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Protagoras Cutchis, H. van Beijeren, and J. R. Dorfman
Department of Physics and Astronomy, and Institute for Physical Science and Technology, University of
Maryland, College Park, Maryland 20742

E. A. Mason
Brown University, Providence, Rhode Island 02912
(Received 14 February 1977; accepted 5 May 1977)

We consider the mean free path of a hockey puck in a system of other pucks on an air table,
and show how the simple low-density kinetic-theory value for this mean free path can be
extended to higher densities. This approach is connected both with the Enskog theory of the
transport properties of dense gases and with the van der Waals theory of the equation of
state of dense gases. We derive several simple approximations for the high-density mean free
path, and compare the results with each other, with accurate computer-simulation results,

and with experimental results obtained in the freshman physics laboratory of the University

of Maryland. We present the arguments in both simplified and more elaborate forms.

I. INTRODUCTION

Among the many experiments that can be performed
on air table is one in which the mean free path between
collisions of a marked puck is measured.! If the density of
pucks is high enough that collisions of the marked puck with
the walls do not predominate, it is usually found that the
measured mean free path is appreciably smaller than that
calculated from the classical kinetic-theory formula,?

A =1+ (mi/m2)]'/ 21,013, (1)

where A, is the mean free path of the marked puck 1 of
mass m; moving in a collection of pucks of mass m- having
“density” n, (pucks per unit area), and @ is the collision
cross section, which in two dimensions is

Qu=o01+ 0y (2)

where oy and o are the puck diameters. The mass factor
on the right of Eq. (1) accounts for the average relative
velocity of collisions. Note that Eq. (1) also holds in three
dimensions for rigid spheres, with n; equal to the number
of spheres per unit volume, but Eq. (2) must be replaced in
three dimensions by Q5 = (w/4)(o) + 02)%. After analyz-
ing various sources of experimental error, one usually
concludes that this reduction of the mean free path is a
genuine effect related to the fact that the density of the
system is too large for Eq. (1) to hold very accurately.

The purpose of this paper is to show how this density ef-
fect can be accounted for in a simple way in terms of an
excluded “volume™ (really area). This provides a simple
introduction to theories of dense gases, since the same effect
plays a central role in both the van der Waals theory of the
equation of state>* and the Enskog kinetic theory of
transport properties.>-7 That is, we will obtain a correction
factor x for the mean free path,

A2 = M/ xi2 - (3)

where A} is the low-density value given by Eq. (1). The
same. correction factor occurs in the Enskog expressions for
such properties as the diffusion coefficient D,

D1z = D/x12, 4)

where DY, is the low-density kinetic-theory result. In the
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case that the mass and diameter of the tagged particle are
the same as those of the rest of the particles, the same cor-
rection factor x occurs in the equation of state for the
pressure P,

P = nkT(1 + nbx), (5)

where k is Boltzmann’s constant, T is the temperature, and
b is the van der Waals covolume. The covolume is equal to
one-half the total volume excluded by the finite molecular
size, which in two dimensions is

b= (x/2)e% (6)

and in three dimensions is b = (27/3)e3. The physical in-
terpretation of x is that it is the radial distribution function
for pairs of particles, evaluated just outside the point of
contact.

In what follows we show first how the mean free path
should be corrected in terms of Enskog’s x, but do not at-
tempt to calculate x in terms of the properties of the system.
We then show how the same quantity enters into the
equation of state. This enables us to make a simple ap-
proximate calculation of x using the van der Waals equation
of state. We next show how an improved expression for x
can be obtained by combining a medium-density correction
to the van der Waals formula (which counts the overlapping
of three or more disks or spheres incorrectly) with the
high-density cutoff imposed by close packing. The im-
provement is straightforwardly achieved by a Padé ap-
proximant, which serves to introduce another technique of
current interest in physics®? in a very simple setting.
Comparison is made with essentially exact computer-sim-
ulation results, and with experimental results obtained in
the freshman physics laboratory at the University of
Maryland.

