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Kinetic Theory of Hydrodynamic Flows, III. 
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The extended Boltzmann equation introduced in previous papers is used to 
compute the torque exerted on a macroscopic sphere or cylinder placed in a 
dilute gas, when the mean free path of the gas molecules is small compared to 
the characteristic dimension of the sphere or cylinder. The usual hydrodynamic 
results are recovered in this kinetic theory calculation. 
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1. INTRODUCTION 

In two earlier papers, (1'2) referred to here as I and II, respectively, we 
showed how to calculate the drag force on a macroscopic sphere or cylinder 
moving through a dilute gas by using an extended Boltzmann equation. 
This equation differs from the usual Boltzmann equation in that it treats 
the effect of collisions between.gas molecules and the macroscopic object as 
a term in the Boltzmann equation itself rather than by means of a 
boundary condition to be satisfied by the distribution function at the 
surface of the object. This equation, although equivalent to the Boltzmann 
equation plus boundary conditions, (3) enabled us to describe the gas flow 
in both the rarefied and hydrodynamic regions and to compute the drag 
force directly in terms of the collisions between the gas molecules and the 
object. 
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Two equivalent methods were used to compute the drag force for the 
hydrodynamic regime, where the size of the object is much larger than the 
mean free path of the gas molecules. The first method, used in I, could be 
viewed as an extension of the Chapman-Enskog normal solution of the 
Boltzmann equation that also takes into account the kinetic boundary layer 
that forms around the object, whereas the second method, used in II, was 
an iterated solution of the extended Boltzmann equation that explicitly 
displayed the dynamical events responsible for the drag force. 

In this paper we use these methods to compute the rotational drag, or 
torque, on a large sphere or cylinder that is rotating about a body axis of 
symmetry in a dilute gas. We consider only the torque on the object in the 
hydrodynamic regime since that is a more stringent test of our method of 
solution of the extended Boltzmann equation than the torque in the rarefied 
regime, although the methods of II could easily be extended to treat that 
case also. We will compare our results with expressions for the torque on a 
sphere or cylinder that have been derived from the solutions of the 
linearized Navier-Stokes equations of continuum hydrodynamics. (4'5~ We 
will see that our results agree with those of hydrodynamics if the transport 
coefficients in the hydrodynamic equations are replaced by their low- 
density values. 

In addition to illustrating the microscopic processes responsible for the 
properties of hydrodynamic flows, the results derived here can be related to 
recent work on nonequilibrium properties of dense fluids. There has been a 
considerable amount of work during the past several years on the applica- 
tion of hydrodynamic methods to compute the time correlation functions 
that determine transport coefficients for a fluid or the friction coefficients 
for a Brownian particle moving in the fluid. Much of this work has been 
summarized in recent reviews. (6-83 Of particular interest to us here is the 
work by Hauge and Martin L6f, (9) by Hynes, Kapral, and Weinberg, (1~ 
and by Lebenhaft and Kapral (11) on the rotational friction coefficient for a 
Brownian particle in a fluid. All of these authors consider that the fluid 
surrounding the Brownian particle satisfies the linearized Navier-Stokes 
equations, and that the fluid is coupled to the Brownian particle either 
through boundary conditions satisfied by the fluid variables at the surface 
of the particle (9'1~ or through source terms appearing in the hydrodynamic 
equations that treat the Brownian particle as a source of momentum, 
angular momentum, and energy for the fluid. (11) Translational and rota- 
tional frictional coefficients as well as velocity and angular velocity correla- 
tion functions for the Brownian particle are then calculated by solving the 
hydrodynamic equations and performing averages over fluctuations as in 
Ref. 9 or over appropriate ensembles, as in Refs. 10 and 11. In any case 
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these authors derive expressions for the rotational friction coefficient which 
agree with the results obtained here for the rotational friction on a large 
macroscopic sphere. The work of Lebenhaft and Kapral, (~l) in particular, is 
closest in spirit to that described here, and is designed to shed some light on 
the molecular processes that underlie the phenomena of Brownian motion. 

