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In this paper we continue the study of  solutions of  the extended Boltzmann 
equation started previously. In particular, we study an iterated solution of  the 
equation that can be used to describe the flow of  a rarefied gas around a 
macroscopic object. We discuss the rarefied flow and then show how the iterated 
solution can be extended into the hydrodynamic regime. The results for the drag 
force and for the distribution function of  the gas molecules are shown to be 
identical to the results obtained in a previous paper by a generalization of the 
normal solution method. We also discuss the special properties of  both rarefied and 
continuum flows around a cylinder and show that in both regions one must take 
into account Oseen-like terms which naturally appear in the extended Boltzmann 
equation. In the hydrodynamic regime we obtain Lamb's formula for the force on 
the cylinder. By relating the terms in the iterated expression to dynamical events 
taking place in the fluid, we are able to discuss the dynamical origin of the results 
obtained here. 

KEY WORDS:  Boltzmann equation; rarefied gas flow; continuum flow; flow 
around spheres; flow around cylinders; drag force; dynamical events; 
Stokes" law, Lamb formula. 

1. INTRODUCTION 

In the first pape r  o f  this series ~1),3 (to be referred to as I) we obta ined the drag 
force on a nonro ta t ing  sphere moving  in a dilute gas, f rom an extended 
Bol tzmann  equat ion.  This equat ion,  after a l inearization abou t  total  equilib- 
rium, was o f  the fo rm 

( a / O t  + v .  V - L - T)tP(r, v, t) = - Tf lm[v.  V(t)] (1.1) 
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where the symbols have the following meaning: The one-particle distribution 
function has been linearized about a Maxwellian in the (accelerated) 
coordinate system where the sphere is at rest at all times. Its form is then given 
a s  

f ( r ,  v, t) = n~o(v)(W(r){1 - f lm[v .V( t ) ] }  + W(r, v, t)) (1.2) 

where n is the equilibrium density and ~o(v) is the Maxwellian, 

~o(v) = ( f lm/2n) 3/2 e x p ( -  flrnv2/2) 

with/3 = ( k B T ) -  ~, Tis the temperature, and kB is Boltzmann's constant. V(t) 
is the velocity of the sphere at time t and W(r)  is unity for points outside the 
sphere and zero otherwise. The actions of (v. V) and the linearized Boltzmann 
collision operator L on tp describe the rate of change of the distribution 
function due to free streaming and to collisions among gas particles, 
respectively, while the operator T describes the influence of collisions between 
gas molecules and the sphere. The precise form of this operator, as well as that 
of the closely related operator T, is given in I. In the hydrodynamic regime the 
Knudsen number ~ff is much less than unity. This quantity is defined as 
= l/R,  with I the mean free path between collisions of  a gas molecule and R the 
radius of the sphere. Equation (1.1) was solved in I by an extension of the 
Chapman-Enskog normal solution method. The function W was divided into 
a hydrodynamic and a nonhydrodynamic part, and after some algebraic 
manipulations both the general form of  the hydrodynamic part and the 
boundary layer part of the distribution function could be determined. 

In this paper we show how Eq. (1.1) can be solved iteratively, both in the 
Knudsen or rarefied gas regime where X >> 1, and in the hydrodynamic 
regime. Here the iteration will consist in expanding the solution of (1.1) in 
powers of GBT, where GB is the so-called Boltzmann propagator GB = (z 
+ v. V - L)-  1 ; GB describes the motion of a typical molecule in the gas, 
taking into account free motion and collisions with other molecules, while 1" 
describes collisions of the gas molecules with the sphere. This iterated solution 
of (1.1) will allow us to determine, in a rather straightforward way, the 
particular dynamical events that are responsible for the behavior of the drag 
force in the different regions of interest. Besides providing us with a physical 
picture of  what takes place when a macroscopic sphere moves through a dilute 
gas, the iterated solution is very useful when one considers the Brownian 
motion of a sphere in the gas. We will return to this point later on. 

We will also discuss the refinements needed in the calculations presented 
here and in I in order to compute the drag force per unit length on an infinitely 
long cylinder moving in a direction perpendicular to its axis. Here one would 
like to understand the dramatic difference between the form of  Stokes' law F 
= (V for the force on a sphere, which is linear in the velocity V, and the form 
of  Lamb's formula F = aV/ (b  + c In ~ ' )  for small Math  number J//1. ~3> 
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The starting point of  the iteration is the Laplace transform of (1.1), 

(z + v.V - L - T)W = -Tf lm[v .V(z) ]  (1.3) 

where we ignored the initial value term since, as discussed in Section 6 of I, we 
are not interested in its influence. Equation (1.3) can be solved formally as 

= - ( z  + v-V - L - T)-1Tflm[v.V(z)]  (1.4) 

which can be iterated in powers of the Boltzmann propagator G B as 

=- - - { G  B -+- GsTGs + G,TGsTGs + "'}Tflm[v.V(z)] (1.5) 

The drag force exerted by the gas molecules can be obtained as 

F(z) = - f d r  (mvT{-flm[v.V(z)] + q3(r, v, z)}> (1.6) 

n ~dv q~(v)f(v). Equation (1.6) is easily understood if one where <f(v)> 
q d  

realizes that 

mp(v)T{-/~m[v.V(t)] + W(r, v, t)) 

is the rate of change of  the distribution function at time t due to collisions 
between gas molecules and the sphere. Multiplying this by my and integrating 
over r and v, one obtains the total momentum transfer from the sphere to the 
gas at time t. Substitution of (1.5) into (1.6) yields 

F(z) = (mv{T + TGBT + TGBTGRT + TGBTGBTGBT + ""}flm[v.V(z)]) 
(1.7) 

Equations (1.7) and (1.5) form the starting point for our further analysis. 