All these results can be obtained, or at least made plau-
sible, through rather simplified arguments suitable for
undergraduates. As a final embellishment, we show in an
Appendix how the arguments can be made more rigorous
and mathematical where necessary. We give these results
for a binary mixture of two kinds of particles, in order to
formulate the theory in a context where it can apply to a
wide variety of air table experiments.
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II. THE MEAN FREE PATH AND THE
RADIAL DISTRIBUTION FUNCTION x

According to the elementary kinetic theory of gases, the
mean free path of a gas molecule is equal to the product of
the average time between collisions and the average speed
of a molecule. For a gas in equilibrium the average speed
of a molecule does not depend on the density of the gas, but
the average time between collisions does. This quantity is
the inverse of the collision frequency, and to account for the
density dependence of the mean free path we must deter-
mine the density dependence of this collision frequency. It
is almost intuitively obvious that the collision frequency is
directly proportional to the number density in the imme-
diate neighborhood of a molecule we focus our attention on.
In a dilute gas this number density is uniform throughout
the gas, but in a dense gas the density near a particular
molecule is greater than the average. This increase can be
attributed to a shielding effect which produces an effective
attraction between the two particles. This “attraction” is
due to the fact that the parts of molecules 1 and 2 which are
closest to each other are shielded from collisions with other
particles in the gas, as illustrated in Fig. 1. Hence, the other
molecules in the gas have a tendency to force two molecules
closer together once they get sufficiently close. If we mea-
sure the excess number density of molecules of species 2
next to a molecule of species 1 by x5, defined as

X12 = na(o12) /1, M

where n,(a,) is the density just outside the contact surface
between 1 and 2 and 7, is the average number density
throughout the whole gas, then the collision frequency v,
for a molecule of species 1 with molecules of species 2 is

vi2 = X120 (8)

where Y, is the collision frequency that would occur in the
absence of the shielding “attraction.” From this the mean
free path follows as A5 = A},/x12, as already given in Eq.
(3), provided that species 1 is present only in trace amounts,
so that 1-1 collisions have a negligible effect on the free
path.

An interesting historical sidelight is that an attraction
caused by a shielding from collisions was long ago proposed
as a mechanism to explain gravitational attraction.!® An
all-pervasive isotropic wind of particles was supposed to
exist throughout space, and the mutual shielding of two
bodies near each other produced an effective attraction.
This explanation of gravitational attraction accounts for
the inverse-square law of force, but fails on other counts.!®
It is amusing to find this supposedly long-dead mechanism
alive and well in the theory of dense gases, although it does
not lead to an inverse-square law in gases because the
“wind” particles are not undeflected.

It is clear that the calculation of Enskog’s x in terms of
densities and molecular diameters is no easy task, since it
is basically a many-body problem. It represents a “collec-
tive” effect of the gas as a whole. Indeed, no closed ana-
lytical expression for  is known, and our central task will
be to obtain simple but useful approximations for x. Before
tackling this problem, however, let us first sharpen up the
argument for taking the collision frequency proportional
to the number density. Consider how one would compute
the number of collisions that take place in a small time in-
terval 6t between molecules of species 1 in a mixture with
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Fig. 1. The shielding of the adjacent parts of particles 1 and 2 from other
particles in the gas, for small separation of the particles, produces an ef-
fective attraction between the two particles.

those of species 2. To find the number of collisions that take
place in time é¢ between molecules of species 1 with velocity
v; and molecules of species 2 with velocity v,, we construct
a collision cylinder of volume Q13|v; — v,| ¢ centered on
each molecule of species 1 with velocity v;, and ask how
many molecules of species 2 with velocity v, are inside these
collision cylinders at the start of the small time interval. For
a dilute gas, one makes the assumption that the number of
such molecules of species 2 can be computed as if they were
distributed at random in the collision cylinders with the
same uniform density as they are in the container as a
whole. Then the collision frequency is found by integrating
over all velocities vy and v, and dividing by the time interval
ot. The average collision frequency for one molecule of
species 1 with molecules of species 2, that is »{,, is then
obtained by dividing the result by N1, the number of species
1 molecules. The result is that »?, is directly proportional
to n».

At high enough densities, the assumption that the dis-
tribution of molecules of species 2 in the collision cylinders
is the same as that in the gas as a whole breaks down. In
fact, if the volume occupied by the molecules themselves
is an appreciable fraction of the total volume of the system,
then the probability of finding a particle in a collision cyl-
inder is greater than that for finding a particle in an equal
volume placed at random in the gas, because of the “at-
tractive” effect discussed above. However, we need to know
this increased probability only at the point of contact of the
two particles. It is easy to see that this special point is singled
out when we let 6 — 0 in the calculation of the collision
frequency, since in this limit the collision cylinders shrink
to a small region about the point of contact. From these
arguments we conclude that the collision frequency at
higher densities is proportional to x 1275, Or ¥12 = X225 as
already given in Eq. (8).

