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Noyes’ theory of diffusion-controlled reactions is revisited in great details. First, it is shown that this
theory provides an interesting alternative approach to perform molecular dynamics simulations for
diffusion-controlled reactions. With this approach, reaction rate can be determined from simulations
of nonreactiveequilibrium systems. No annihilation procedure is needed to simulate the reaction
event. Provided that encounters with different reactants are strictly uncorrelated, the reaction rate
can be determined more directly and accurately than by the methods that compute the survival
probability. We describe in detail the method for accurately determining the key quantity in Noyes’
theory, i.e., the first recollision probability, from molecular dynamics simulations. It will also be
shown that arguments similar to those in Noyes’ theory allow us to establish an exact relatien

the same assumptions of absence of correlatibesveen the distribution function of a reacting
system at the encounter distance and that of a nonreactive equilibrium system. This relation can be
used to fix the boundary condition at the reaction distance in the approaches based on a diffusion
equation. New insights have been gained into the usefulness of the recollision probability. The
recollision probability also provides a very useful tool for characterizing quantitatively some
dynamic features of the cage effect for reactions in dense liquids. Finally, the method presented here
may also be used to calculate reaction rates for diffusion-controlled reactions in systems where the
dynamics cannot be described by a diffusion equation.2@1 American Institute of Physics.
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I. INTRODUCTION obtain macroscopic kinetic equations. Nevertheless, the un-
derlying dynamics is nearly always described by a diffusion
The study of diffusion-controlled reactions has already aequation.
long history. More than 80 years ago, Smoluchowski formu-  Although the approach based on the diffusion equation
lated the first theoretical approathin this now classic started by Smoluchowski has constituted an overwhelming
theory, the relative motion of reactants is described by amainstream in the study of diffusion-controlled reactions
diffusion equation. The disappearance of reactants is adsee Refs. 16—19 for revieysexceptions do exist. In 1954,
counted for by an absorbing boundary condition at an enNoyes proposed a theory based on a quite different
counter distance. Almost all the subsequent developmenterspectivé? Noyes' theory is based on a collision picture.
followed the same line of thought. Various improvementsIn the formulation of his theory, Noyes introduced an imagi-
and refinements have been made. Debye was the first to coR@ry counterpart system, which is identical to the reacting
sider the effect of long-range Coulomb forces between reacSystem under consideration in all the aspects except that the
tants on the reaction rate of diffusion-controlled reactfns. réactants are deprived of their reactivity. So, they can recol-

Collins and Kimball introduced the radiation boundary con-/idé again and again without ever reacting. Although this
dition to describe the chemical reaction at the encounter didd€2 May appear surprising at first sight, Noyes showed that

tance in a more satisfactory waydydrodynamic interaction the recolllsmkn pr_obab(ljl!ty tm' ”;e cotjr;_terpart SYtStem canl
has been considered by introducing distance-dependent rel cfVe as a key ingredient in formuiating a quite genera

tive diffusion coefficienf. The study of diffusion-controlled theory for reaction kinetics. Unfortunately, this recollision

. . probability is not readily accessible to direct experimental
reactions has al§o begn gxten_?g)ed to r_everS|bIe realiidhs. measurements. Noyes tried to determine it by resorting to a
In more recent investigatiort$;*® a variety of approaches

d hi hy f iibri duced distribufi diffusion equation, thereby restricting himself to only those
(truncated hierarchy for nonequilibrium reduced distributiongoqeq \yhere the relative motion of reactants may be de-

functions, memory function formalism, elds applied 10 g¢rined by a diffusion equation. In this way, he obtained only
the long-time asymptotic behavior of this function and re-
dElectronic mail: dong@catalyse.univ-lyon.fr covered the result of Smoluchowski at long times. During

0021-9606/2001/114(14)/6265/11/$18.00 6265 © 2001 American Institute of Physics



6266 J. Chem. Phys., Vol. 114, No. 14, 8 April 2001 Van Beijeren, Dong, and Bocquet

the past 46 years, to our knowledge, nobody has made futhe average number of collisions in a recollision sequence
ther attempts to determine the recollision probability in thebetween two nonreactive moleculé$, is finite for three-
whole time range. Nowadays, such a task becomes a quitimensional systems and diverges for one- and two-
feasible one by using computer simulations. One purpose afimensional systems since the recollision probability of a
the present work is to accomplish this, so that a quantitativgair is equal to 1 for 1D and 2D systems. Thus, in a 3D
assessment can be made for Noyes’ theory. system the collision frequency of a given molecwe with

In the present work, by revisiting Noyes’ theory, we new B molecules, i.e., molecules it has never encountered
gained some new insights into the usefulness of the recollibefore, is given byv,.,= vag/Nag after a transient initial
sion probability. We realized that this quantity also providesstage. For values P, ., such thatP ¢,c.Nag>1, the reac-
a very useful tool for characterizing some dynamic featuresion rate forA is simply vey-
of the cage effect, which is one of the most helpful concepts  In some sense, Noyes’ thedis a generalization of the
for understanding the dynamics of chemical reactions in soabove idea which takes into account the time dependence of
lution. Although the local structure revealed in the potentialrecollision probability. The conventional approach usually
of mean force between reactants may be considered as ewtarts with the following kinetic equation for the survival
dence for the existence of a solvent cage, the cage effeprobability of a moleculed, Su(t):
itself is intrinsically of a dynamic nature. The recollisions of
two reactants at short times are some of the most direct dSa(t)
manifestations of the cage effect. Despite its importance and dt K(t)Sa(V), )
the huge amount of literature on reactions in solution appeal-
ing to the concept of the cage effect, a precise dynamic chamwherek(t) is the time-dependent reaction rate. Nevertheless,
acterization of this effect is still lacking. In this paper, we the status of this equation is scarcely discussed in any depth.
will show that the recollision probability can be used to In order to see more clearly the assumptions behind the basic
make such a characterization. kinetic equation, we have chosen a different approach by

