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Fluid at Long Times 
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The two-particle contribution to the potential part of the stress tensor 
autocorrelation function of a dense hard sphere fluid is studied. It is shown that 
the long-time decay is given as the solution of a diffusion equation for the 
relative particle in a potential of mean force. The diffusion constant needed in 
order to accurately reproduce molecular dynamics results is found to be some- 
what lower than the self-diffusion constant. 
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1. I N T R O D U C T I O N  

In a recent molecular  dynamics study of  dense hard sphere fluids Ladd e t  

al. (1'2~ found that the pair  contr ibut ion to the potential part  of the trans- 
verse stress tensor autocorrela t ion function is described by a stretched 
exponential,  only for very long times they observed a transition to the 
algebraic t -7 /2  long-time tail that  is given by hydrodynamic  mode  coupling 
theory. A different time behavior  is given by molecular  scale mode  coupling 
theories. In recent years a number  of  mode  coupling calculations have 
appeared for the full stress tensor autocorrela t ion function (3-5) which yield 
results in the right order of  magnitude.  The present work is based on these 
ideas, but  the analysis is carried through much further by including recolli- 
sions as well as static correlations. We will show below that a calculation 
analogous  to ref. 4, as performed by Kirkpatr ick,  (6) gives only a semiquan- 
titative agreement with simulations. The simulations can, however, success- 
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fully be understood in terms of a diffusion model, where the interaction 
between the particle pair is described by a potential of mean force. 

For  a system of N hard spheres with diameter a and mass m confined 
in a box with volume V the potential part of the stress tensor is given by 

1 
s ~ 5 = - -  v J~' ~ (1.1) 

where the potential part of the transverse momentum current Jx p can be 
written as 

J~P = ~ re(vii, fu) z 0( -v~j- f~) x i j yo  6 ( r ~ -  a)  
i < j (~ 

(1.2) 

where f = r/r. The potential part of the stress tensor correlation function 
(JPxy(O)JPxy(t)) is a four-particle correlation function. It can be decom- 
posed into two-, three-, and four-particle contributions. The two-particle 
contribution is the simplest one to study, and here we restrict ourselves 
to this contribution only. Define the normalized two-particle correlation 
function as 

~te Jxy(o) J~y(t) (1.3) 

where t e is the (Enskog) mean free time and r/o is the Enskog shear 
viscosity. (7) For  long times the velocity dependence of Jx p has been shown 
to be immaterial, (1) so we may equally well consider the following 
microscopic densities: 

(vu" fij) O(-vq" f/j) ~ b(rij K ~y ~ - - if) (1.4) 

and 

- ( 1 . 5 )  L x y  - -  

Keeping in mind that the average over the Maxwell distribution of 
(v0. fo)2 0 (_vu . f i j )  is 1~tim, and that the average of (v / j - f~)0( -v i i " fu )  is 
1/(nf lm) l/z, we define the corresponding two-particle correlation functions 

P(K)( t )= Vq~ i 



Orientational Pair Correlation Functions 385 

and 

Lxy(O ) Lxy( t  ) (1.7) 
i < j  

If the velocity dependence can indeed be factorized for long times, we have 
the following relation: 

p(Sl(t) ~-,pl~~ ~- plc)( t)  (1.8) 

In the molecular dynamics simulations of Ladd et al. '1) this factorization 
has been found to hold for p(S) and p(K) at times larger than about ten 
mean free times. 

In the next section we study a generalization of p(C)(t), 

p,( t )  = a2(N - 1)(6(r12 - a) Y*m(f12) cS(r12(t ) - a) Y/m(faz( t ) ) )  (1.9) 

with Yzm a spherical harmonic. Due to the homogeneity of an equilibrium 
fluid, (1.9) is independent of m. Using that Y2 +_2 = (15/32r~) 1/2 (x  +_ iy) 2, we 
find the function P2 to be related to p(cl as 

(L) _ 2~Znte 
p (1.1o) 

Besides P2, P0 is an interesting quantity as well, as it describes the 
probability of a recollision for the particles 1 and 2. Furthermore, if the 
velocity factorization holds, P0 is proportional to the pair contribution to 
the Green Kubo integrand for the bulk viscosity. 

2. D I F F U S I O N  A P P R O X I M A T I O N  

In the correlation function p~, only the relative coordinate of the 
tagged particles 1 and 2 enters. For very long times these particles move 
independently most of the time, and each particle will suffer many colli- 
sions. In good approximation we can therefore assume that for both par- 
ticles the space-time dependence is described by the self-diffusion equation. 
The time scale at which molecular scale effects are important may be 
estimated to be of the order of the time a particle needs to diffuse over a 
hard sphere diameter. With the Einstein relation ( ( A R ( t ) )  2)  = 2Dt  we find 
to = a2/2D, where D is the self-diffusion constant. Using the Enskog value 
for the self-diffusion constant, (7) we find at the density na3=0.884 that 
to = 314te. Already this simple argument shows that molecular scale effects 
can be important even for very large times. 