IIl. THE EQUATION OF STATE AND x

In this section we will explain how the factor x discussed
in the previous section is related to the pressure. We will
consider only a single-component system here, and reserve
the treatment of mixtures for the Appendix.

The pressure is calculated as the net rate of flow of the
component of momentum in the positive x direction across
a reference plane (reference line in two dimensions) per-
pendicular to x. There are two mechanisms that contribute
to the momentum flux. The first is the translational transfer
where a particle carries its own momentum across the ref-
erence plane (line). The second is the collisional transfer
of momentum, where a particle with its center on one side
of the plane collides with another particle whose center is
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Fig. 2. Transfer of momentum across a reference plane (or line in two
dimensions) represented by the dashed line. The two upper particles
transfer momentum by the translational mechanism of crossing the ref-
erence plane (line). The two lower particles transfer momentum from
particle 1 to particle 2 by collision, without the center of either particle
crossing the reference plane (line). The geometrical constructions shown
around the lower two particles are used in the calculation of the collisional
transfer of momentum given in the Appendix.

on the other side of the plane, and there is an instantaneous
transfer of momentum from the center of one particle to the
center of the other particle. These two mechanisms are il-
lustrated in Fig. 2.

The contribution to the pressure from the translational
mechanism is a calculation familiar in elementary kinetic
theory.2 Briefly, particles moving from left to right in Fig.
2 carry momentum +mw, per particle, and there are hnv,
crossing unit area in unit time. These particles thus con-
tribute hbnmv? to the pressure. Particles moving from right
to left carry momentum m(—v,) and there are hn(—v,)
crossing, so that these also contribute Yanmo? to the pres-
sure. Combining these two translational contributions, and
averaging over any distribution of velocities, we obtain

Pians = nm(’%%)- : 9)

where the angular brackets signify the average over the
velocity distribution. The components of the velocity are
related to the total velocity by the Pythagorean theorem,
so that we obtain for any number of dimensions the re-
sult

(v3) = (1/d)(v?), (10)

where d is the dimensionality of the space. The translational
contribution to the pressure is thus

Pirans = (1/d)nm (v2) = nkT, i)

where the last equality follows from the identification of
temperature in an ideal gas in which there is no collisional
transfer.

The calculation of the collisional transfer contribution
is similar to the calculation of the collision frequency in Sec.
11. The geometrical details of the calculation get somewhat
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complicated and are deferred to the Appendix, but the gist
of the argument is quite straightforward. First, the colli-
sional transfer of momentum will be proportional to the
momentum carried up to the reference plane by particles
1 (Fig. 2). We thus expect P,y to contain a factor of
nm{v2) or nkT, just as does Pyrans. Second, the collisional
transfer must be proportional to the number of particles on
the other side of the reference plane that collide with par-
ticles 1, so that the transfer of momentum can take place.
This number is in turn proportional to the number density
of particles 2 times a volume of the order of a molecular size.
P.ou thus contains a factor proportional to nb in addition
to the factor of nkT, where b is the covolume. We assume
that the coefficient of proportionality is unity. Finally, if
the gas is dense, there is an enhancement of the density of
particles 2 nearby to particles 1, because of the “attraction”
discussed previously and shown in Fig. 1. This gives a fur-
ther factor of x. The final result is

Peon = (nkT)(nbx). (12)

The appearance of the covolume b is not especially sur-
prising—it has to appear for dimensional reasons if nothing
else—but it is a bit surprising that the exact calculation as
given in the Appendix shows that the numerical factor in
Eq. (12) is unity in both two and three dimensions (as well
as in one dimension). The total pressure of the gas at any
density is therefore

pP= Ptrans + Pcoll = nkT(l + nbx). (13)

This seemingly solves the famous problem of the equation
of state of a dense gas of rigid spheres (disks), but of course
we have not solved the problem at all, we have only pushed
it over into the problem of finding x. In fact, we will use Eq.
(13) in reverse, so to speak, and obtain an approximate
expression for x from the van der Waals equation of
state.