The paper is arranged as follows. Noyes’ theory is re-starting from a formally exact expression f8x(t)
called in the next section. We also present a derivation of the
kinetic equation for the survival probability. This derivation ”
allows one to clearly see the fundamental assumptions and SA(t):NE:O Pnr(N,)P(N, 1), ©)
restrictions on which the theoretical framework is based.

Section Il contains a brief treatment of the long-time limit yhere P(N,t) is the probability thaN collisions take place

of r_eact|on rgte. Altho_ugh the descrlptlon is baS(_ad on a difin the time interva[ 0t] andP,,.(N,t) is the probability that
fUS'Q“ equation, new msngh;s are gained, gspemall_y Into Fhﬁone of theN collisions is a reactive one. Although E®) is
choice of boundary conditions by applying the ideas inan exact expression, it is of little practical use. Now, we will
Noyes’ theory so as to obtain a sensible expression for thenhow under what further assumptions E2).can be reduced
discuss how to determine the recollision probability by dif-reaction rate is time dependent. The time dependence can be
ferent methods from molecular dynami@dD) simulations.  easily understood with the help of the nonreacting counter-
Section V is devoted to the cage effect, relating its dynamigart system introduced by Noy&Since the reaction rate is
features to recollisions. Our simulation results are presentegqua| to the collision frequency of themolecule with new

and discussed in Sec. VI. Conclusions are summarized iB molecules in the nonreacting counterpart system, and this

Sec. VIL. frequency decreases with time, it is obvious that the reaction
rate must also decrease with time. Now, the probability for a
Il. A NEW PERSPECTIVE ON NOYES' THEORY collision in the time interval 0,t] being a reactive one can be
Here, we consider irreversible reactions of the generi€Xpressed as
type
yp Jodt’ k(t")
A+B—C+D. (1) Preactt) = ot @

In a dilute gas, the rate of such a reaction can be expressed as
k=P,.ac¥ap With v4g being the collision frequency of an  wherew is the total collision frequency of th& molecule in
molecule withB molecules in the nonreactive counterpartthe nonreacting counterpart system with any other molecules
system andP,.,.; the probability of reaction in a collision (either a solvent or & molecule regardless of it being a new
betweenA andB. The collision frequency is an equilibrium one or a recollided one, so=wvast vag, vag: collision
property that does not depend on transport coefficients. lfrequency ofA with Bs andv,gs: collision frequency ofA
such a case, the reaction is usually qualified as an activationvith solvent molecules If the correlation between the colli-
limited one. For a dense system with a large valu®gf,,  Sions can be neglected®, (N,t) is given simply by (1
the situation is radically different. A pair of molecules enter- — Preac(t))" andP(N,t) can be described by Poisson distri-
ing a collision can recollide a large number of times in abution, i.e.,
dense system if the reaction probabili®,eae, IS small. If
P reactiS NoOt too small, the pair of reactants will react almost _ (v)" —ut

: . . P(N,t)= e . (5)
certainly once it starts a collision sequence. Ngiy denote N!
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With the above expression d?,(N,t) and P(N,t), the no prescription is provided for the practical determination of
summation in Eq(3) can be easily carried out, which leads f(t), the above theory remains a very formal one. Noyes
to the following compact form: attempted to calculaté(t) from a diffusion equation. This
. provided only the asymptotic estimation éft) at long
SA(t):exp< _f dt’ k(t’)). times. To our knowledge, no investigation has been made to
0 determine this function over the whole time range. Our task
This is simply the solution of Eq2).
The basic kinetic equation, i.e., E@®), was used intu-

in Sec. IV will be to make such a determination under the
simplifying assumptions specified above.

itively by Noyes and many others without any discussion of

its status. Now, the above derivation shows very clearly the

basic assumption behind it. Its solution, i.e., E8), is noth- |1l DESCRIPTION BY DIFFUSION EQUATION

ing else but a generalized Poisson distribution for the case

where the reactive collisions are not uniformly distributed ~ After the description based on a collision picture given

over time (or, in other terms, for the cases with a time- in the last section, a brief recall of the approach based on a

dependent reaction rateMoreover, in the above description, diffusion equation is given below. Our special emphasis here

the reaction between a pair of reactants is treated as an evefton discussing some relationships between these two types

independent of the reactions between other pairs. So, tH¥f approaches. In particular, we will show how the results

framework described above is rigorous|y valid on|y at low obtained from the collision piCtUre can h6|p to determine the

(6)

concentrations of reactants.

Now, we introduce, following Noye®, the probability
density f(t) for a first recollision between aA and aB
molecule at time after a preceding collision at time 0. Here,
we make a further simplifying assumption thigt) will be

proper boundary conditions in the approach based on diffu-
sion equation.