2. T H E  K N U D S E N  R E G I M E  

It is illuminating to make a geometric interpretation of the right-hand 
side of(1.7). The first term is the free molecular flow term, which gives the force 
on the sphere due to collisions with molecules that have not been perturbed by 
the presence of the sphere. The second term describes all correlated dynamical 
processes in which there are two collisions between the gas molecules and the 
sphere and an arbitrary number of  intermediate collisions between the gas 
molecules. All further terms describe similar processes in which the number of 
collisions between the gas molecule and the sphere increases by one in each 
successive term. 

In the Knudsen regime the propagation of particles over distances on the 
order of R is dominated by free streaming. Hence it seems natural to expand 
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the B o l t z m a n n  p r o p a g a t o r  a b o u t  the  free p r o p a g a t o r  G O = (z + v .V)  1 
acco rd ing  to 

GB = Go + GoLGo + GoLGoLGo + "'" (2.1) 

a n d  to subs t i t u t e  this e x p a n s i o n  in to  (1.7). 
The  i t e r a t i on  (2.1) c o r r e s p o n d s  to  a d e c o m p o s i t i o n  o f  G B in to  sequences  

o f  free s t r e a m i n g  a n d  col l i s ions  b e t ween  gas molecules .  As  a n  i l lus t ra t ion ,  

some  o f  the  d y n a m i c a l  events  c o n t r i b u t i n g  to (1.7) af ter  s u b s t i t u t i o n  of  (2.1) 

are g iven schemat ica l ly  in  Fig.  1. 
F o r m a l l y  the  i n s e r t i o n  o f  (2.1) in to  (1.7) gives rise to a n  e x p a n s i o n  o f  the 

d rag  force in  powers  o f  g f -  1. Th e  n t h  t e rm  in  the e x p a n s i o n  c o n t a i n s  the 
c o n t r i b u t i o n  o f  all t e rms  c o n t a i n i n g  n - 1 o p e ra to r s  L. I t  t u r n s  out ,  however ,  

o b 

c cl 

e f 

Fig. 1. The collisions of fluid particles with the sphere that are taken into account in the 
expansion of the force on the sphere in powers of the inverse Knudsen number. (a) The collision 
that is responsible for the free molecular flow force. (b, c, d) Dynamical events that contribute to 
the ~ - 1 correction to this value. (d) A process where the second fluid particle does not hit the 
sphere, but would have done so had the second collision not taken place. (e) Events that 
contribute to order ~ 2 In (Jff-1). (f) Events that contribute to order ,~-z.  
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that most of the coefficients in this formal expression, which are given in the 
form of complicated multiple integrals, are divergent. ~4) The cause of these 
divergences is the same as that of the divergences in the density expansion of 
the transport coefficients~4): The dynamical events occurring in the nth-order 
term describe collision processes between n gas molecules and the sphere, in 
which the gas molecules may travel arbitrarily long distances between 
subsequent collisions without being perturbed by other particles. In reality 
this cannot happen, and a collective effect, the mean free path damping, 
restricts the free trajectories between collisions to be on the order of a few 
mean free paths at most. For  molecules for which the total cross section for 
binary scattering is finite, it is simple to build this into the formalism by 
separating the linearized Boltzmann operator into the sum of the (velocity- 
dependent) collision frequency and an interaction term, L = - v(v) + L~. The 
Boltzmann propagator then becomes G B = Ez + v- V + v(V) - L~] - 1, which 
can be iterated as 

GB = Go d + GodLlGo a + GoaLIGo~LIGo ~ + "'" (2.2) 

with Go d = [z + v. V + v(v)] t. The damped free propagator Go n takes into 
account precisely the probability that a gas molecule, before finishing free 
streaming (in an equilibrium system) over a given track, will be hit by another 
molecule. 