The plan of this paper is as follows: In Section 2 we consider the 
extended Boltzmann equation for a dilute gas in which there is a large 
macroscopic sphere. We suppose that the gas-object collisions can be 
described by a Maxwell collision operator which is a linear combination of 
an operator that describes specular collisions and one that describes diffu- 
sive collisions. The combination is specified by an accommodation coeffi- 
cient c~. We then suppose the macroscopic sphere undergoes a rotation 
about a fixed diameter and compute the torque on the sphere as a function 
of the coefficient e~ by applying the generalized Chapman-Enskog solution 
developed in Paper I to the case of interest here. In Section 3 we consider 
the object to be a large cylinger rotating about its long axis of symmetry 
and use similar methods to compute the torque that the gas exerts on it. We 
conclude with a brief discussion of some further applications of this work. 

2. THE ROTATING SPHERE 

As in the previous papers our starting point is the extended Boltzmann 
equation, which is given by (~) 

~F (r,v,t)  + v.  V r F =  J(F,F) + TF (2.1) 
at 

where F(r, v, t) is the single-particle distribution function for the gas parti- 
cles, J(F, F) is the nonlinear Boltzmann collision operator, and T denotes 
the collision operator that describes the collisions of the gas particles with 
the macroscopic object placed in the gas. For the case of interest here we 
consider the object to be a sphere of radius R that is rotating about the 
axis with angular velocity o~(t)= ~(t)i, that can vary with time. We will 
assume also that T is a linear combination of a specular collision operator 
and a diffusive collision operator of the form 

T = T~ = (1 - a)Tsp + aTdi (2.2) 

where a is the accommodation coefficient. The operator Tsp has a form 
identical to that given in Paper I, and is unaffected by the rotation of the 
sphere, while Tdi is identical to the form given in I only when considered in 
a coordinate frame that is attached to the rotating sphere. 

As in the previous papers it is convenient to rewrite the extended 
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Boltzmann equation in a coordinate frame attached to the sphere. In this 
frame the gas particles appear to be rotating about the z axis with angular 
velocity -~0(t)~, and the coordinate transformation to the body fixed 
system introduces fictitous forces that act on the particles to maintain this 
rotation. The transformation from the laboratory system to the body fixed 
system is defined by the relation that (12) 

u = Vbody "[- 60(t) X r (2.3) 

where Vlab and Vboay are the velocity of a particle in the inertial laboratory 
frame and in the body fixed frame, respectively. Now we suppose, in 
addition, that the system is close to a state of total equilibrium in the 
laboratory frame and that r is small, so that we may linearize all quantities 
in r Thus, in the body frame we suppose that F(r, v, t) has the form 

F(r, v, t) = n~0(r, v, o~) [ W(r) + ~t'(r, v, t) ] (2.4) 

where n is the number density, W(r) is a function that vanishes for r < R 
and is unity otherwise, and q~0(r, v, o~) is the Maxwell Boltzmann velocity 
distribution function in the lab frame, which in the body frame has the 
form 

~3/2 
~0(r,v,~) = ( ~ t i m )  e x p { - - ~ I v + ~ 0 ( t ) •  2} 

~q~0(v){ 1 - flmv. [~(t)  • r]} (2.5) 

with ~0(v)= (flm/2~z)3/2exp- (flm/2)v 2, and in the second line of Eq. 
(2.5), we have linearized the distribution function in r 4 If we transform Eq. 
(2.1) to the body fixed system, and use Eq. (2.4) and (2.5) for the 
distribution function in this system, we obtain the linearized Boltzmann 
equation 

0'I' (r,v,t) + v- Vr~(r ,v , t  ) - L ~  - T ' q  -- -T ' f lm[v- ( r  X r)] (2.6) 
0t 

where T ' =  (nq~0)-lT(n~o), and T'--(n~0)-lT(n~0).  As in Paper I, we 
ignore the distinction between T and T' and between T and T' and thus 
drop the prime notation. To do this we must assume that the sphere and the 
gas are maintained at the same temperature. The operator L in Eq. (2.6) is 
the linearized collision operator defined in Paper I. Finally, as we are going 
to be interested in the quasi-steady-state behavior of the fluid in the vicinity 
of the sphere and will eventually calculate the torque on the sphere, we take 

4 Strictly speaking this linearization is only valid for distances r from the origin such that 
(~or) 2 << (mfl)-  ~. This restriction will not be a serious constraint for the results to be derived 

here. 
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the Laplace transform of Eq. (2.6), and neglect the initial condition term, 
which describes initial transient effects. This leads to the equation 