In a liquid phase, the relative motion of two particles can
be described quite well by a diffusion equation in a potential
of mean forc&! &(r), related to the pair correlation func-

independent of the preceding number of collisions betwee#ion, g(r), by
the AB pair. For systems at low density or with a rapidly - B(r)/keT

. o . g(r)=e B', (8)
changing local structure, this will be a good assumption, but
for systems in which the local surrounding of the pairwherekg is Boltzmann's constant an@l the absolute tem-
changes only slowly in time, this assumption may cause deperature. For the sake of simplicity, we consider only spheri-
viations whenP ,< 1. Nevertheless, this assumption is notcal molecules without internal degrees of freedom. Other-
involved in the case oP,,c=1 and has negligible effect in wise, one has to consider diffusion in an extended
the case ofP.,<1, where the time-dependent part no configuration space including the internal degrees of freedom
longer plays any role. So, it can be expected that this apef the two reactants. The diffusion coefficient in general de-
proximation most affects the results in the casesPgf,;  pends on the intermolecular distance due to hydrodynamic
with intermediate values. With the above assumption, thénteractions: At large distances, it approaches the sum of the
time-dependent reaction rate, in the case of a gemggal;, self-diffusion coefficients of the two reactants. For a spheri-
can be expressed as cal distribution ofB molecules around a giveA molecule,

. the diffusion equation takes the form
k(t) VABPreac[l Preactfodtl f(tq) Ippg(r,t)
: Y ot
- Preac{l_Preact)f dt2f dtl f(tz_tl)f(tl) 19
0 0

J
_ 24— ®(r)/kgT D(r)/kgT
12 o ree D(r)ar (e pas(r,t))]. (9

5 t ts
~ Preacl 1~ Preact fodt3fo dtz F(ts~t2) As pointed out first by Smoluchowskithe reaction ratéor
the asymptotic rate at which ahmolecule encounters new
B molecule$ can be equated to the rate at whlmolecules
are transported to th& molecule by diffusion from a source
which is homogeneous at infinity with densityg. As a
. . generalization of this, the time-dependent reaction rate dis-
the counterpart system the probability density foreth col- cussed before can be estimated from the time-dependent so-

lision giving rise to a reaction is justagPreact BUL tiS iy of this diffusion problem with a homogeneous initial

could be counted as a true reaction in the reacting SySte'a‘ensity of B molecules. The boundary conditions can be
only if there were no reactive collisions between the sam fitten in general as

pair before. The probability for such an event is expresse

()

t
xf “dt, f(t—ty) F(ty) — -
0

This equation can be understood intuitively by noting that in

precisely by the subtracted terms. In deriving Ef, it is 5 d B kT

assumed that the recollisions subsequent to the first one afg7o D(0)9(0)| —- (€78 pag(r,1)) | =kpag(a,b),

uncorrelated. = (10)
As already pointed out by Noyes himself, the function

f(t) is not accessible to direct experimental measurements. ffag(r—,t)=pg. (11
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Smoluchowski used the absorbing boundary condition, i.eto obtain the exact initial reaction rate(0). Ourfitting just
pag(o,t)=0, which corresponds to the limik—x. Collins  described above aims &f{(>c). But, both approaches boil
and Kimbal? pointed out that a finite value fot should be  down to the requirement that the initial rate and the station-
used in order to remove the unphysical singularity of theary one should be proportional to the local densityahol-
reaction rate at=0 in Smoluchowski theory. Nevertheless, ecules in the immediate neighborhood to fmolecule with

the meaning and the value that one should give tio not  the same proportionality constant and therefore they leads to
appear clear in the original paper of Collins and Kimball andthe same result.

many subsequent developments. A few years ago, Zhou and Substitutingx given in Eq.(16) into Eq. (12), one ob-
Szabo proposed a choice efrom an intuitive basi$? They  tains
chose k in such a way that the initial reaction ratlk(t

o g e . k3 0) v
=0), is given exactly, i.e., it is equated tQgPeac(in fact, K(o0)= g2 17)
Zhou and Szabo considered only the cBgg.~1). We will k™) + vag

show below thatk can also be fixed by an exact relation where
which should be satisfied by,g(o,°) and which is com-
pletely equivalent to the requirement imposed by Zhou and kab oo ) =
Szabo in the case ¢ ,.,.=1 but accounts for also the gen-
eral cases of &P g, < 1.

The stationary solution of E9) with the boundary con-
ditions, Eqs(10) and(11), leads to an expression kfx) of

0 1 -1
dr , 18
J, 8" mrzpmaiio 19
and k) is the asymptotic value of the reaction rate ob-
tained by using the absorbing boundary condition, i.e.,
pag(o,t)=0. In the case oP <1, we can proceed in a

the form kg(0) similar way. In this case, Ed7) gives the following result
k()= kpag(0o,®)= gx Pe I . for the long-time limit of the reaction rate:
1+ «g(o) Y m k(o) = VaBPreact 1= Precol) (19)