In order to describe p,, we use the diffusion equation for the relative 
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coordinate of particles 1 and 2, also called the relative particle. Such an 
approach is very similar to making a mode coupling assumption, using 
ordinary diffusion modes. These two approaches can be related to one 
another through a spatial Fourier transform. However, the use of a diffu- 
sion equation suggests a number of improvements over the simplest 
approximation. 

For  the relative particle the diffusion equation reads 

6, j~(r, t) = 2DAf(r, t) (2.1) 

This can be related to the correlation function pt(t) by imposing the initial 
condition 

j~(r, t = 0) --- ~ Y,,~(f) 6(r - a) (2.2) 

Due to rotational invariance around r - - 0  we then have at all times 

f(r, t)= Y,,~(~)f(r, t) (2.3) 

The function pl(t) is obtained from f through 

pl(t) = mr3g(~r) . f(a, t) (2.4) 

In the simplest approximation we assume that the diffusion takes place in 
a homogeneous medium. Furthermore, we impose the boundary conditions 
that f(r, t) is well behaved at r = 0 and r = oc. This diffusion problem is a 
standard problem in mathematical physics and can be solved by means of 
separation of variablesJ 8) For  Pl we find 

p,~ ~Dt) (2.5) 

with 1l+ 1/2 a modified Bessel function. Mode coupling theory produces the 
same results, multiplied by an extra factor of g(a). (6) For  l = 0 the solution 
(2.5) can also be written as 

p(oO)(t) : no_3g(o.) 1 - e x p ( -  cr2/2 Ot) (2.6) 
(87r Dt/a2) 1/2 

This approximation, however, is somewhat crude, as recollisions are 
ignored entirely. One of the effects of recollisions between the two tagged 
particles is to ensure that they never overlap. So a// recollisions can be 
taken into account at once by imposing that the probability flux through 
a spherical shell with radius cr is zero, 

-~rf(r, t) = 0  (2.7) 
r = f f  
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The resulting diffusion problem again can be solved by means of separation 
of variables. (8) For p~ we find 

2na2g(a) ( ~  dk e x p ( - 4 k  2 Dt) p~l)(t) 
rc J o  k2{ [n/(key)] 2 + [ j / ( ka ) ]  2 } (2.8) 

where j and n are spherical Bessel functions, and a prime denotes differen- 
tiation with respect to argument. For l =  0 this integral can be performed 
and we have 

1 { 2 D t )  1/2 (2.9) P(~ = (2~ Dt/~2) 1/2 - -  e2Dt/~2 erfc \ - -~-]  

with erfc the complement of the error function. 
From the solutions (2.5) and (2.8) the long-time behavior follows. We 

find that in the long-time limit inclusion of the recollisions gives a numeri- 
cally different result, as we have 

(1)It ~ ( 2 / +  l )  2 
P~ ' ) (t large) (2.10) p?)(t) \TZ-]-/ 

Although we have summed over all recollisions, this model is not quite 
satisfactory. For very large times, when the mean square displacement is 
much larger than the hard sphere diameter, we expect that the probability 
density for finding the two tagged particles at a separation r will be propor- 
tional to the equilibrium probability, at least for r not too large. So we 
expect that for large t 

(6(r12(0) -- a) 6(rl2(t ) -- r) ) = C(t) gz(r) (2.11) 

This asymptotic value is attained by the solution of a diffusion equation in 
a potential of mean force, 

V(r) = - ~ log g2(r) (2.12) 

The diffusion equation now becomes, instead of (2.1), 

8,~(r, t )=  2V" D { V  + f i[VV(r)  ] } f ( r ,  t) (2.13) 

with the boundary condition 

(2.14) 
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To be fair, standard mode coupling theory partly takes into account 
the potential of mean force through the extra factor of g(a) mentioned 
below (2.5). However, the potential of mean force will also influence the 
intermediate-time dynamics. 

The microscopic mechanism that gives rise to the potential of mean 
force is twofold. First, as already mentioned, the two particles collide with 
each other. This is taken into account by the boundary condition (2.14). 
Another mechanism is that if the two particles are close, they will inhibit 
certain collisions by third particles. This inhibition effect we have taken 
into account through the potential of mean force. Again, this is an 
approximation, as the presence of a particle close by may subtly alter the 
dynamics as the distribution of collisions gets changed. It has been 
suggested that the effect of this is that the diffusion constant is increased, 
and becomes position and direction dependent (see, for instance, ref. 9). 
Here we have taken the simplest approach and used a constant self- 
diffusion coefficient, and also ignored a possible time dependence. This can 
only be justified a posteriori through a comparison with simulation data. 