In the literature it is customary to iterate (1.7) with the aid of  (2.2), 
although the notations used mostly differ rather widely from ours. t~ 8) 

A consequence of the divergences and the subsequent resummation is 
that one does not obtain a simple expansion of  the drag force in powers of 
j~(-1 (and it follows from the divergence of the coefficients in the formal 
expansion that no such expansion is possible); instead, one obtains an 
expansion of  the drag force in the form (5'8'9) 

F / F  o = 1 + a l J U - l  +a2 ' Jg ' -21n:Y~  -1 + a x J . ( ' - 2 - k  - ' "  (2.3) 

where F 0 is the free molecular flow force; the coefficient a 1 is determined by 
sequences of three or more collisions taking place among two gas particles and 
the object, as illustrated in Figs. l b - l d ;  a2' is determined by sequences of four 
collisions among three particles and the sphere such as those illustrated in Fig. 
le; and a 2 is determined by collision sequences involving any number of 
particles greater than two and the sphere. For  special models, a 1 and a 2' are 
known. 4 There is a close relation between the form of the expansion of  F as 
given by (2.3) and the density expansion of the transport coefficients. For 
example, the viscosity of a moderately dense gas is given by 

q/rlo = 1 + ql(na 3) + ri2t(F/O'3) 2 ln(ncr 3) + q2( / / /03)  2 -~- "" (2.4) 

'~ For a 1 see Ref. 10; for al and a2' see Ref. 9. 
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where n is the number density of the gas, t/0 the viscosity at low density, and a 
an effective diameter of the gas molecules. This relation exists because the 
corresponding coefficients (Fo, ~o), (a~, ~1), (a2', t12'), etc., are determined by 
similar kinds of dynamical events. (4'9-1 t) 

3. T H E  H Y D R O D Y N A M I C  R E G I M E  

In the hydrodynamic regime (J{ << 1) the iteration expansion for G B 
given by (2.2) is not very effective when inserted in Eq. (1.7) because the 
resulting expansion for the force on the sphere is roughly an expansion in 
increasing powers of J ( -  t = R/l. Nevertheless, (1.7) is a convenient starting 
point for calculating the drag force on the sphere if one realizes that, except 
very close to the surface of the sphere, the distribution function is completely 
dominated by its hydrodynamic part. ~ We can take advantage of this by 
separating the Boltzmann propagator into a hydrodynamic and a nonhy- 
drodynamic part. Just as in I, this is done by means of a projection operator 
p,S which projects onto the hydrodynamic eigenfunctions of the operator 
v. V - L. The separated form of G~ reads 

G~ = PGBP + PiGBP• (3.1) 

w i t h P ~ = l - P .  
Next one substitutes (3.1) for all the Boltzmann propagators occurring in 

(1.5), separates q3 according to �9 = Pq~ + P•  and makes a resummation of 
the resulting series for Pq7 by collecting all terms containing one, two, three, 
etc. hydrodynamic propagators, respectively. One then obtains the following 
result for P~P: 

pep = _ { pGBpq2 + e G . P ~ p G . p ~ f  + "..}/3m[v. V(z)] (3.2) 

where 

= ~? + TPIG~P• + TPIGBP• + "'" (3.3a) 

= T + TP•177 + v.V - L - T)P•177  (3.3b) 

~; = T + TP• + v-V - L - T ) P •  (3.3c) 

The physics of the dynamical processes corresponding to the terms on the 
right-hand sides of (3.2) and (3.3) can be considerably clarified if one realizes 
that the hydrodynamic propagator PGBP describes processes where the 
particles travel over distances of several mean free paths, and that the 
propagator P•177 describes processes where the particles travel over only a 
few mean free paths. Then one can see that the term TPjGBP• in Eq. (3.3a) 

5 We purposely do not specify which projection operator in I is being used here, since either the 
projection operator of I, Section 5 or that of I, Section 7 can be used. 



Kinetic Theory of Hydrodynamic Flows. II 449 

describes a process in which a particle collides with the sphere and travels only 
a few mean free paths, i.e., remains in the boundary layer, before it collides 
with the sphere again. Hence the operators T and T can be considered as 
"renormalized" collision operators containing all dynamical processes that 
consist of a chain of particle-sphere collisions alternated by nonhydrody- 
namic propagators. On the other hand, a term such as TPGBPT in Eq. (3.2) 
describes processes in which a particle, having collided once with the sphere, 
makes a long excursion into the fluid before coming back to hit the sphere 
again. Thus the dynamical events that contribute to Eq. (3.2) can be 
considered a s  sequences of collisions of fluid particles with the sphere, 
described by T or 1", connected by long excursions of the particles into the 
fluid. It is by such processes that the hydrodynamic flow field is set up around 
the sphere. 

To continue with the calculation of the force on the sphere, we next notice 
that the orthogonal part of the distribution function can be expressed, 
similarly to (3.2), as 

P ~  = - [ P •  + v. V - L - I')P~]-~{T + TPGBPqs + TPGBPTPG.PT  

+ TPGBP~FPGBPTPGBPT + ""}tim[v-V(z)] (3.4) 

Substitution of (3.2) and (3.4) into (1.6) yields for the drag force on the 
sphere 

V(z) = <rnv{~" + T P G . P T  + T P G . P T P G . P T  + ""}flm[v.V(z)]5 (3.5) 

where we used the properties 

T = X + (v.fO 6(r - R) (3.6) 

and 

((v.~)v[v-V(z)]) --- 0 (3.7) 

The interpretation of (3.5) is completely analogous to the interpretation given 
to (1.7) at the beginning of Section 2. The only difference is that the full 
Boltzmann propagator has been replaced by its projection onto the hy- 
drodynamic subspace, and the simple molecule-sphere collision operators 
have been replaced by the renormalized ones, which describe the full 
complicated boundary-layer process through which a hydrodynamic mode 
"colliding" with the sphere can excite a new hydrodynamic mode. 