(12 1-(1~Preacd Precoll’
So far, k may still be considered as an undeterminedNow, the contact value of the steady-state distribution func-
parameter of the theory. Now, we will describe a method fortion, pag(o,*), is related to the equilibrium distribution
determining the value of in an unambiguous way. For sim- function,g(o), of a nonreacting fluid through the equation
plicity, we first consider the case thR}.,.— 1. We can apply 1
. .. . . 1 (1 F)reaca |:)recoll
a reasoning similar to that of Noyes to establish a relation  p,g(o,©) 1=p
between the distribution ok andB at the collision distance, recoll
o, in a reacting system and that in the nonreactive counterFor P, ,.=1, Eq. (20) reduces simply to Eq(13). For
part system. Let us start from the stationary state and turn ofictivation-limited reaction, i.e.P, <1, we see clearly,
the reactivity at, say,+0. TheB molecules are now allowed from Eqg.(20), that the reactants are distributed as in a non-
to recollide with the centrah molecule and on average will reacting equilibrium system. Equatiori$9), (20) and the
do so 1/(1-Pecqn) times[see Eq.(15) for the definition of  first equality in Eq.(12) yield the following value forx:
P.econl- Therefore, if again we may ignore correlations be-
tweenB molecules, the resulting density 8f molecules at = PfeaClVAB_ (22)
the encounter distance, from the A molecule will build up g(o)ps
to pag(0,°)/(1—Peco) @s soon as the system relaxes toSubstituting Eq(21) into Eq.(12), we obtain
equilibrium. Obviously, this is nothing else but the equilib-
rium density ofB molecules, i.e.pgg(o), in the nonreacting k?%%0) vagPreact

=pgd(0). (20

counterpart system k(ee)= k?®%0) + vApPreact (22
pag(0,©) Equations(21) and (22) are the extension of Eq$16) and
T=P ocor =psg(0). (13 (17) for the cases in which a collision between reactants does

) not necessarily lead to a chemical reaction. Now, the physi-
From Eq.(7), in the case 0P e~ 1, one has cal meaning of the parameteiis shown very clearly by Egs.
k(%)= va(1=Pecol (14  (16) and (21). In the literature, there was a widely spread
) o o misinterpretation ofk. It is often stated that the absorbing
whereP .o is the recollision probability given by boundary conditior(i.e., k—) describes the situation that
o every collision leads to a reactiofie., P,.,c=1) and the
Precol™ fo dt f(t). (15  radiation boundary conditioffinite ) accounts for the cir-

cumstances that the reaction takes place with a probability,
Now, Egs.(14), (13), and the first equation in E@l2) leads P,<1, at each collision. To our knowledge, Zhou and
to Szab@? were the first to point out that the radiation boundary
_ condition should be used even in the casePpf,.=1. The
«=vas/(g(a)pe). 18 fesults presented aboyEq. (16) in particulail confirm this
This is identical to the choice proposed by Zhou andfrom a different approach and generalize it to the case with a
Szabd?? The fitting of k given by Zhou and Szabo was made reaction probability smaller than 1.
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IV. MOLECULAR DYNAMICS SIMULATIONS are considered to escape each other forever. For real macro-
A. Model scopic systemd,,.—°. For a finite system used in simula-
] tions, reliable results foP ¢ can be obtained only if;a

Dong, Baros, and Andreroposed, in 1989, a very can be chosen in such a way that the resultfgs., do not
simple model for the prototype reaction described by 5.  depend on the choice of,.,. We will come back to discuss
and carried out the first molecular dynamics simulation fOfthis point in Sec. VI when the simulation results are pre-
diffusion-controlled reaction%‘g. In that paper, all the reac- sented. The second Comp|icati0n is th]@Sx cannot be in-
tants and solvent molecules are described by hard spheres @eased to an arbitrary large value for a finite system, since
the same size and mass. The only difference between reagh the colliding pairs are bound to recollide after a certain
tants and solvent molecules is that a collision between @me (estimated to be that needed for a particle to diffuse
moleculeA and a moleculeB leads immediately to a reac- across the systenbecause of the use of periodic boundary
tion, i.e., the cas@ 4= 1. The survival probability of thé  conditions in a molecular dynamics simulation. The presence
molecule is determined in a way very similar to that used inof such artificial recollisions plagues the accurate determina-
a real experiment. In the present work, we adopt the samgon of P,...,. S0, special attention must be paid to eliminate
model as that used in Ref. 23 for describing diffusion-the contribution of the artificial recollisions in the calculation
controlled reactions. In this case, the nonreacting counterpags p,,..,. First, one needs to distinguish the artificial recol-
system is simply a fluid of hard spheres with the total densityisjons from the real ones. For this, the particle positions are
p=patpstps (pa, ps, andps are, respectively, the den- followed in two distinct ways. While the position vectors are
sities of A, B, and solvent specigsAs in Ref. 23, we will  ypdated as usual using periodic boundary conditions, a moni-
restrict ourselves to the case with the spedieat infinite  toring array is used at the same time to record the distances

dilution. of all pairs since their first collision. This array is updated
without applying the periodic boundary conditions. At each
B. Calculation of first recollision probability real recollision, the distance recorded in the monitoring array

, must be equal to the collision distance, i.e.(hard sphere
diametey. An artificial recollision takes place between one
gollided particle and the image of its partner. For such a
recollision, the distance recorded in the monitoring array
does not equad. In fact, this corresponds to the situation in
which the considered pair is continuing to move away from
each other after their previous collision. So, in the calcula-
tion of P,.co1, One can plausibly view this situation as an

collision [see Eq.(15) and Ref. 2Q. The normalized func- . 0 . .
tion, F(t)="F(t)/Pee, describes the distribution of the event in which the two considered particles escape from each
' recon other forever.