(e + v" V -  L - T)~(r ,  v, e) = -W]3mv- Ion(c) • r] (2.7) 
^ 

where q'(e) is the Laplace transform of q'(t), and ~0(e) is the transform of 
,~(t). A 

As was explained in I and II, it is convenient to separate ~ ,  with the 
aid of a projection operator, into a hydrodynamical part and a nonhydro- 
dynamical part. The latter is confined to a kinetic boundary layer with an 
extension of a few mean paths around the surface of the sphere. The 
following equation can be obtained for the hydrodynamic part of the 
distribution function: 

(e + v.  V - L - P~)P,I ' ( r ,  v, e) = - PTBmv. [~0(e) X r] (2.8) 

The T and T are "renormalized collision operators," which take into 
account the effects of the nonhydrodynamic distribution function inside the 
kinetic boundary layer. Their definitions were given in I and II. 

The initial source -PTf lmv .  [~ (e )x  r] is of the general functional 
form 

vd(vr,vo,v~,,r,O ) (2.9) 
A A 

with % = v . ~ ;  v o=v.O; ~ = ( ~ •  O = - f X ( ~ x t ) / s i n 0  and 
cos 0 -- ~. ~. This is so because of the symmetry properties of T and the fact 
that v.  [o~(e)• r] is of this functional form. Since the same symmetry 
properties hold for the operator (e + v - V - L -  P T P )  occurring on the 
left-hand side of Eq. (2.8), it follows that the solution pqs has to be of the 
same general functional form, as was discussed in I. 

There exist only two hydrodynamic distribution functions of the 
functional form given above, one defined outside and one defined inside 
the sphere. They are of the general form 

3hi ( 1 flmv2 3 ~ 8T~, 
q)i(r, v, r = -~- (r, c) + fimv. ui(r, r + ~ - ~ ) - ~  (r, c) 

q ' - A ( I ~ 2 ) u  - ~ ( r , E ) " t  - B ( t ~ 2 ) ( u 1 6 5 1 6 3  �9 �9 

(2.1o) 

with the fluid fields ui, ni, and T,. given by the solutions of the Laplace 
transformed linear hydrodynamic equations with a momentum source term 
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proportional to (i  • f)8(r  - R). They are 

* R 2 1 + rip 
dP 1 :u, = Uo(~ • f ) 0 ( r -  R)-Te(R-r ) /~  

t + R/O 

~tl  1 8 T  1 
n T 0 (2.11a) 

, R 2 ( 1 - r / o ) - ( l + r / p ) e  2r/o 
(I)2: u 2 = Uo(~ X e)O( R - r) ~ -  e (r- g)/p (T~_~-R~- ~ (1 -t- R/p)e - 2R/~ 

8n2 8T2 
n r 0 (2.11b) 

Here u 0 is an arbitrary constant and P = (~/~/e)1/2, with v the kinematic 
viscosity; v = ~?/mn. The function O(x) is the unit step function which A 
equals unity for x /> 1 and is zero for x < 0. The solution P'I ' ,  of (2.8) must 
be of the general form P '~  = Xt$1 + X2~p 2, since this is the most general 
hydrodynamic distribution function of the form (2.9). 

In order to compute the torque on the sphere, we first follow the 
method of 1.5 and 1.6 to obtain P ~  to leading order in the Knudsen 
number, p4[  may be considered to be generated by a source at the 
boundary of the sphere. This may be made explicit by a rearrangement of 
(2.8) as 

= + v .  V-L)e]-'S ( 2 . 1 2 )  

with 

S = P@P~" - PTflm (v .  [~0(c) X r]}  (2.13) 

The inverse operator in (2.12) is defined within the space of hydrodynamic 
distribution functions. Since Pq~ in our case is a linear combination of just 
two independent distribution functions, the source S can be decomposed 
likewise as a linear combination of just two independent sources, which, as 
discussed in I, are of the general form (v. f)8(r  - R){~14) t - ~2~)2), where 
41, 42 are some constants. 

As in 1 the  decomposition of the sources is facilitated by passing to a 
different basis 'Is l, "I" 2 for the hydrodynamic distribution functions, defined 
a s  

X~l = (~1 (2.14a) 

4/2 = ~2 + C4)l (2.14b) 
with 

C =  
[3 + 3R/p + (R/p)2][1 - R i P -  (1 + R/p)e-2R/P 1 

(2.15) 



Kinetic Theory of Hydrodynamic Flows 145 

A 

The function "I' 2 has been constructed such that, to zeroth and first order in 
( l /R ) ,  the radial components of the currents of particles, momentum and 
energy following from 9 2 are continuous at the surface of the sphere. It 
follows directly from (2.10) and (2.11) that the radial currents of mass, 
energy, and momentum in the f and 0 directions all vanish for qq and 't' 2. 