Equations (3.2) and (3.5) can be evaluated by methods similar to those 
used in I. For a given value of the Laplace variable z, the space of distribution 
functions generated by the hydrodynamic propagator PGaP is spanned by a 
set of six basic functions, and similarly the space of source terms generated by 
P T P  or P T P  is spanned by six basic source terms. If the basic functions are 
labeled ~i and the basic source terms are labeled Si (for details see I), then the 
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action of PTP can be characterized by a matrix A such that Aij is the amount 
of S~ generated by PTP acting on ~;.  Similarly, the action of PGBP can be 
characterized by a matrix B such that Bi; is the amount  of q~ generated by 
PGRP acting on Sj. Furthermore the "initial source" - t~Pflm(v. V) can be 
represented by the vector S o such that the element S~ ~ is the amount of source 
S~ present in -PqgP~m(v.V). Similarly, Pt0 can be represented as a vector 
such that (P~)~ is the amount of u2 i present in P~P. With these conventions 
(3.2) can be rewritten as 

PU2 = {B + BAB + BABAB + "-}S O (3.8) 

The geometric series that occurs on the right-hand side of this expression can 
be formally summed, with the result 

P ~  = B(~ - A B ) - t S ~  ( 3 . 9 )  

where ~ is the unit matrix. This result is identical to either Eqs. (6.33) and 
(6.34) of I or Eqs. (7.20) and (7.21) of  I, depending on the choice of the 
projection operator P. This proves that the iterative method, applied in the 
hydrodynamic regime, leads to the same solution for the distribution function 
as the generalized normal solution method discussion in I, provided one 
applies the formal summation leading from (3.8) to (3.9). 

Similarly, Eq. (3.5) for the force on the sphere can be rewritten formally 
a s  

F ( z )  = - (mv{'q + AB + ABAB + - - } S  ~ (3.10a) 

= - (mv{(~ - AB)- 1}S~ (3.10b) 

Again, (3.10b) has been obtained by a formal summation of the geometric 
series contained in (3.10a), and it coincides with the result we obtained in I. 

Let us consider the summation in more detail. From the explicit form of 
AB given in I, it follows that this matrix has eigenvalues of order ~ -  1, hence 
much larger than unity. This means that we have summed the geometric series 
far outside its area of convergence. Clearly, what we have done is to sum the 
series inside its radius of  convergence and then to analytically continue the 
sum into the region where J f  is small. It is apparent that this procedure is 
justified since it yields exactly the same result as we obtained before using a 
noniterative method. 

The resummation of the divergent series (1.5) in order to obtain a result 
that is meaningful in the hydrodynamic regime is an example of a common 
method to treat collective effects in the kinetic theory of gases. Here, the 
influence of the sphere on the behavior of the system at small Knudsen 
numbers is so strong that one must take into account collectively all dynamic 
processes where there are one, two, three . . . .  collisions between particles and 
the sphere such that the particle motions between these collisions are 
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described by hydrodynamic propagators. That is, between collisions with the 
sphere the particles make long excursions into the fluid, where they collide 
many times with other gas particles before returning to the sphere. The mean 
free path damping that is incorporated in Go a given in Section 2 is another 
example of a collective effect which needs to be taken into account in the flow 
of a rarefied gas around a large heavy sphere. In this case the divergent series 
that needs to be resummed is given by the right-hand side of Eq. (1.7) when the 
expression for G B given by Eq. (2.1) is used. The required resummation takes 
into account the collisions that a molecule suffers with other molecules 
between its collisions with the sphere. 

4. T H E  D R A G  O N  A C Y L I N D E R  

As a further application of our methods we consider the motion of an 
infinitely long circular cylinder in a dilute gas in a direction perpendicular to 
its axis, or, equivalently, the steady motion of a disk in a dilute two- 
dimensional gas. 6 This system again is described by a nonlinear extended 
Boltzmann equation of  the same form as (I.2.1): 

(~?/~3t)f(r, v, t) = ( - v . V ) f ( r ,  v, t) + [a(t).~?/OV]f(r, v, t) 

+ J ( f , f )  + Tf(r ,  v, t) (4.1) 

and in the coordinate frame where the cylinder is at rest at all times. Again, 
a(t) = dV(t)/dt is the linear acceleration of the cylinder at time t. The collision 
operator T now describes the effect of collisions between gas particles and the 
cylinder. We assume again that it is given as a linear combination of  a specular 
and a diffuse reflection operator 

T~ = c~Tdi + (1 -- c0T=p (4.2) 
with 

"=pf ( r , v , t )=Rf~_oodx~d~ ,v '~[6 ( r -R~-xx )  

x [| v - 2(v./r)& t) - O ( - v . b ' ) f + ( r ,  v, t)] (4.3a) 

L i  Taif(r, v, t) = R dx db 6(r - Rgr - xi)lv. Ol 

• [(2rC/~wm) 1/20(*.~)%(v) fay' O(- v'. O),v'.~l 

x f+ ( r ,  v', t) - O ( - v ' . b ) f + ( r ,  v, t)~ (4.3b) 

6 We do not take into account here the various problems that appear in the kinetic description of 
dense two-dimensional fluids. 
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These equations are analogous to (I.2.10). Now, however, the # integration 
runs over a unit circle perpendicular to the cylinder axis. The latter is assumed 
to run through the origin in the x direction. Here R is the radius of the cylinder, 
and (kB//w)-1 is the wall temperature. 