length of time intervals between two successive collisions Th llisi fter | i tially det
undergone by the same pair of molecules. This distribution ' €cOlISIONS after fong imes are essentially deter-

function can be readily measured from a molecular dynamicgnlned by the d_|ffu5|on process. Hence, _the long-time
simulation. However, the functioR(t) contains less infor- asymptotic behavior of the recollision probabilifi(t), can

mation than the functiori(t). Hence, the determination of :Jetﬁxpe((:jt_ed to _be W(tarl:_ d(lescgb?d bi’j the d'ﬁus'ot"‘,g‘ju?t'on'
F(t) is not sufficient to obtairf(t). One also needs to de- In rtge |m$rr]1.5|orl13, d'S cads fo l"?‘ ;acayf@n) as at d
termine the recollision probability? ocoi, iIN SOMe way. ong times. This siow decay complicates a very accurate de-

The recollision probability considered here is closely re-Lermination OfPrecon from simulations of finite length. The

lated to the return probability extensively investigated in thedr"’“’\’b""ck of the method which determines the recollision

studies of random walks on latticsErom the famous work probability by f(t)=PrecoiF (t) is that the inaccuracy in

of Polya?® we know that the return probability is equal to 1 Preconl Will spread over the whole time range foft). How-

for random walks in 1D and 2D systems. In 3D systems,ever’ there does exist an a_I'Fernatlve which allows us to ex-
recoll from other quantities closely related to the recol-

Precor<l and different values have been found depending o factP
thr:,\conlattice stlructure\s/ L:)n w\rllich randli)m V\E)alksl grelﬁsion probability. One such quantity is the probability of the

considered”* To our knowledge, no study has been reportedA‘ molecule col!iding_ with new particlegthe mganing of the
on the recollision probability for off-lattice models. In prin- :ﬁ:mdn?w pamclz Ihs thel same ?Srt]hat extp)nlat;l.rll_edtm S_e):. .
ciple, the recollision probability can also be measured di- € definition and the relation of this probability tt) is

rectly from a molecular dynamics simulation. The fate of a ANpeu(t) t
colliding pair is either to recollide or to separate forever. Pnew(t)=<—AN O >=1—f dt’ f(t'), (23

. ; ) T 0
Hence, a straightforward way to calculd@g,. is to find out
from all the collided pairs how many have made subsequenvhereAN+(t) is the total number of collisions undergone by
recollisions. Nevertheless, this simple and direct method sufa given molecule in the time intevel,t+ At] and AN o,(t)
fers from two complications directly related to the finite sizethe number of collisions with a new particle in the same time
of the simulation system and the finite length of simulationinterval. The average denoted by the angled bracket is an
runs. To determind® .. in @ finite length run, a long but average over all different particles and over many time ori-
finite observation timet,,,, is prescribed. If a pair of mol- gins in order to obtain good statistical accuracy. Now, the
ecules colliding at=0 does not recollide up tb=t,,,,, they  asymptotic valueP,,(°) provides another way to deter-

In Sec. Il, it is shown that the key quantity in Noyes
theory is the first recollision probabilityf,(t). We describe
now the different methods we developed to determine thi
function. First, we should recall that the first recollision
probability, f(t), as defined by Noyes is not a normalized
probability density. The integral df(t) is equal to the prob-
ability that a pair of molecules will recollide after their first
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mine Precon SINCEPre(®©) =1— Precor. From the long-time  for the re-encounters after escaping from the cage. Now, let
behavior of f(t), it follows that the deviation ofP,,(t)  us define more preciself(t) andf'(t) in Eq.(24). For this,
from its asymptotic value approaches zerota¥?. There- the cage size needs to be prescribed first. The radial distri-
fore, a very accurate determination®f..; can be obtained bution function clearly shows the shell structure of neighbors
by simulating over a long time and extrapolating the simula-around a given particle in a liquid phase. A plausible choice
tion results ofP,e,(t) to t—o. This will be discussed in for the cage size is the radius of the first-neighbor shsih,

more detail in Sec. VI. the cage radiuRR,qe, is taken to be the position of the first
minimum in the radial distribution function or equivalently

V. RECOLLISION PROBABILITY AND THE CAGE f[he position o_f the barrier to enter into the first-neighbor '_she_ll

EFFECT in the potential of mean force. For hard spheres at liquid

_ _ _ _ . densities, this radius is found near &.5Then, f5(t) is de-

In this section, we will show that the first recollision fineq as the contribution td(t) from all the recollisions
probability, f(t), is not only the key ingredient of Noyes’ taking place before leaving the cage defined above while the
theory but also contains information about the cage effect Recollisions, after escaping from the cage, contribut o).
the liquid phase. Up to now, the cage effect has been @jence, the determination df(t) and f'(t) by molecular
roughly defined qualitative concept. However, some of itSgynamics simulations necessitates the monitoring of the dis-
dynamic features can be characterized quantitatively by thgynce between the colliding pair. Since the recollisions after
recollision probability,f(t). long times result from diffusive motiorf/(t) decays slowly

The first thing we would like to kn.ow is hqw the cage ast 32 as already pointed out in the last sectio®{(t) de-
effect shows up in the system properties considered here. f¢ribes the distribution of recollisions due to the cage effect
cages do exist, the recollisions must take place in a quitgng dies away very quickly. Useful characteristics of the
characteristic way, i.e., occurring in clusters in time. In eachcage effect can be obtained froff(t) and the decomposi-
cluster, the recollisions are separated by short time intervalgon made in Eq(24). First, the probability that a recollision

characteristic for the shuttling around of a pair within a cagejs induced by the cage effect can be obtained straightfor-
Then, one should see a longer period during which there i§ardly from

no recollision. This corresponds to the escape from the cage.