A 

Hence, the only nontrivial condition satisfied by 't' 2 is 
^ A A .  

( m ( v - e ) ( v .  ~)(~,~t _ q,~nt)) = 0 (2.16) 

Here , ~ t  and ~nt  are the limits of ~2 as the surface of the sphere is 
approached from the outside and the inside, respectively, and the brackets 
denote an average weighted with the equilibrium distribution function. 

The distribution function Pq~ is then of the general form P'~' 
A 

= ~ t '  I + ~2~2 and will be represented as a two-component vector (xx~). The 
basic sources $t and $2 can now be put in the form (v. O)8(r - R)[/~lq'l + 
tx2(~xt _ ~nt)] and they are chosen such that 

A 

(m(v .  ~)$1) = 8(r - R)sin0 (2.17a) 

[P (e  + v" V - L ) P ] - I S 1  = 4~1Blt (2.17b) 

s2 = ( v .   )8(r - R ){ - (2.18) 

Equation (2.18) states that S 2 is the exact source of 'P2, Eq. (2.17b) states 
that Sl generates exclusively the hydrodynamic distribution function +1, 
with a strength Bi1, and (2.17a) determines the value of this constant. 
Multiplying (2.17b) by m(v.  ~b)P(e + v. V - L ) P ,  inserting the result from 
(2.14a), (2.10), and (2.11a) for q'~ and performing the average implied in 
(2.17a), one obtains 

R( I  + R/O ) 
B1' = Uo~/[3 + 3 R / o  + ( R / p )  2] (2.19) 

Putting B22 = 1 and B12 = B21 = 0, o n e m a y  interpret B~j as a 2 X 2 matrix, 
such that B O. describes the amount of q'i generated by Sj. 

To evaluate the source S, as given by (2.13), it is necessary to know the 

action of the operator P T P  on a distribution function of the form Xl~t'I + 

X2~ 2. Since P T P ~  is a hydrodynamic source of the general form/~lS1 + 
Iz2S 2 one may represent the action of this operator on the 'I'~ by a 2 • 2 

- -  A 

matrix A, such that A 9 is the amount of S i generated by P T P  acting on ~t'j. 
From (2.16), (2.17a), and (2.18) it follows that the matrix elements A 9 can 
be determined from the equation 

AvsinOi$(r - R )  = (m(v  . ~ ) p T p 4 l j )  (2.20) 

By the arguments of I, Appendix C, the elements A,j are found to be of the 
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f o r m  

A 11 = - ~'Uo, A 12 = - C'~uo (2.21) 

to leading order in l / R ,  with y some undertermined constant. 5 The matrix 
elements A2j cannot be determined, but it will turn out that those are not 
really needed. 

What is finally needed for a solution of (2.12) is a determination of the 
initial source S o =  - P ' F f l m { v .  [o~(e)• r]). As in I it is necessary to split 
up S o according to 

S ~ 2 1 5  + ( v . ~ ) 6 ( r - R ) { v - [ ~ o ( e ) •  (2.22) 

The reason for this separation is that the action of P T  can be expressed in 

terms of the unknown constant 7 appearing in (2.21). Neither T nor T is 
known completely, but their difference is, as is made explicit in (2.22). One 
obtains the component of S o along S~, like the matrix elements AO., by 
multiplying S o by m(v.  ~b) and averaging over the equilibrium distribution. 
As a result S o can be written as 

S o =  ~,~oRS l + 1~2S 2 (2.23) 

to leading order in the Knudsen number, with/L 2 some unknown constant. 
One can now rewrite (2.12) as a matrix equation 

( I -  B A ) P ~  = BS ~ (2.24) 

where the components Of S O along S~ and 8 2 are combined into a 
two-dimensional vector, denoted likewise as S o . Equation (2.24) still con- 
tains a number of undetermined elements, namely, the components A O. of 
the matrix A and the component of S o along $2. This indeterminancy is 
removed by imposing the physical condition that Pq '  has a zero component 
along ~2 since the actuM distribution function has to vanish inside the 
sphere. If we represent P ~  as P ~  = (xo9 and S O = (~,oR) the equations for ~I 