For the case of slow flow of the gas around the cylinder, one might be 
tempted to compute the force on the cylinder by following the method 
outlined in the previous section for calculating the force on a sphere. There we 
obtained the result that the frequency-dependent force on the sphere is related 
to the velocity of the sphere (in the laboratory frame) by 

F(z) = ~(z)V(z) (4.4) 

Here ~(z) is the friction coefficient, which can be expressed as 

~(z) = <m[v.CC(z)]{T + TGBT +-'.}/~m[v.9(z)]> (4.5) 

where ~?(z) is a unit vector in the direction of V(z). One might then expect 
that Eqs. (4.4) and (4.5) could be generalized to hold for the force on a 
cylinder simply by replacing the T and T operators for the sphere by the 
corresponding T and T operators defined for a cylinder and by computing 
the force per unit length rather than the total force on the cylinder. However, 
when one attempts to compute ~(z) from Eq. (4.5), one immediately runs into 
difficulties. To see the origin of the difficulties, consider the various terms in 
the expansion of ~(z) as 

with 

~(z) = ~o(Z) + ~l(z)  + ~2(z) + "'" (4.6a) 

~o(Z) =/~mZ<[v. V(z)]T[v.9(z)]> (4.6b) 

~l(z) = ~m2<[v '9 ( z ) ]T(z  + v.V - L)-1T[v.9(z)]> (4.6c) 

Here T = T - (v. V)We(r), where Wc(r ) is unity for all points r outside the 
cylinder and zero otherwise. Further, 

~2(z) = [3m2<[v'V(z)]T(z + v.V - L) -1~ 

• (z + v.V - L)-IT[v-V(z)]> (4.6d) 

and so on. The first term Go(Z) is simply the friction coefficient in the free 
molecular flow approximation. For the flow around a cylinder Co(z) is 
proportional to the length of the cylinder, but is otherwise well defined. As in 
the expansion (1.7) for the flow around a sphere, the next term ~l(z) is the 
contribution to the friction coefficient from correlated dynamical processes 
where there are two collisions between the gas molecules and the cylinder and 
an arbitrary number of intermediate collisions between the gas molecules. 
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This term is not well behaved for small z in that it is proportional to In z-  ~ for 
small z. ~4) To see this, write ~l(z) as 

~l(Z) = Bm2n f dk (2~)-3 f dv [v.9(z)]'k(V) 

• (z + ik.v - L)-1T_k(V)[V. 9(z)]q~(v) (4.7) 

Here Tk and T_ k are given by 

Tk(v ) = ( d r  T(r, v) exp ( -  tlt. r) = 2re 6(k~)I'(ky, kz, v) (4. 8a) 
J 

and 

g 
T_k(v ) = J d r  T(r, v) exp(ik.r) = 2n 6(kx) F ( - k r ,  - k z ,  v) (4.8b) 

where we used Eq. (4.3) to show that these operators are proportional to 6(kx) 
and to define the operators F and F. When inserted into Eq. (4.7), one of the 
(2re) 6(kx) terms reduces the k integration to a two-dimensional integral and 
the other (2~) 6(k~) is replaced by L, the total length of the cylinder. Then 
~(z)/L, the friction coefficient per unit length, becomes 

- Bm2n f 2 f dq [v" gfz)3 (q' 

• (z + iq.v - L ) - I F ( - q ,  v)[v-fC(z)]q~(v) (4.9) 

where q is a two-dimensional wave vector. Now one can analyze the expression 
for ~ (z)/L in terms of the eigenfunction and eigenvalues of the operator iq. v 
- L .  These eigenfunctions and eigenvalues have been discussed in I and 
elsewhere. ~'~2'~3) The main result of interest to us here is that there are two 
eigenfunctions, the so-called hydrodynamic shear modes, with eigenvalues 
proportional to q2 which contribute to ~(z) /L  given by Eq. (4.9) and lead to 
contributions of the form 

(l(z) ~ z 1 vqo 2 
- .]0 dq ( 2 ~ ) -  - -  ~ in (4 .10)  L <qo z + vq 2 z 

for small z, where v is the kinematic viscosity of the gas, and qo ~ is on the order 
of a mean free path length. A similar analysis shows that ~,(z)/L ~ (In Vqo2/Z)" 
for small z, where ~,(z) is given by the appropriate term in Eq. (4.6). These In z 
divergences are, in fact, very similar to the In z divergences that appear in the 
time correlation function expressions for the transport coefficients in the 
linearized Navier-Stokes equations for two-dimensional systems. (a2) 