If eventually the two molecules meet again, one will see . Jodt fS(t)

another sequence of recollisions with short time intervals and Xrecon:ffo(t)- (25
so on. In Fig. 1, a few recollision sequences are shown. One 0

can see that the recollisions indeed take place in such a ways 3 similar way, the probability of a recollision taking place

This leads to a natural splitting ¢{t) into two parts, after escaping the cage is
f(t)="15(t)+f'(t), 24 .
wheref(t) is the short-time part describing the recollisions  Xrecol™ =g (p) (26)
0

due to the cage effect arit{t) the long-time part accounting

The average time between the recollisions due to the cage
effect is given by

40 E T T T T T T T T T T T T T T T T T E|
30E = ET
20E E - :fodttf (t). 27
10 ;_ m_é recoll fgdt fS(t)
0 e T ) PR TN T S AN S T N S A T T SN SN HN OY SO U=
w 0 100 200 t/7 800 400 500 As a rough estimate, the time needed for a molecule just
g e undergoing a collision to go to the cage boundary is equal to
g Trecol2. The pictorial presentation of a recollision sequence
:40 T T T T T T T T T T T T T T T T T T T 5 - - . .
Sapk 3 given in Fig. 2 can help to show this.
220§_ _% Now, we will see how the characteristic behaviors of
B0k E f5(t) andf'(t) enter into the kinetic description &(t). In
TR Tl b b v e Ly 0 3 the case ofP,.,.= 1, the reaction rate given by EG/) be-
3 9% 100 200 300 400 500 react 9 y B@)
£ v/ comes
: mc¢
= t
40: LI R | T T T T L T T T T T T T 3 k(t):VAB(l_f dtlf(tl)) (28)
30;— E 0
0E 3 When Eq.(28) is substituted into Eq(6), one obtains
10E E q
E 1 1 1 | L 1 1 1 k 1 Il ‘ 1 1 1 1 l L L 1 1 g
9 100 200 300 400 500 ¢ t
t/Tmc SA(t):eX _VABt l_ Odtlf(tl) — VaAB Odtltlf(tl) .
FIG. 1. Some examples of recollision sequences between two given par- (29

ticles for a high densityf%=0.41) hard sphere fluidr,.: mean collision ] |
time). As pointed abovef'(t) decays as
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TABLE |. Simulation results for collision frequenay diffusion coefficient
Cage boundary Dag, recollision probabilityP .y, coefficienta in the long-time tail of

f'(t) [see Eq(30)].

n 2 DABb Precoll ot
0.15 3.07 1.126 0.350 0.19
0.30 10.11 0.362 0.781 0.32
0.41 21.61 0.142 0.941 0.21
0.48 35.17 0.0579 0.984 0.14
Q Units:
ap: \/kBT/mcr2 (kg : Boltzmann constanfl: absolute temperaturex: mass
of a particle.

PD pg(Da+Dg): Vo2kgT/m.

Ca:\/Tme (Mean collision timeg,.= 1/v).

eten. The simulation results of the collision frequency and
the diffusion coefficient at these densities are summarized in
Table 1.

FIG. 2. Schematic presentation of recollisions inside a cage. A. First recollision probability

In Fig. 3, the probability for first recollisionf(t), is
a presented for different densities. At short timdgt) in-
fl(t)= an t—oo, (30 creases quickly when the density is increased. This reflects
directly the enhancement of the cage effect at higher densi-
The determination ofx from molecular dynamics simula- ties leading to a larger number of recollisions.
tions will be described in Sec. VI. Furthermore, one would In order to characterize the cage effect more quantita-
expect thatf5(t) dies away quickly. These observations leadtively, we proposed in Sec. V to split the recollision prob-
to an asymtotic behavior for the survival probablity of the ability into a short-time partf(t), and a long-time part,
form f'(t). The results of this decomposition at a low density
Ao S (=0.15 and a high density»=0.41) are presented in Fig.
t+ Ji+ } t—oo, 4. In both casesf(t) is a fast decaying function. We will
1= Precal 1= Precol show shortly that it decays exponentially at long timieét)
3D has quite different behaviors when the density is changed. At
with moderate densities, the amplitudef&ft) relative tofS(t) is
- " o much larger than at high densities. This reflects directly the
5=J dttfs(t)+f dtt f'(t)——w} (32 enhancement of the cage effect at increased densities. At
0 0 t high densities, all the recollisions at short times take place
From the approaches based on a diffusion equation, an ejside a cage, as shown by the fact tflgt) =0 in the initial
pression similar to Eq(31) can be obtained foBa(t) (see, region[see Fig. 4b)]. The results in Fig. 4 also show that
e.g., Refs. 16 and 18However, they contain only the first f'(t) has a long time tail and spreads over a large time range.
two terms (proportional tot and \/t) but not the constant This accounts for the fact that the recollision times after cage
term, 8/(1— P,ecop). It was observed a long time ajahat ~ €scape can vary from a few mean collision times<toAs
the experimental results for () can often be fitted more Pointed out earlier, one can show by using a diffusion equa-
satisfactorily by a second-order polynomial@fwith a con-  tion that the recollision probability has a long time tail pro-
stant term. In the approach proposed by Andtal,?® a
constant term is introduced from the outside. The above deri-
vation of Eq.(31) shows clearly that such a constant term
arises naturally in the theory based on the recollision prob- 0.1
ability. The first term iné is related to the mean recollision 0.08L
time due to the cage effefsee Eq(27)].

