assumption that/~(t) equals 
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gT(t) is not justified, and instead these two waiting-time distributions are 
related to each other through (4.6). Substitution of (4.6b) into (4.26) 
immediately leads to Tunaley's result of a U0 that is independent of z, 
irrespective of the waiting-time distribution. This implies that for Montroll- 
Weiss waiting-time models in equilibrium the conjecture of Alley and Alder 
is not satisfied. Hence, if this conjecture is satisfied for deterministic and 
stochastic Lorentz model in equilibrium, as seems to be the case, this 
cannot be explained on the basis of a reduction of those models to some 
effective Montroll-Weiss waiting-time model. 

5. D I S C U S S I O N  

5.1. Mode l  D e p e n d e n c e  of Resul ts  

We have investigated four different types of models to test the conjec- 
ture of Alder and Alley that the four-point correlation function involved in 
~4(t) decays at large times sufficiently fast that it can be expressed in the 
two-point velocity correlation function q)z(t), and consequently a modified 
Burnett coefficient D 4 or O4h [see Eqs. (1.17)-(1.18)] would exist in systems 
where the diffusion coefficient itself is finite: 

(i) For the three-dimensional fluid we have disproved the conjecture as 
expressed by (1.18) on the basis of a low-density kinetic theory or the 
mode-coupling theory, valid for general densities. Both theories have given 
a satisfactory explanation of the existence of the long-time tails themselves. 

(ii), (iii) For the d-dimensional deterministic Lorentz model (d >1 2) and 
for the stochastic Lorentz model (d >1 1), as introduced in Section 1, the 
conjecture has been confirmed in the low-density limit by means of kinetic 
theory. In addition, for the one-dimensional stochastic Lorentz model a 
rigorous proof of the conjecture is available (19'2~ for general "density" (in 
this case the density is replaced by the probability p for reflection of the 
light particle upon collision with a scatterer (22)) and for a general distribu- 
tion of the length of the intervals between neighboring scatterers. 

The kinetic theory methods employed suggest more generally that for 
long times and low densities ~2n(t)~q~2(t), in agreement with the extended 
(n > 2) conjecture of Alley and Alder, (17'18~ as discussed in Section 1.4. The 

A A 

reason is that the so-called ring diagrams for U(k, z) or C(k, z) depend only 
on the external k through exp(ik-6a), appearing in the binary collision 
operators T k and T k. This k dependence is regular for small k and is 
neglected in our low-density kinetic theory. That the internal propagators 
inside the rings do not depend on k--and that, consequently, the sum of 
the diagrams of class V, as calculated in the Appendix, vanishes--is a direct 
consequence of the fact that the first and last collisions in a ring event 
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Occur with the same scatterer, hence almost at the same position. In the 
fluid, however, the propagators l?k(z ) (see Section 3), appearing inside the 
ring diagrams, do depend on the external k. This is the reason why the 
small-z behavior of Uzn(z ) becomes more strongly divergent in the limit 
z-~ 0 with increasing n. In the higher-order "self-energy" diagrams the 
internal propagators depend on the external k also in the Lorentz models. 
Therefore, without doing further calculations, one cannot conclude from 
kinetic theory whether or not the conjecture of Alley and Alder remains 
valid in Lorentz models at higher densities. On the other hand, for the 
one-dimensional stochastic Lorentz models of Section 3 the conjecture 
r e l a t i n g  ~ 4 ( t )  to q52(t ) is confirmed by an exact solution for general 
densities,(19,20~ but cannot be explained on the basis of an effective reduc- 
tion to a Montroll-Weiss waiting-time model, in which the velocity auto- 
correlation function in equilibrium has no long-time tail, as can be con- 
cluded from Tunaley's work. (24) 

5.2. Molecular Dynamics Data 

Our last point is a comparison of the various new predictions with the 
results obtained from computer simulations. First we consider the long-time 
tails occurring in the correlation functions ~2(t) and B(t), as introduced in 
(3.9) and (3.16), respectively. Here we follow the presentation of Alley and 
Alder. Introducing a dimensionless time s = pt and a dimensionless density 
n* = no 2 (where o is the radius of the scatterers) Alley (~8~ has presented 
these functions for the two-dimensional Lorentz gas at large times as s 

q~2(t)/q~2(0 ) ,-~,_ aDS-BO ' Do2dB( t ) /d t  ~_~aB s -Be (5.1) 