IV. THE VAN DER WAALS ESTIMATE OF x

The van der Waals equation of state attributes deviations
from ideality to two causes—the finite size of the molecules,
and attractive forces between molecules. The finite size
increases the pressure by reducing the effective volume of
the container from V to ¥ — Nb, where N is the number of
molecules in V, and b is the familiar covolume. The at-
tractive forces decrease the pressure by retarding the im-
pacts of molecules on the container walls. The result can be
written as

P = NKT/(V — Nb) — a(N/V)2. (14)

For a gas whose particles interact only with hard-core re-
pulsions, a can be set equal to zero, and the van der Waals
equation can be written as

P = nkT/(1 — nb), (15)

where n = N/V. If we combine this with the exact equation
of state derived in the previous section, Eq. (13), we ob-
tain

1 + nbxyaw = 1/(1 — nb) (16)
or
xvaw = 1/(1 = nb). (17)

The accuracy of this approximation can be tested for a gas
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Table 1. Comparison of exact (computer-simulated) and approximate values of x as a function of density for a gas of rigid disks.

ng? Exact x Xvdw xmed Padé x
na? (na?)ep Refs. 11-13 Eq. (17) Eq. (23) cp, Eq. (24) rp, Eq. (26)

0 0 1.000 1.00 1.000 1.000 1.000
0.115 0.1 1.159 1.22 1.165 1.158 1.160
0.231] 0.2 1.378 1.57 1.396 1.355 1.366
0.385 0.333 1.786 2.53 1.897 1.709 1.756
0.462 0.4 2.058 3.64 2.311 1.946 2.031
0.577 0.5 2.683 - 10.74 3.439 2418 2.620
0.691 0.6 3.637 6.713 3.128 3.615
0.850 0.736 6.22 4.96 7.05

of hard disks by comparing values obtained in this way with
very precise values obtained from computer calculations
of the equation of state.!!'~!3 This comparison is given in
Table I and Fig. 3, which also show other approximate re-
sults to be discussed in subsequent sections.

One can see that the approximation of Eq. (17) is not too
bad at low densities, but is very poor at densities greater
than that corresponding to about one-third the density of
close packing of the disks, which is

(no?)ep = 2/V3 = 1.15. (18)

Here the subscript cp stands for “close packed.” The
close-packed density is the density of the collection of disks
when they are compressed into as small an area as possible,
taking into account the fact that they cannot penetrate each
other. In the close-packed state the disks form a crystalline
array whose density is given by Eq. (18). As the density of
the disks approaches the close-packed density, the pressure
exerted by the disks on the walls increases because of the
mutual repulsions of the disks. At the close-packed density
the pressure becomes infinite because the disks cannot be
compressed any further. Thus we expect that as ne? ap-
proaches (na?)cp, then x~! approaches zero according to
Eq. (13). Study of Fig. 3, a plot of x~! vs ng2, shows that
the van der Waals approximation fails in two major re-
spects. First, xyaw goes to zeroat nb = lor at ng2 =2 /7 =
0.64, instead of near the close-packed density of 1.185.
Second, the initial slope of x;4w vs ne? is incorrect. Both of
these failures are easily corrected by simple calculations,
which can be used to obtain a much improved approxima-
tion for x, as discussed in Sec. V.

V. IMPROVED APPROXIMATIONS FOR x

We consider first the correction for the initial slope in Fig.
3. The trouble can be traced to the correction for excluded

1.2 — — T T T T T T T T T
X! o Air table, A/X°
. ® Computer simulation
08 T
Pade’
04 approximants E
L modified h
van der Waals
[s) ] ) — L —L 1
0 04 0.8 1 Tha
net random close
packing packing

Fig. 3. Comparison of exact (computer-simulated) and approximate
values of x~! as a function of reduced density no? for a gas of rigid disks
of diameter o.
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volume in the van der Waals theory. The idea of an excluded
volume is sound, but the calculation of it as Vb is correct
only when just pairs of particles are considered, and involves
errors when three or more particles are considered simul-
taneously. The nature of the difficulty is shown in Fig. 4,
where the region forbidden to a test particle by two other
particles is shown. If the two particles are well separated,
the total forbidden region is 2wa? (in two dimensions), but
if they are close together the total is smaller because the
overlapping portion of the forbidden regions should be
counted only once, not twice. To make this idea more pre-
cise, we expand the pressure of the gas as a power series in
the density (the well-known virial expansion),

P=nkT(1 + nBy+ n2B3+ n3Bs+---), (19)

where Bj, Bj, etc., are called second, third, etc., virial
coefficients. By comparison of Eqs. (13) and (19), we see
that the corresponding virial expansion for x is

X = (By/b) + n (By/b) + n*(B4/b) +---.  (20)