—InSp(t)=k(e)

0.12_|||||||||1|||I||I|¢\|

§0.06‘

VI. NUMERICAL RESULTS AND DISCUSSIONS 0.04

‘II{lVIIlIIlJIII‘IIJlIII

Our model for the reaction system has been described 0.02 |- AN
in Sec IV A. For this model, the nonreacting counterpart sys- 0 S T - e
tem introduced in Noyes’ theory is simply a fluid of hard 0 10 20 30 40 50
spheres. All the results to be presented below are obtained Y/ T e

from molecular dynamics simulations with 2048 hard FIG. 3. First recollision probabilityf(t), of a hard sphere fluid at various

spheres. A range of densities frog=0.15-0.48 is consid-  gensities () 7=0.15(long dash; (b) 7=0.3 (dot-short dash (c) 7=0.41
ered(n=mpo>l6, p: number densityp: hard-sphere diam- (short dash (d) =0.48 (full).
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FIG. 4. Decomposition
the short-time partfS(t)
7=0.15 and(b) 7=0.41.
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FIG. 6. Asymptotic behavior of the probability for a given particle colliding
with a new particle(one which has not collided with the given particle
P.eu(t). The dashed line extrapolates each asymptote-te. (a) »=0.15;
(b) #=0.3;(c) =0.41;(d) »=0.48.

B. Reaction rate

As discussed in Secs. Il and [gee in particular Eq$7)

portional tot 2. This asymptotic behavior is confirmed by and(23)], the reaction rate is given by

our simulations. In the next subsection, we will discuss its
consequence on the asymptotic decay of the time-dependent

reaction rate.

K(t)=vagPnen(t), (33
for the case thaP,,.=1. As pointed out in Sec. IVB,

In Fig. 5, f(t) at »=0.41 is plotted along with an ex- Pnes(t) can be measured directly in MD simulations by
ponential fitting function, f3(t) = f3 expt/m.). In fact,
only the value off is fitted to the simulation result for can be obtained fror®Pe (). With the asymptotic behav-
£5(0). 75, iS taken to be the simulation result of the meanior of f(t) given in Eq.(30), Ppey(t) has the following as-
recollision time inside a cage. From Fig. 5, one can see thatmptote:

f3(t) decays exponentially far>20r, (with 7, the mean
collision timg. At shorter times, its decay is slightly slower
than an exponential function. This implies that at very short
times, the instants of recollisions do not occur completely afy long times, the plot o

counting the collisions with new particlek(ec) and P ¢

2«
Prewt)=1—Precort —=

Jt

{—o0,

(34

new(t) versust Y2 is a straight

random. Nevertheless, the exponential function is a quite safy, o if Eq. (34) holds. The slope and the intercept of this
isfactory approximation over the whole time range.
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FIG. 5. Exponential decay of the short-time part of the first recollision

t/7T .

probability, f5(t), at »=0.41.(a) simulation result(full); (b) fitting (dash
with 3 expl/Tecon) (F5=0.109 andri, o= 6.60ro).

straight line allow us to determiner and P,e.y. The
asymptotic plot ofP,,(t) versust~*?is presented in Fig. 6.
The asymptotic form given in E@34) is perfectly confirmed

by the simulation results. It holds for all the densities con-
sidered here. The results fét,., and « obtained in this
way are presented in Table I. As one can expect, the recol-
lision probability, P, increases with density. The return
probability of a random walk has been determined on various
lattices?* It depends on the topology of the lattice and de-
creases with the number of the nearest neighbors. Its value
ranges from 0.442 for a diamond lattiGenearest neighbors

to 0.256 for face-centered-cubidcc) lattice (12 nearest
neighbor$.?* Nevertheless, it is not straightforward to com-
pare the recollision probability obtained here for a con-
tinuum model with the return probability of random walks on
lattices. From the results obtained here, we see that the recol-
lision probability can reach much higher valuespecially at
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FIG. 7. Steady-state reaction rak€e) (measured with respect to the col- FIG. 8. Time-dependent reaction rakét) (measured with respect tg,g)
lision frequencyv,g). MD simulation resultgdots; results obtained from  at »=0.41: Simulation resultfull line); Collins—Kimball theory with the
Eqg. (17) with g(r)=1 and Dag(r)=Da+Dg (full line); classic Smolu- intrinsic rate given by Eq(16) (dashed ling

chowski theory(dot-dash ling

given by Eq.(17) always satisfies the physical requirement

high densitiesin the case of off-lattice models. Obviously, thaF K(=)<vag [a!so true for Eq.(22)]. ,It is worthwhile

this enhancement is due to the cage effect of the solvenf©ting that the failure of Smoluchowski theory to produce
which is not taken into account in the study of random walksdccurate results fok(«) at low densities resultsd_malnly

on lattices. Although high-density liquids exhibit an fcc-like fiom the inappropriateness of the boundary conditior at
local structure, diffusing particles primarily move around in — ¢~ But. this failure is not really related to the diffusion
the cages formed by their neighbors rather than jumpingeq”e_lt'on itself since the same diffusion equation is used to
from lattice site to lattice site. In the former process, as oné’bta'r,‘ Eq.(1.7). b h
might expect intuitively, the recollision probability can reach __ S"C€ Fig. 7 shows such a good agreement between the
much higher values than in a random walk with isotropicS'mUIat'on and the diffusion equation under the approxima-

jump distribution(but one could mimic the cage effect in a 10NS9(r) =1 andD(r)=Da+Dg, itis tempting to see how