The fact that only fro(Z) in Eq. (4.6) is well behaved for small z suggests 
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that the expression given in (4.6) is not suitable for describing the situation 
near steady flow of the gas around a cylinder. Although one might consider 
other possibilities, it seems clear that the origin of these difficulties lies in the 
assumption that the force on the cylinder is linearly proportional to the 

) 

velocity of  the cylinder V(z). Consequently, it appears that one must take into 
account somehow the fact that far from the cylinder the gas is moving with 
velocity - V(z) with respect to the cylinder. This can be done by linearizing the 
distribution function f about the equilibrium distribution in the laboratory 
frame t~7) instead of in the rest frame of the cylinder, as we did in Eq. (1.2) for 
the case of  the flow around a sphere. 7 Such a procedure has been carried out 
for the case of rarefied gas flow around a cylinder and it leads to a well- 
behaved expansion for the force F on the cylinder, which, in the case of slow, 
steady flow reads, ~4) 

F/Fo = 1 + K - l [ a l n  m + ,O(M~ + K-Z[b(ln M) 2 + "-'] +- '-  (4.11) 

Here F 0 is the free-molecular-flow force, and M is the Mach number VIe. The 
coefficient a is known for a few cases, but very few of the other terms in the 
expansion have been computed yet. The central point of interest, though, is 
that the force on the cylinder is not linearly proportional to the velocity of the 
cylinder in the laboratory frame. 

In the case that the Knudsen number is very small, we expect to obtain the 
results of continuum hydrodynamics from the extended Boltzmann equation 
(4.1). Now it is well known from hydrodynamics ~3) that the force on the 
cylinder cannot be expressed by F(z) -- ((z)V(z) where ~(z) is well behaved for 
small z, so the difficulties discussed above must persist in the hydrodynamic 
limit, too. To study the solution of Eq. (4.1) in the hydrodynamic limit, we try 
to construct a solution that reduces to the Chapman-Enskog normal solution 
far from the cylinder. To see where the difficulties come from in the 
hydrodynamic limit, we note that if (4.1) is linearized about the Maxwell- 
Boltzmann distribution in the rest frame of the cylinder, there can be no 
stationary solution of the linearized extended Boltzmann equation that 
reduces to the Chapman-Enskog equation far from the cylinder. This is 
because the Chapman-Enskog method then leads to a set of linearized 
hydrodynamic equations that have no stationary solution irrespective of the 
type of boundary condition imposed on the fluid fields at the surface of the 
cylinder, s In hydrodynamics texts it is argued that one cannot neglect the 
nonlinear convective terms in the Navier-Stokes equations in describing the 
region far from the cylinder. ~3) Oseen managed to recover solvable stationary 

7A similar linearization is responsible for the difficulties in two-dimensional hydrodynamics 
alluded to earlier, and it can be modified to give well-behaved hydrodynamic equations. T M  s) 

s We have in mind only the usual slip boundary conditions with arbitrary slip coefficient. 
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Navier-Stokes equations by adding simple approximations to the convective 
terms, which are asymptotically correct far away from the cylinder/16) As we 
argued above, to construct a well-behaved solution of the extended 
Boltzmann equation we must linearize about  the equilibrium distribution in 
the laboratory frame, and not in the rest frame of the cylinder. This was first 
noticed by Scharf/~7) Consequently we put 

f ( r ,  v, t) = n(~m/2~) 3/2 exp(-flmC2/2) [W(r) + qJ(r, v, t)] (4.12) 

with C = v + V, as in 0.4.1), but we do not linearize the Maxwellian in V. As 
we are interested in slow, nearly stationary flow, we will restrict ourselves here 
to the stationary case to simplify the analysis. The (stationary!) linearized 
extended Boltzmann equation satisfied by �9 now reads 

(v. V - L - T')q~(r, v) = - T'flm(v. V) (4.13) 

where L is defined by 

Lh=n fdva fb d b &o lv - v~ l ( f lm /2 ~ )  3/2 

x [exp( - f lmlv l  + VIZ/2)][h(vl ') + h(v') - h(vl) - h(v)] (4.14) 

T'  is related to T by (I.4.5), and it has been assumed that fl = flw. As in Section 
4 of  I, ~P can be separated into a hydrodynamic and an orthogonal part. The 
hydrodynamic part  now is of  the general form 

P~t' = 6n(r, t)/n +//m[C.u(r, t)] + (�89 z - ~) 6T(r, t)/T 

+ A(cZ)C.VT(r, t)/T + B(C2)(CC - �89 + O(V 2) (4.15) 

where u(r, t) is the fluid velocity in the laboratory frame. 9 This is similar to 
(I.4.7) but with V replaced by C. As before, the normal solutions of  the 
homogeneous linearized Boltzmann equation are characterized completely by 
the hydrodynamic flow fields, as one sees from (4.15), but now the latter satisfy 
the Oseen hydrodynamic equations, 

- ( V . V )  6n + n(V.u) = 0 (4.16a) 

- ( V - V ) u  + fl-~[Vgn + (n/T) VgT] - q[VZu + �89 = 0 (4.16b) 

- ( V - V )  6T/T+ 2(V.u) - ~(Dr/T) V26T = 0 (4.16c) 

Again PqJ can be obtained, either iteratively from (3.2), but now GB 
= (v. V -- L ) -  ~, with L defined by (4.11), or from (I.4.3) (without O/~?t) by the 
methods of  I, Section 6 or I, Section 7. As we have seen, both methods are 
completely equivalent and require the same computat ional  efforts. 