The van der Waals expression, obtained by expansion of Eq.
(15),is

P=nkT(1 +nb+ n2b2+n3b3+-...). (21),

The excluded volume due to just pairs has been counted
correctly in the van der Waals expression, so that B, = b,
but the values of B3 and higher virial coefficients are in-
correct because of the overlap problem illustrated in Fig.
4. However, we need correct only B3, which deals with just
triplets of particles, to get the correct value of the initial
slope of x~! in Fig. 3. The third virial coefficient B; can be
computed analytically by the procedure outlined in the

—o—

———

~

Fig. 4. Regions forbidden to particle 3 by particles 1 and 2 are shown by
the dashed circles. In the van der Waals theory, the lens-shaped hatched
region is erroneously counted twice. The area of this region is ¢2[(27/3)

~ (V3/2)).
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Appendix, and involves the computation of the shaded area
indicated in Fig. 4. For a two-dimensional gas of rigid disks,
B3 is given by

B3 =[(4/3) - (V3/m)]b2 (22)

Thus it seems that a better approximation to x, which has
a form similar to the approximate Eq. (17) but which cor-
rectly predicts the initial slope, is given by

xoew = {1 —nb [(4/3) - (V3/mI. (23)

This will give the correct initial slope in Fig. 3. Its accuracy
is compared with exact results in Table I and Fig. 3. Al-
though a considerable improvement over the simple van der
Waals result is achieved, Eq. (23) is still poor at high den-
sities, presumably because x~! goes to zero at ng? = 0.81,
instead of near the close-packed density.

This last observation suggests that better results could
be achieved if we could write an approximation for x that
behaved like Eq. (23) at low densities, but that went to in-
finity (x~! going to zero) at the close-packed density. Such
a combination of behavior is readily achieved through the
mathematical device of Padé approximants, which have
found many applications in physics.3® A Padé approximant
as we will use it here is simply a ratio of polynomials whose
coefficients are chosen so that the zeroes of the polynomial
in the numerator reproduce the known zeroes of the func-
tion being approximated, and the zeroes of the polynomial
in the denominator reproduce the known infinities of the
function. Additional coefficients can be chosen to correctly
reproduce a few terms of known series expansions, such as
the virial expansion. In the present case, our Padé approx-
imant will be a ratio of two expressions linear in n, the two
adjustable coefficients being chosen to reproduce the in-
finity in x. If we take the close-packed density corre-
sponding to a completely regular crystalline packing of disks
as given by Eq. (18), the Padé approximant is

s 145 G D))/ L= )

(24)
with (n?)¢, = 2/+/3 . This expression is compared with
the other approximations and with the precise computer
results in Table I and Fig. 3. The agreement is quite good,
but can be improved even further by one simple observa-
tion.

The observation is that continued compression of a gas
of rigid disks is likely to produce “jamming” (i.e., infinite
P and infinite x) when the disks are still arranged randomly,
since they probably will be unable to adjust themselves into
a perfect crystalline order. Some simple experiments with
lucite disks have shown that the density of such random
packing is about 11% less than regular close packing,'4 so
that

(n0?)rp = 0.89(n0?)cp, (25)

where the subscript rp stands for “randomly packed.” The
corresponding Padé approximant for x is then

“ooral)/
1G]

The agreement of this expression with the computer results

XPhde = ( (n’:;;cp 131\7;: - [1
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is quite good, as shown in Table I and Fig. 3.

As a final comment, the foregoing approximations for
x in two dimensions are easily extended to any number of
dimensions by writing them in terms of the corresponding
covolume b and third virial coefficient B3, as follows:

Xvaw = (1 = nb)~1, (27)
Xy = [1 — n(B3/b)]7, (28)

XE’E’“:[”””[M (n;)cp]]/ [1_(n’21;cp]‘ (29)

The expression for xfq is obtained from Eq. (29) by re-
placing (nb)cp by (nb)p. For reference, the three-dimen-
sional values of the quantities in Egs. (27)-(29) are

= (2w/3)a3, (30a)

B3y = (5/8)b2 (Ref. 6), (30b)
(ne?)ep=v2  (Ref.15), (30¢)
(n63)ep = 0.869(n03)cp (Ref. 16). (30d)

IV. APPLICATION TO AIR TABLE
EXPERIMENTS

A number of experiments were carried out in the labo-
ratory by placing pucks on an air table with a motor-driven
device at the boundaries designed to keep the pucks in
constant motion. One of the pucks had a light at its center
and its motion was photographed to record its trajectory
over a certain time interval.! The systern should have been
isothermal, but because of friction on the table and inelastic
collisions between pucks, the system was “colder” and
denser at the center of the table than at the outer edges. A
polaroid camera was mounted above the table and its field
of view was restricted to the central part of the table where
the temperature and density appeared to be roughly uni-
form.