Here $2(0)= �89 v2; the Boltzmann value of the diffusion coefficient, given 
by (3.4), is indicated in this discussion as D o in order to distinguish it from 
the actual diffusion coefficient D and /30 = fl~ + 1 = 2. We further have 
the low-density predictions 

n* 4n* (5.2) O~ D = - -  , O~ B - -  
~r 3Tr 

For the velocity correlation function comparisons with molecular dynamics 
results have been made by Bruin, (14) Alder and Alley, ( 16 18) and Lewis and 
Tjon (~>; for the super Burnett coefficient the comparison is new (see Table 
I). Only at low densities (n* < 0, 10) are the exponents flD and fl~ found in 
the computer simulations in agreement with the theoretical predictions. The 
coefficients a D and a 8 are far away from the low-density kinetic theory 

5 U n f o r t u n a t e l y  the c a p t i o n  of T a b l e  I of Ref.  16 suggests  t ha t  a B is the  coef f ic ien t  of  the 
long- t ime  tail of  {d2(tB)dt2}/D g ins tead  of  {dB/dt}/D 2. 
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Table I. Tail Coefficients for the Two-Dimensional Deterministic 
Lorentz Gas from Molecular Dynamics Calculations 

3 Do aB 
n*a aD/n* aB/n* 4 D a D 

0 1/~,~ 0.3 4/3~r ~ 0.4 1 
0.03(0) b 0.87 _+ 0,16 1.3 --- 0.7 1.3 -+ 0.9 
0.05(0) b 1.2 _+ 0.1 1.6 --- 0.4 1.2 +- 0.4 
0.05(N) C 0.75 _+_ 0.03 
0.10(0) b 2.0 - 0.5 1.6 --- 0.2 0.9 - 0.4 

aO, overlapping disks; N, nonoverlapping disks. The values for 
n*-~ 0 are the kinetic theory results. 

b Reference 18. 
CReference 15. 

results. However, a linear extrapolation through the three available values 
for a D at the reduced densities n* = 0.03, 0.05, and 0.10 is perfectly in 
agreement with the theoretical limit for n * ~ 0 ,  as was demonstrated by 
Alley and Alder. (18) For a B a similar extrapolation through two data points 
is not inconsistent with the theoretical value in the limit n * ~ 0 ,  but the 
uncertainties in these points are so large that no stronger conclusions can 
be drawn. It should be mentioned, further, that the conjecture of Alley and 
Alder, if it is valid, immediately leads to a relation between a B and a D that 
can be obtained by identifying the dominant  singularities on both sides of 
Eq. (1.10) under the assumption that D 4 in (1.17) is finite, i.e., 

= 4(D/Do) o (5.3) 
where D is the actual diffusion coefficient and D o is its value as calculated 
from the Boltzmann equation. In the last column of Table I we list the 
values of J ( D o / D ) ( a B / a D )  as obtained from Alley and Alder's molecular 
dynamics results (is) for a B, r and D. Given the error bounds, these 
values are always close to unity indeed. 

It is remarkable that higher-density corrections to the low-density 
kinetic theory become so important already at fairly low densities, such as 
n* = 0.03. The existence of strong density effects also becomes clear from 
the large difference between the results for a D in the overlapping and the 
nonoverlapping disk system (see Table I). 

On the basis of kinetic theory we showed that for low densities the 
modified Burnett coefficient D4 is finite for the two-dimensional Lorentz 
gas, in agreement with the conjecture of Alley and Alder. It  would be 
worthwhile to calculate analytically all ring contributions (diagrams I, 
II  . . . . .  V in Section 3) to lowest nonvanishing order in the density, in 
order to obtain an estimate for the leading higher-density corrections to the 
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Table II. Dilfusion and Burnett Coetlicients for the 
Two-Dimensional Overlapping Lorentz Gas 

i i  

n* D I D  o D4v/ D ~ D4/ D)~ 2 

0 1 0.47 0.18 
0.02 0.92 _+ 0.02 0.57 +_ 0.04 0.23 _+ 0.02 
0.05 0.81 _+ 0.01 0.50 +_ 0.04 0.23 + 0.02 