9 That is, u is the average of v + V in the rest frame of the cylinder. 
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For simplicity we will follow the method of I, Section 6 here, although the 
method of I, Section 7, where the continuum limit was considered, could be 
applied equally well. 

There are six basic hydrodynamic solutions qJ~ ..... q% of the homo- 
geneous linearized Boltzmann equation that can be generated in response to 
an initial momentum source of the form tS(~.~) 3(p - R), where ~ is the 
direction of  the velocity, ~ = (r - xl) / lr  - xll  is a unit vector orthogonal to 
the cylinder axis, and p = (y2 + z2)1/2 is the distance to the cylinder axis. 
These solutions now are of  the form (4.15) and ~ ..... q~4 are determined by 
the following hydrodynamic flow fields: 

ud I : u = W(p )Uo i .  { [ -  C - ln(Vr/4v)]~ + ~ }  

+ [1 - W ( p ) ] u o i [ - C  - l n ( V R / 4 v )  + 1] 

6n/n = 2 W(p )~mvu o (1 /p ) (~ .  ~) 

6T/T= O 

ttJ2: U = W ( p ) u o ( R 2 / p 2 ) z . ( ' ~  - -  2jbb) - [-1 - W(p)]Uo~ (4.17) 

6n/n = 3 T I T  = 0 

t{~3: U = 0  

6n/n = - 6 T I T  = - W ( p ) ( R / p ) ( ~ .  ~9) 

q",: u = [1 - W(p)]uo'~ 

6n/n = 3 T / T  = 0 

Here C is Euler's constant and all the fluid fields have been determined up to 
corrections of  order Re = R V / v .  As in Section (I.6), u? 1 and ~Pz have been 
given a nonvanishing part  inside the cylinder to avoid the occurrence of 
density sources. The precise forms of q~s and ~ 6 are irrelevant. As in I, they 
have a sou?ce that is of  order l /R  compared to the sources o f ~ l  ..... ~4 ,  and as 
in I, qJ5 and q~6 contains a part  inside the cylinder that cannot be canceled by 
linear combinations of ~ ..... ~4.  Since the complete solution ~P of Eq. (4.13) 
has to vanish inside the cylinder, one can argue again that u? 5 and ~6 may be 
neglected systematically without affecting the final results. No replacement of  
qJ by q~ is needed. (In the stationary case a Laplace transform merely 
introduces an overall factor 1/z.) and the Laplace variable z has to be set equal 
to zero everywhere. The distribution functions ~ i  are determined by (4.15) 
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and (4.17). The matrices B* and A* assume the following forms: 

-n21[-ln(VR/4v - C + 1]uo nZluo l'l,~2 ) ]  

] -nZ3[-ln(VR/4v) - C]u o -n23u 0 -(n23/a)Dv 
A* 

(4.18) 

['o ~ ~ B* = R/4tlUo 0 (4.1 9) 
[ : 0 R/2T ~RkB/Z 

0 0 - 1/nuoJ 

where 2t, )~2,..., 25 are given again by Eq. (I.6.14), and 2 is the coefficient of 
thermal conductivity. 

The separation of S o which was given by (I.6.23) goes according to 
(I.6.26)-(I.6.27) as before, with the initial sources given by 0.6.28) in the limit 
p ~ ~.~o The source of ptp is finally obtained with the aid of (I.6.34) as 

s *  = s~* + s ~  

1 + n23R/4q\ 

n)~3R/4~ I 

S~*= 00 / 

4qV 

(4.20a) 

R{(1 + n23R/2rl)[1 - C - ln(R V/4~/)] - n23R/4rl} 

The drag force per unit length is obtained from this as 

(4.20b) 

(4.20c) 

F 
- -  ~ R ( C  1 + C2)z 

L 

- -  - 4 ~ , ~ v  * / L \ 2 l ~  + 1 1 - c - in W - (4.21) 

~o This is not the distance to the cylinder axis, but it is the quantity defined in I as p = (v/z) ~/2. 



458 Henk van Beijeren and J. R. Dorfman 

where C1 and C 2 are defined by (I.6.36), and (I.6.15), (I.6.38), and the analog 
of (I.6.43) have been used. In the case of stick boundary conditions (~ of order 
unity) this reduces to the well-known result of Lamb/I6) Notice that as the 
Reynolds number approaches zero, the difference between stick and slip goes 
to zero, as the logarithmic term in the denominator becomes dominant. 