From an enlargement of the polaroid photograph, the
number of free paths longer than or equal to x, N(x), was
determined as a function of x. The mean free path A was

‘determined by assuming that N(x) had the form

N(x) = Noe=*/A, (31)

which is a good approximation following from kinetic
theory.! The value of A was then found as a best-fit slope of
a semilogarithmic plot of the data. This procedure gives
more reliable values of A than the direct procedure of cal-
culating X and taking X = A, because of the difficulty of
recognizing very glancing collisions on the photograph, and
of properly counting very long and very short free paths.
The results of three experimental values for /X0 at dif-
ferent densities are given in Fig. 3, where A0 is the theoret-
ical low-density value given by Eq. (1). These experimental
values can be directly compared with the values of x~!
shown in Fig. 3 and discussed previously. The experimental
values are in reasonably good agreement with the precise
computer-simulated values, and any of the various ap-
proximations to x would be adequate for describing the
experimental results within their likely uncertainty. We
estimate that the uncertainty in the air-table values to be
about 4 10%-15%, and have shown error bars of +10% in
Fig. 3. There are a number of sources of error in these ex-
periments. The system may not be in equilibrium, the
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density of pucks in the photographed area is neither uniform
nor constant over an experimental run, and it is difficult to
properly count the free paths on the photographs, especially
the longest and shortest ones. Effects due to the finite size
of the air table and the finite number of pucks may be of
some importance. Notice that a correction for the higher
density at the center of the table would shift the experi-
mental points into closer agreement with tl:e computer re-
sults.

The experiments described above were carried out to test
the theoretical predictions given in the earlier sections of
this paper. They were somewhat more carefully done than
a typical experiment carried out in the freshman laboratory.
Therefore we now present one of the typical experimental
runs carried out by the freshmen. The usual experiment
consists in measuring the mean free path of one large puck
with a light on it, in a system composed of a number of
smaller pucks, all of which have the same diameter. The
density of the small pucks was calculated by dividing the
total number of small pucks by the total area available to
the center of each of the pucks; this procedure thus includes
a small correction for the layer of excluded area next to the
boundaries. The large puck had a diameter of 6.8 cm, and
the small pucks had diameters of 3.6 cm. At a density of
small pucks of 0.014 pucks/cm?, the measured value of
A/X0 was 0.68. Using the modified van der Waals expres-
sion for x, as generalized for a mixture in the Appendix, we
calculate a theoretical value for /A of 0.76, which agrees
with the experimental value to within 11%, which seems
satisfactory.

In conclusion, we have presented here some simple the-
oretical methods for computing the mean free paths of
pucks on an air table at high densities, which can be suc-
cessfully used to treat typical laboratory experiments on the
mean free path.
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APPENDIX: MORE RIGOROUS DERIVATIONS
FOR MIXTURES

Here we make the arguments of the text more rigorous,
and include the extension to mixtures. There are three
calculations to be considered—the collision frequency, the
collisional-transfer contribution to the pressure, and the
virial expansions for P and x.

Collision frequency

We begin, as before, by constructing a collision cylinder
of volume Q1,|v; — v,| 8¢ on each molecule of species 1 with
velocity vi. The number of molecules of species 1 with ve-
locities between v; and v, + dv, is given by n;¢(v;)dv,,
where ¢(v;) is the Maxwell-Boltzmann equilibrium dis-
tribution function,
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¢(v1) = (Bmy/2m)4/2 exp(—Bmivi/2), (A1)

where 8 = (kT)~! and d is the number of dimensions of the
system. A similar expression holds for species 2. For a dilute
gas, the number of molecules of species 2 with velocity v,
in the collision cylinders is proportional to the average
(uniform) density of such species 2 molecules in the con-
tainer, which is n2¢(v,)dv,. Integrating over all velocities
vy and v,, and dividing by n,, we obtain the average collision
frequency, #{,, for a molecule of species 1 with molecules
of species 2 as

vh = 1012 f dvi fdvalvy — vaf ¢(v)e(v2). (A.2)