random walk model by introducing a high probability for good a similar approximation is for the time-dependent reac-

back jumps. tion rate,k(t). In the framework of these approximations,
For the model considered here, Noyes' expression fok(t) iS given analytically by the expression of Collins—

the reaction ratek(t), is exact provided that(t) is known Kimball theory _for the time-dependen_t reaction rate, using
exactly, the concentration d8 molecules is low, and the the value ofx given by Eq.(16) [g(o) is set to ] for the

correlations between subsequent recollision times can be piitrinsic reaction rate. Figure 8 shows the comparison of the

glected in the case th&,.,.<1. Then, with theP, .o de- results obtained from this approximation and simulations for
reac . ’ reco

termined by the extrapolation method just described, one caff—0-41- At long times (>607yJ), there is a very good
readily calculate the steady-state reaction rate, kéx) agreement between the theoretical approach and the simula-

= vas(1— Pecq). It is to be noted thak(e) cannot be de- tions. By constructiorisee Zhou and Sza}%, the a}pprogch
termined accurately by using the simulation method pro_also gives the exact result fk(O). In_themtermedlate pme
posed in Ref. 23. By that metholi(t) is determined indi- 'ange (0,607, the reaction rate is quite underestimated
rectly through the differentiation of the survival probability, PY the above theoretical approach. This may be due in part to

which leads to quite noisy results at long times and make e simplification made by neglecting the spatial variation of
the extrapolation fot—o hard. In Sec. Ill, a quite general the diffusion coefficient and the potential of mean force. It

might also be possible that the short-time recollision prob-
ability is overestimated by the diffusion equation even with
Jhe radiation boundary condition.

expression ok(«), i.e., Eq.(22), is derived from a diffusion
equation with the Collins—Kimball boundary condition. It is
interesting to see how accurate the steady-state reaction r
is given by EQq.(22) over a wide density range. In Fig. 7,
k() as given by Eq(17) [i.e., the particular case of Eq.
(22) with P,gac=1] is compared to the predicted value of In the present work, a derivation of the kinetic equation
k() =vap(1—Pecon. FOr this comparison, further ap- of the survival probability is presented for reacting systems
proximations have been made, i.g(r)=1 and D(r) with a time-dependent reaction rate. From this derivation, the
=Dag=Da+Dg. With these approximationk2°{=) re-  basic assumptions behind the kinetic equation, mostly about
duces to the result of the classic Smoluchowski theorythe absence of various types of correlations, become very
kS(e) =4maD sgpg, Which is also plotted in Fig. 7. One clear. In the absence of correlations, the reaction rate is
sees that Eq(17), even with the above approximations, closely related to the first recollision probabilitift), in a
gives results in remarkably good agreement with the simulanonreacting counterpart system. Molecular dynamics simula-
tion results over the whole density range. The classic Smolutions have been carried out to determine this quantity. With
chowski theory gives accurate results only for systems with @ahe simulation results fof (t), various features of Noyes’
density higher tharny=0.3. At low densitieskS() is not  theory are investigated in a thorough way. For the simple
even bounded by the collision frequency, whilgx) reaction model considered in this work, Noyes’ theory gives

VIl. CONCLUSIONS
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the exact expression for the reaction rate in the limit of dilutecorrelations due to competition with other reactive pairs are
reactants. Using the recollision probability, we find a relationignored completelyboth A andB particles are assumed to be
between the contact value of the reactant—reactant distribwery dilute). In other modern approach&s,®the latter type
tion function in a stationary reactive system and that of theof correlation is taken into accouiivften by quite refined
equilibrium distribution function in the corresponding nonre- techniques but most of them assume simple diffusive dy-
acting equilibrium system. This relation allows us to estab-namics. In this respect, the above two types of approaches
lish unambiguously a general boundary condition at the colare complementary. In addition, Noyes’ theory ignores cor-
lision distanceg, for totally diffusion-controlledP,.,c=1)  relations between the recollisions after the first one. When all
as well as partially diffusion-controlleP,.,< 1) reactions. the particles are very mobile, this should be an excellent
Using this boundary condition in a diffusion equation, oneapproximation. But when cage configurations start to change
obtains a fairly elaborate expression for the steady-state rerery slowly (e.g., close to a glassy stat¢his type of corre-
action ratd Eq. (22)]. Remarkably good results are obtained lation may become quite important.
from such an approach fdk(«) over the whole density The clustering of recollisions found in the present work
range under the approximation thgr)=1 andD(r)=D,  reveals unambiguously the characteristic two-particle dy-
+Dg. However, the same approach underestimates the réamics due to the cage effect. We show that the first re-
action ratek(t), in the intermediate time range. collision probability not only plays an important role in
Up to now, all the simulations of diffusion-controlled determining the reaction rate, but also provides a very help-
reactions employed an annihilation procedure to accourful tool for characterizing some quantitative features of the
for the disappearance of reactants due to chemicatage effect. In view of its usefulness in the study of these
reaction’>?*2"We demonstrated here that Noyes’ formalismimportant subjects, we believe that the recollision probability
provides a very interesting as well as highly efficient alter-deserves more investigation. For example, it is highly desir-
native to the previous simulation method. For obtaining theable to have tractable kinetic theory expressions for this
reaction rate in a system with dilute reactants, one needguantity.
to carry out only simulations on an equilibriumon-
reactivesystem. This is quite reminiscent of the method for
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