It is interesting to compare the force on the cylinder in the hydrodynamic 
limit, given by Eq. (4.21), with that in the rarefied gas, given by Eq. (4.11). 
Roughly speaking, we may say that in the rarefied regime the force per unit 
length is proportional to V ln(V/c), while in the hydrodynamic regime the 
force is proportional to V[ln(V/c)]-1. The relation between these two cases 
can be understood if we consider what would happen if we derived Eq. (4.21) 
by an iterative solution of (4.13) similar to that described in Section 1 for the 
force on the sphere. As is already suggested in (4.11), the iterated solution 
leads to an expansion of F/L in powers of (R/l) In M. The summation of this 
power series, together with the retention of all terms that are dominant for 
small ~ ,  then leads to (4.21). For extremely small Mach number this 
resummation has to be done even in the rarefied gas case. 

5. C O N C L U S I O N  

The drag force on a sphere or a cylinder may be computed by iterative 
solution of the extended Boltzmann equation. In the rarefied gas limit this 
method is closely connected to the standard solution methods with the aid of 
characteristics, ~ls)'but a n  advantage of the present method is that the 
dynamical origin of each contribution is very easy to determine. In the 
hydrodynamic regime the same iterative method can be used, but because of 
the dominance of the hydrodynamic part of the Boltzmann propagator in this 
regime, an entirely different regrouping of terms is needed to calculate the 
drag. This calculation is, however, completely equivalent to the calculation by 
the extended normal solution method discussed in I. So one sees that basically 
the same dynamical processes are responsible for the drag force in both the 
Knudsen and the hydrodynamic regimes. However, in the Knudsen regime 
the dominant contribution comes from the free-molecular-flow term, and 
processes containing correlated collisions between gas particles and the 
macroscopic object are rare and produce only small corrections. In the 
hydrodynamic regime the dominant contribution to the drag force arises from 
the interplay of the hydrodynamic propagations of the particles far into the 
fluid and their collisions with the sphere. 

Loosely speaking, one could say that the drag force exerted on a sphere is 
of the form F ,,~ aR2/[1 + a(R/lv)], where a is a constant of order unity for all 
Knudsen numbers. For R << l~ this result reduces to the free-molecular-flow 
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term and corrections may be obtained by expanding in powers of R/Iv. In the 
hydrodynamic regime Stokes' law is recovered, but one cannot simply obtain 
corrections by expanding in powers of lv/R, since a is a complicated function 
of the Knudsen number depending on the detailed structure of the kinetic 
boundary layer. For  the same reason it is very hard to make precise 
predictions about the behavior of the drag force for intermediate Knudsen 
numbers. Cercignani and co-workers (19) did a calculation for general 
Knudsen numbers on the basis of  a variational method, modeling the 
linearized Boltzmann equation by the BGK equation. The agreement of  these 
results with experiments is remarkably good. Otherwise, no results for 
intermediate Knudsen numbers are known. 

Mehaffey and Cukier ~2~ calculated the friction coefficient--or 
equivalently, the diffusion coefficient--for a sphere moving through a 
dense, hard-sphere gas by an iterative method similar to the one discussed in 
this paper. Although they essentially used the methods of I, Section 7, they did 
not take the O(l/R) corrections to the hydrodynamic eigenfunctions into 
account, and they did no~ realize that the geometric series of operators 
appearing in (3.2) and (3.5) has to be represented as a series of matrices. As a 
result, they found a value of 5zu/R V for the drag on a sphere with a Slip 
boundary condition, instead of the correct value 4zcqRV. Furthermore, they 
completely neglected the effects of  the kinetic boundary layer. Bedeaux and 
Mazur ~2~) were able to obtain the correct result for the force on a sphere by 
applying an iterative method at the level of  fluctuating hydrodynamics. 

In the case of  the cylinder, the most remarkable thing is that the response 
(the velocity of the cylinder) to a constant outside force is nonlinear, which 
follows from (4.21). This is intimately connected with the nonexistence of  
stationary linearized hydrodynamics in two dimensions. Even in the Knudsen 
regime this remains true, and for sufficiently small Reynolds numbers the 
"self-interaction" of the cylinder through hydrodynamic propagation domi- 
nates the drag. Moreover, as mentioned earlier, there is a close connec- 
tion between the In z divergences that appear in the friction coefficient 
per unit length for the cylinder and the In z divergence that appears in 
the time correlation function expression for two-dimensional transport 
coefficients.(4,a 2-15) It also appears that these divergences must be removed in 
the same way, i.e., one must take into ,account some essential nonlinear 
features.(14,~ 5) 

Finally we want to touch on the connections with Brownian motion. It is 
clear that, according to Onsager's regression hypothesis, (22) the decay to 
equilibrium of  fluctuations in the velocity of a Brownian particle are described 
on the average by the same hydrodynamic equations that determine the drag 
force. More explicitly, by the fluctuation-dissipation theorem the f r ic t ion  
coefficient for Brownian motion can be expressed as a time integral of a force- 
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force correlat ion function,  t t In paper IV we will show that  in the case of 
Brownian  mot ion  in a dilute gas, this expression for the friction coefficient 
reduces to the one we obta ined  in this paper  for the mot ion  of a macroscopic 

sphere. In  addit ion,  we will discuss the connect ion  with the theory of diffusion 
of a microscopic particle, and  to some extent the effects of a finite ratio of the 

mass of the particles to that  of  the Brownian  particle. 
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