In a dense gas the number of molecules of species 2 in the
collision cylinders is increased to n2x12¢(v2)dy,, so that the
collision frequency becomes

vi2 = nax12012 § dvi § dvalvi — va| ¢(v1)e(v2)
= x120%. (A3)
Similarly, the frequency of collisions of a molecule of species
1 with other particles of the same species is
viv=nixnQu § dvi § dvy |vi = vil ¢(v))p(v)
= xu, (A.4)
where x;, = ny(oy1)/7; is the radial distribution at contact
for two particles of species 1. Of course, both x;; and x12
must be computed by taking into account the fact that the
system is a binary mixture.
To compute the mean free path A, for a typical molecule

of species 1, we compute the average time between colli-

sions, 71, as
1= izt i)l (A.S)

and then multiply 7, by the average speed of a molecule of
species 1, Uy,

5 = fo “o10()0fdor / j) " don)vt~ doy.

(A.6)

Ford = 2,0, = (#kT/2m)'/2, and for d = 3, 5, =
(8kT/mm)!/2. Therefore the mean free path A is

A =01(rz + vi) 7 =010a2% + xaed) !

= [x12(A) "+ xu (A1), (A7)
where
A1 = [1 + (my/m)1Vn;Q,;. (A.8)

Two special cases are of interest here. For a pure one-
component system, the mean-free path is given by

)\1 = K?/X]a (A9)

where AJ is the low-density value and x; is the radial dis-
tribution at contact for a one-component system. The other
case of interest occurs when species 1 is present in only trace
amounts. In the particular case of interest here, species 1
consists of a marked puck whose mass and diameter are
different from those of the remaining pucks on the air table.
The mean free path for the marked puck is then given by

Az = Mo/ X1z, (A.10)

where x 1 is now the radial-distribution function for finding
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a regular puck in contact with the marked one, computed
by using the fact that all but the marked puck are me-
chanically identical.

Collisional-transfer contribution to pressure

Here we wish to derive Eq. (12) for P.y more carefully.
We consider only the two-dimensional case for simplicity,
and refer to Fig. 2 for notation. Although all the particles
are mechanically identical, we denote the particle on the
left of the reference line as 1, and the other oneas 2. Ina 1-2
collision, the vector, rj2 = r; — r,, between the centers of
the particles at the instant of collision can be written as

(A.11)

where i is a unit vector along {he line of centers at impact,
and ¢ is the particle diameter. The condition that the centers
of the particles are on opposite sides of the reference line is
satisfied if the center of 2 is inside a strip of width ¢ k|,
where % is a unit vector in the x direction, and if i » & < 0
If particles 1 and 2 have velocities v, and v, respectively,
then the conditions that must be satisfied if a 1-2 collision
is to occur in time 8¢ with the line of centers in a preselected
direction i are as follows: (i) via i< 0, wherevis = v — vy;
and (ii) the center of particle 1 is in the shaded region shown
in Fig. 2, whose area is

(|12 - 1| 2)(adl). (A.12)

The number of collisions taking place in time 6t such all
these conditions are satisfied simultaneously is
n2¢(v1)dnig(v2)dv: x(ali+ %|)([vi2 +1[81)(odD)

X0(=vi2 DO+ %), (A.13)

where to remind the reader of the restrictions mentioned

above, we have inserted in Eq. (A.13) 6(z), the step func-
tion,

l']2=i0’,

1forz=0
6(z) {0 for z <0.
Furthermore, if the particles make elastic specular colli-
sions, the momentum transfer in the collision from the
center of particle 1 to the center of particle 2 is given by
m(vi2 l)l Thus the collisional-transfer contribution to the
pressure is

Peon = n2xa? § dvy § dv, § diO(—vi,-1)
X 0(—1* )m(viz )i+ %)
X|ie&| |viz-i|¢(v1)d(v2),

(A.14)

(A.15)

which integrates to
Peon = hwkTn?xe? = n2kThx, (A.16)

where b = wg2/2 is the van der Waals covolume in two di-
mensions. This is Eq. (12) as advertised.

- In the case of a k-component mixture, the procedure can
be generalized by observing that the pressure can be written
as the summation

k
Z
where P;; contains the contrlbutlon to the pressure from the

translational motion of particles of species i, and from the
collisional transfer between particles of type i, while P;;

II Mx-

Py (A.17)

976 Am. J. Phys., Vol. 45, No. 10, October 1977

consists exclusively of the collisional transfer from particles
of species i (on the left of the reference line) to particles of
species j (on the right of the reference line). Therefore Eq.
(13) generalizes to

P,'j/n,'kT = 6,‘1' + n,-b,-jx,j, (Alg)

where §;; is the Kronecker delta, and b;; = wo;/2 is one-half
the excluded volume for a particle of species j due to the
presence of species I.