,.iL2 

resulting from (2.24) are 

( 1 - B, ,  A ,,),k, = B, ,  "t'~R (2.25a) 

A21Jkl =/~2 (2.25b) 

With (2.21) and (2.19), Eq. (2.25a) is solved as 

y~0R2(1 + R/0) 
X' = Uo{~[3 + 3 R / o + ( R / p ) 2 ] + ' / R ( I +  R / O ) )  (2.26) 

5 To derive Eq. (2.21) we used the fact that the computation of T'I" requires the limit of 'Is as 
the sphere is approached from point r, with r > R. 
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whereas (2.25b) merely produces a relation between the two unknown 
constants A2] and/~2, which has to be satisfied on physical grounds. 

The value of the unknown constant ~, can be calculated explicitly in 
the case that T = T~ = (1 - a)T~p + aTdi, with el on the order I /R.  In that 
case 6 (see 1.6.15) 

Substitution into (2.26) yields 

R~(R/t~) (1  + R / 0 )  

~I = u013 + 3R/p  + (R/p)  2 + a ( R / l , ) ( t  + R/p)]  ~0(c) (2.28) 

where we introduced l~ = (2r The source S of P ~  is then obtained 
as  

A a ( R / I . ) [ 3 + 3 R / p + ( R / P )  2] 
S = B-1P@ = ~o(e)S~ (2.29) 

3 + 3 R / o  + ( R / o )  2 + a (R/ l~ ) (1  + R / , )  

and the torque exerted on the sphere is found to be 

M = - S~fo~dO 27rR 3 sin30 

(8/3)~rR3a(R/ l, )(3 + 3R/p  + (R/o)2)vt 

= - [3 + 3 R / o  + ( R / o )  ~ + ~(R/l~)(1 + R/O)] ,0(~) (2.30) 

In the limit a--> 0 the rotation of the sphere has no influence on the 
fluid. This is in agreement with the fact that specular collisions transfer no 
tangential momentum to the sphere, and as a result a rotating sphere 
experiences no friction. On the other hand, when a becomes large com- 
pared to l /R ,  Eqs. (2.19), (2.26), and (2.30) reduce to leading order in I / R  
to the hydrodynamic results for stick-boundary conditions, as obtained by 
Landau and Lifshitz. (4's'9) For  a of O(I/R),  Eq. (2.30) agrees with the 
results given by Hynes et al. (1~ and by Lebenhaft and Kapral. (l~) 

Instead of using the method of 1.5 and 1.6 one may as well use the 
method of 1.7. There the continuum limit was taken and explicit calcula- 
tions were made for both the external and internal distributions resulting 
from sources containing either a 8 function or the derivative of a d function 
at the surface of the sphere. If we apply this method to the present case, 
then there is a source of momentum in the ~, direction of 8-function type 

6 If a is of order (l/R), then T is identical to T up to corrections of order (I/R) 2. 
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denoted by S~. In addition a momentum source S~ of the form S~ = V. 
(rA , - +q~)sinO6(r-R) occurs. As in 1.7 the superscript c denotes the 

A 

continuum limit. Either source will generate a certain amount of q'2 in 
addition to ~'1, in this formalism. This can be summarized in the form of a 

A 

(2 • 2) matrix B c, such that B~ is the amount of q'i, generated by Sf.  The 
explicit form of this matrix is found by the methods of 1.7 as 

2@o C , ( 1 - C )  0 1 
B c = ( 2 . 3 1 )  

1 C1 1 C2 
2u07/ 2u0r/ 

where 7/ is the coefficient of shear viscosity, and C 1 and C 2 are given by 

C 1 = ( p a / R ) [ 1  - p/R + e-2R/~ + p/R)](1 + R/p) (2.32a) 

C 2 = - ( p / R ) ( 1  + 3p/R + 302/R2)[(1 - R/p)- (1 + R/p)e -2R/~ 

= 2/(1 - C)  (2.32b) 
~---  A A 

and with C given by (2.15). Similarly the action of T~ on 'It 1 and T2 can be 
summarized again in the foL_m of a (2 • 2) matrix A c, such that A/~ is the 

A 

amount of Sf,  generated by T~ acting on 'I'j. An explicit calculation similar 
to 0.7), yields 