Boltzmann value of D4, as given in (3.17), but thus far this calculation has 
not been undertaken. In Table I I  we compare the Boltzmann value of D 4 

with molecular dynamics values given by Alley and Alder for the two- 
dimensional Lorentz gas. In this table X = v / v  is the mean free path and D 
is the value of the diffusion coefficient as obtained from molecular dynam- 
ics [18] again. From (3.17) one obtains the Boltzmann values (listed in 
Table II  as n* = 0 values) 

D4P 15 D4 45 
D02 - 3 2 '  D)~ 2 - 256 (5.4) 

One sees that even at these low densities the diffusion coefficient D and the 
modified Burnett coefficient D 4 contain appreciable contributions from 
higher-density corrections to the Boltzmann equation. 

A C K N O W L E D G M E N T S  

It  is a great pleasure to thank Dr. W. W. Wood and Dr. J. Erpenbeck 
for suggesting the problem, for making the unpublished Fig. 1 available to 
us, and for their collaboration on the results of the three-dimensional fluid. 
In addition one of us (M.H.E.) wants to thank them for their hospitality 
during a visit at the Los Alamos Scientific Laboratories in August, 1979, 
where this work was started. We are also indebted to Mr. J. Koenen for his 
help in calculating the super Burnett coefficient for the two-dimensional 
Loren{z model. One of us (M.H.E.) wants to thank Dr. B. J. Alder for 
several stimulating discussions and for sending him Ref. 18. 

A P P E N D I X  

From Eqs. (3.14) and (3.15) we have 

*, ,, = ( '  dk  ~, B ,, B ,, 8 *, (v.B=(z)v~) 3 (2~r) d(v~rk(z)v~rk(z)v~rk(z)v;) (A.1) 
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As a preparation we obtain from (3.8) equalities valid to lowest order in k: 

( ~kOx~,) = 2@x~k) = 2ikxD / v (A.2) 

(~k~3x Oo{ - nTo) -'Qo~x~k) = (~k<Oo{ - nT0) - 'Oo~x) 
--1A = @ x ( - n T 0 )  Vx) = D / v  2 (A.3) 

Then we have the following contributions using (3.8) 

(sss) f '  dk  1 . 2 ^ 2 = (v:&k> (q,,,v~,h,) 
(2~r) a (z + Dk2) 3 

_ 4Dn f ' dk kJ 
124 (2~r) d (z + Dk2) 3 

(A.4) 

(2~r) d (z + Dk2) 2 

• (~bk~xQo( - nTo)-'Qo~x) 

4D3 f"  dk k~ (A.5) 
v3 (27r) a (z + Dk2) 2 

(sfs) (2~) a = f '  dk  

_ D 3 f  ' dk k2 
D4 ( 2 ~ )  d (z + Dk2) 2 

f '  dk  ( 1 ) @ x Q o ( _ n T o ) - ,  - 2 (fsf) = ~ z + Dk 2 Oovx,~k> 

_ O~ f ' ak 1 ) (A.7) 
t) 4 ( - ~ ) d ( z + D k 2  

Next we carry out the angular k integrations, using @ 2 ) =  d - I  and 
@4) = 3 [ d ( d +  2)] -1, sum the terms (A.4)-(A.7), and take the inverse 
Laplace transform to find for the dominant  long-time behavior 

(vxBxx(t)vx) "~ -77 ~ dxe -x2 1 - x 2 + d(d + 2~ x 4  = 0 

l A 2 A -1  A 
Ok2)2 ("~'P~) ( '~"zQo(-  "To) Q o v ~ )  (~ + 

(A.6) 

(A.8) 
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where we introduced the new variables x = (Dt)l/2k. Although it looks as if 
the function in (A.8) has a stronger tail ( ~ t  -d/2) than the correlation 
function (02(t)~t -d/2.  l, its coefficient vanishes, and the tail of C(2t)(t) in 
(3.14) is of the same order in t as the tail of ~2(t). 
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