Virial expansions for P and x

The second and third virial coefficients, B, and B3, ap-
pearing in Eq. (19) for P are given by the expressions

By = =1 § def(|r|), (A.19)
By =—"h [ dr § drof (I Df(Ur2]) f(Iry — 1)),
(A.20)
Here f(|r|) is the Mayer f function defined by
S(r]) = eBVUD —1, (A.21)

where V(|r|) is the potential energy of interaction between
two particles separated by a distance |r|. For a system of
hard disks (or spheres) of diameter o, f(|r]) is given by

_[=lfor|r| <o
flrly = 0 for [r] = a.

Both B; and B; have been computed analytically'’ for a gas
of hard disks, and are

(A.22)

By = na?/2, (A.23)
B3 = [(4/3) = (V3/m))(wa?/2). (A.24)

The values for hard spheres are given by Egs. (30a) and
(30b). From these expressions we readily obtain the mod-
ified van der Waals expression for x, as given by Eqs. (23)
and (28) of the text. It is also possible to obtain the virial
expansion for x directly from its definition as the value of
the radial distribution function at contact. Although we will
not give the derivation here, it can be shown that for a
one-componént system, x can be expressed in terms of
Mayer f functions as

X= 1+n f dr3f(r13)f(r23) ‘r|2=a +oe-e (A25)

The notation on the integral means that the integration over
r3 is to be carried out under the condition that particles 1
and 2 are just touching, i.e., [r| — r3| = r12 = o, as shown
in Fig. 4. An evaluation of this integral is not difficult for
hard disks; indeed, it can be carried out by simple geomet-
rical considerations, as was shown in the text in connection
with Fig. 4.

To extend these ideas to treat mixtures of hard disks (or
spheres) of various diameters, we need to have virial ex-
pansions for the various x;; factors. For our purposes we will
need only the first two terms in the expansion. Thus, for a
general binary mixture we only need to use

2
Xij = 1+ kgl hi f dr3fik(’l3)fkj(’23)'r|z=aij +-- *

(A.26)

where the sum over k runs over the two species, with num-
ber densities 7, and n,, respectively, and fi; is defined by

Sfi(riz) = e BVik(rz) — 1, (A.27)
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in which V;(r3) is the interaction potential between a
particle of species i and one of species k. A simple modified
van der Waals expression for x;; would then be

(xif ) = [1 - ; me S drafic (r13)
"12=0ij]

It is tempting to try to improve this formula by using a Padé
approximant to incorporate some information about the
behavior of x;; as the system becomes close packed. How-
ever, for a general mixture of hard disks (or spheres), it is
not always clear what the properties of the x;; will be at
close packing, because of the way small particles can pack
into the interstices between large particles, and it seems
safer to stop with Eq. (A.28).

For the special mixture used in the air table experiments
carried out in the freshman laboratory at the University of
Maryland, we need only x,, the radial distribution function
for the special disk called 1 in contact with one of the regular
disks in the system denoted as species 2. The virial expansion
of x12 is then given by

xi2=1+n; f drifia (ri3)fz (r23)|r12=0|2+ ct
, (A.29)

where n is the number density of the regular disks of the
system. There is no summation in the second term of Eq.
(A.29) because there is only one particle of species 1, so that
all the excluded volume effects involve the one particle of
species 1 with one or more particles of species 2. After
performing the required integration we find that

X frj(ra) (A.28)

x12 = 1 + nmah(r,R) + O(n3), (A.30)
where
hrR) = 2 (R2+ r?) = R¥arcsin (1 - LZE)
2 2R
— r2 arcsin (—2—%> —rR (1 - Z{l%)l/z, (A.31)
and
R =012 = %(o; + a3), r =g (A.32)
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One can easily verify that as R — r,
h(r,R) — (7r%/2) [(4/3) — (V3/m)]. (A.33)
The modified van der Waals expression for x, is thus
(2 = [1 = nah(r.R)]". (A.34)

This is the result used in analyzing a typical experiment in
the freshman laboratory, where the marked puck is larger
than the other pucks.
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