[ ! m )  1/a 1/21 A ~= -~nu ~fl -C~nu~ (2.33) 

~u o - C~lu o 
with C given by (2.15) and ~ is an unknown positive constant. The initial 
source is given by (2.22), but now its components along both S~ and S~ 
have to be found explicitly. The first term on the right-hand side of (2.22) 
gives a contribution similar to that of PT' t '  1 . Its explicit form, in the usual 
vector notation reads 

, oR  

The contribution of the second term on the right-hand side of (2.17) can be 
calculated likewise by taking the inner product with [q'"), defined in (I.4.11) 
The result, in vector notation reads - ,oR(~ Hence S o is given to leading 
order in l/R as 

S ~ = ,oR ~ (2.34) 

0 
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The resulting complete source follows again from the equivalent of Eq. 
(I.7.21), 

S C = ( I  - A c a  c ) -  Is~ (2.35) 
The distribution function generated by the rotation of the sphere is ob- 
tained as 

,~,c = BcSC (2.36) 

After some algebra, one finds the explicit results 

3 + 3R/o + (R/o) 

RI-~ 3 + 3RIo + (R//p) 2 + (aR/l~)(1 + R/O) 
S c = ~ o~(e) R(1 + R/p) (2.37a) 

+ R/o) + 3 + 3R/o + (R/o) 2 

" "I (I + R/O) 

= ~ol ~(~) (aR/l,)(1 + R/O) + 3 + 3R/o + (R/o) 2 (2.37b) 

[ 0 
Here the result (2.28) for q' is recovered. Furthermore an amount  of SS is 

A 

generated, which compensates for the amount  of 'P2, generated by S~, in 
contrast to S 1 . However, the amounts of 41 generated by S 1 and S[  are 
equal, which explains the equality of their coefficients in (2.29) and (2.37). 
The torque exerted on the sphere is not influenced by the occurrence of Ss 
since this source does not contribute to the torque. 

3. THE ROTATING CYLINDER 

The case of an infinitely long cylinder rotating about its axis, or 
equivalently the case of a disk rotating about  its center in a two- 
dimensional gas, can be treated by the same methods as the rotating sphere. 
Unlike the case of a cylinder performing translational motion, (2) no diver- 
gences arise from the linearization of the distribution function about the 
Maxwellian in the rest frame of the cylinder. Thus we do not have to use 
the trick of linearizing the distribution function about its value in the rest 
frame of the fluid (see II). 7 For simplicity we restrict ourselves to the 
method of (I.5 and 1.6) as discussed in Section 2 for the sphere. All 
calculations are completely analogous to those given for the sphere. The 

v The reason is that in the rotating-cylinder case the velocity field decays by one power of 1/r 
faster for large r than in the case of translational motion. 
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hydrodynamic distribution functions that are rotationally symmetric about 
the z axis are of the form (2.5) with the fluid fields for the outside solution 
defined as 8 

K'(r/P) O(r - R)  
'~1 : ul = Uo(Z • r) KL(R/o ) 

(3.1) 
8nL 8 T  1 
- -  - -  - -  - -  0 

n T 
Here K L is a Bessel function of the second kind. (13) In addition there is a 

^ 

distribution ~t' 2, defined such that through order l~ R, the radial currents of 
particles, momentum, and energy vanish for 't' 2 . The precise form of this 
function is not needed here. For the hydrodynamic sources, we choose 
again a source S L, satisfying the analog of (2.17a, b), and a source $2, 
satisfying the analog of (2.18). Next we define matrices B and A again, such 
that B 0 is the amount of q'i generated by Sj, and A~j is the amount of S i 
generated by P ~ P  acting upon ~'j. As was seen from (2.19), the only 
important elements of these matrices are ALL and BL1. These are readily 
calculated as 

7~q (3.2) AlL "- l~ 

BL L - R KL(R/o) 
~Uo (R/o)K2(R/p)  (3.3) 

To leading order in the Knudsen number the unknown constant y is the 
same as for the sphere, since, on the length scale of the mean free path both 
a sphere and a cylinder appear as a flat plate to lowest approximation. The 
initial source is given by (2.22) again and, as there, the second term on the 
right-hand side does not contribute to SL and the whole initial source can 
be represented by the analog of (2.23), 

S O= y~oRS 1 + I.t2S2 (3.4) 