The diffusion equation (2.13) was solved numerically. This was done 
by representing the functionf(r,  t) on a finite number of positions (we used 
300). The differential operators occurring in (2.13) are then replaced by 
difference operators and the diffusion equation takes on the form 

~tf(r,, t )=~  Mijf(rj, t) (2.15) 
J 

As the matrix M is tridiagonal, its eigenvalues can be computed efficiently. 
The boundary condition at infinity is taken care of by imposing f (R,  t )=  0 
for some large R; we took R = 10a. For the pair correlation function we 
used the Percus-Yevick expression, including the Verlet-Weiss correction 
(see, e.g., ref. 10). In Fig. 1 we compare the solutions to the three different 
approximations for pz(t). We notice that the various approximations lead 
to rather different results. When comparing p(1) to p(O~, we notice that 
including the recollisions has a marked effect, not only for short and inter- 
mediate times, but also for the prefactor of the long-time tail. For short 
times the diffusion is effectively one dimensional, as the particles do not 
diffuse over a distance large enough for the shape of the sphere to become 
significant. However, for short times the solution in the potential of mean 
force at na3=0.884 is found to satisfy a t -1/2 behavior only for times 
shorter than 2Dt/a 2 - t* < 10 -3. Also we have found that the l dependence 
becomes important at times larger than t*~-0.1. 

In Fig. 2 we compare our solution to the diffusion equation with a 
potential of mean force to the MD data of Ladd et a/. (1'2) We have used 
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Fig. 1. Three solutions to the diffusion equation for p2(t) at high density. The time is in 
diffusion time units, t * =  2Dt/G 2. Solid line: p(r effective potential approach. Dot-dashed 
line: g(a)  p(n(t). In this approximation all recollisions are summed. Dashed line: g(a)  p(~ 
simplest theory. 
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Fig. 2. Compar ison of the simulation results of Ladd et aL la) for pIK)(t) (circles) and the 
solution of the diffusion equation in a potential of mean force (solid line). The error in the 
simulation data is about  2 • 10 -3. We have used D = 0.695De so as to obtain the best fit for 
t < 450t e. With this D we have t/t~ = 450t*. For comparison we also plot g(a)p~~ (dashed 
line), using the same D, as an even smaller D would be needed to improve the fit. 
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D=0.695De, which is significantly lower than the molecular dynamics 
values D=0.76D~ reported by Alder etal.  Ill) and D=0.78De found by 
Erpenbeck and Wood.  (12) The agreement is excellent, the maximum 
difference being about 5 %. The data of Ladd et aI. span a time range from 
t = 30t~ to t = 750te. Notice that such a close agreement requires a self- 
diffusion constant accurate to within about 2%, as in the diffusion 
approximation the correlation function p2(t) is proportional to (Dt)-7/2 for 
very long times. Similar results are found at mr3= 0.943, but at no -3 = 0.786 
somewhat larger differences appear at long times. 

3. D I S C U S S I O N  

The result presented in Fig. 2 demonstrates that already a relatively 
simple theory is capable of describing the orientational pair correlation 
functions. The main input quantity is the diffusion constant used. We have 
shown that the simulation data can be very accurately reproduced with a 
diffusion constant that is somewhat lower than the self-diffusion constant 
found in MD simulations. This is an indication that the self-diffusion 
constant depends on the relative position of the two tagged particles. 

Our calculations show that the stretched exponential behavior found 
by Ladd et al. can be understood as a transition phenomenon from the 
intermediate-time t -1/2 behavior to the asymptotic t -7/2 tail. It would be 
very interesting to make a similar comparison with simulations for the 
other angular correlation functions, in particular for po(t). 

The velocity factorization found by Ladd et al. is in a sense confirmed 
here, as the diffusion equation models p(L)(t), whereas the simulations are 
for p(Xl(t). 

The arguments used are of a hydrodynamic nature. So the theory 
presented should be applicable for other simple fluids as well. Natural but 
very difficult extensions of the theory presented here go in two directions. 
First there is the transition from the short-time behavior to the inter- 
mediate- to long-time behavior discussed here. It seems likely that an 
accurate sequence of descriptions will go through the following stages: At 
very short time the pseudo-Liouville operator has to be used, for inter- 
mediate times (1 < t / te< 10) the Liouville operator can be approximated 
by an appropriate sum of Enskog operators, and for longer times this sum 
of Enskog operators can be replaced by the diffusion operator. We are 
presently investigating along these lines. 

Another natural extension is to attempt to give an accurate description 
of the full stress tensor correlation function and related ones. The existing 
calculations (4'5) generally show the trend of predicting a too rapid decay 
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of the stress t enso r  a u t o c o r r e l a t i o n  f u n c t i o n  at  t imes  of the o rder  of 

15te. (13) In  view of  the resul ts  p re sen ted  in Fig. 1, an  ex t ens ion  of  the ideas 

p resen ted  here is l ikely to i m p r o v e  on  this. 
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