If we require again that the distribution function vanishes inside the 
cylinder, we may obtain the distribution function and its source from 
(2.25a) and (2.29) as 

= K (R/0) (3.5) 
,o,, ,  ( R / o ) K 2 ( R / o )  + 

aR~ (R/p)K2(R/o)  S L (3.6) 
S = T o~(e) ( a R / l , ) K l ( R / p )  (R/p)K2(R/p)  + 

8 We take the cylinder axis to be in the z direction. 
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The torque per unit length exerted on the cylinder is then obtained as 

M = - 2~rR 2S~ (3.7) 

We want to make a few remarks concerning these results. First of all in 
the limit p ~  oo (or E-n0) the Bessel functions can be expanded (J3) as 

K](x)= x -~x in + e - ~  + O(x  3) 
(3.8) 

2 1 
K2(x) = x- - + O(x 2) 

where e is Euler's constant. 
If we substitute this into the result for M and examine the limiting case 

c~ >> l~/R, we find 

M=-4~r~TR 2 1 - ~ p 2 t  ~ + e  +O- -p  ~(~)z (3.9) 

For the stationary case this is in agreement with the existing litera- 
ture.(14) For the nonsteady case (3.9) can be transformed back into time 
language, yielding an expression of the form 

M ( 0  = - fo'd~ ~(~),~(t - ~)~ (3.10) 

where ~(t) is the time-dependent rotational friction kernel. From (3.9) it 
follows that ~(t) has a long time tail proportional to t -2, while the 
translational friction kernel decays as t -]  for long times. (2) This is in 
agreement with the observation that rotational friction kernels decay by 
one power l i t  faster than the corresponding translational friction ker- 
nel. (4'6'8) The same holds for the diffusion kernel 9 of a particle performing 
translational or rotational Brownian motions. (9) This follows immediately 
from the fact that the diffusion kernels are connected to the friction kernels 
by Stokes-Einstein relations of the type (9'1~ 

~ ( , )  = ~_IEs ~ + ff(s (3.11) 

Here C(e) is the Laplace transform of either the velocity autocorrelation 
function or the angular momentum autocorrelation function of the Brown- 
ian particle. Then /~ is either the mass or the moment of inertia of the 
Brownian particle and ~ is the translational or the rotational friction 
coefficient, respectively. 

9The diffusion kernel is identical to the velocity autocorrelation function in the case of 
translational diffusion and to the angular momentum autocorrelation function in the case of 
rotational diffusion. 
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4. CONCLUSION 

We have shown that the methods developed in Papers I and II can 
also be used to treat the rotation of a sphere or cylinder in a dilute gas. In 
the case of small Knudsen numbers all the results we obtained were in 
agreement with hydrodynamics. The method we followed in this paper to 
solve the extended Boltzmann equation was the generalized normal solution 
method discussed in I. In II, however, we showed that this method is 
completely equivalent to an iterative solution method. Hence the latter 
could have been used just as well. 

As mentioned in the Introduction, the work described here is closely 
related to the work of other authors on rotational Brownian motion. (9-I1) It 
is, therefore, of considerable interest to provide a kinetic-theory treatment 
of Brownian motion in order to describe both translational and rotational 
diffusion of the Brownian particle in terms of microscopic collision dynam- 
ics. Such a kinetic theory description of Brownian motion involves calcula- 
tions closely related to the iterated solution of the extended Boltzmann 
equation presented in Paper II, where the molecule-object collisions are 
taken into account explicitly. Progress in this direction has been made 
recently by a number of authors who have discussed the translational 
diffusion of a Brownian particle. In particular, Cukier et al. (16) and Keyes 
and Mercer (17) have shown that the dynamical events considered in II, the 
ring and repeated ring events involving the Brownian particle and the 
molecules of the surrounding gas, lead to an expression for the translational 
diffusion kernel given by Eq. (3.11) with the proper hydrodynamic friction 
coefficient. More recently, Mercer (18) has considered the translational 
Brownian motion of a heavy Brownian particle moving in a low-density 
gas, and has shown how the Fokker-Planck equation can be derived from 
the repeated ring kinetic equation for the Brownian particle. However, a 
complete kinetic theory for Brownian motion of a particle in a moderately 
dense gas is likely to be considerably more complicated, since dynamical 
processes not included in the extended Boltzmann will have to be taken 
into account. We intend to address some of these points in Paper IV of this 
series. 
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