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Thermodynamics  and correlation functions of 
plasmas and electrolyte solutions 

by H. V A N  B E I J E R E N  and B. U. F E L D E R H O F  

Institut f/ir Theoretische Physik A, 
Rheinisch-Westf~ilische Technische Hochschule Aachen, 

5100 Aachen, Germany 

(Received 21 December 1978) 

We consider multi-component electrolyte solutions and plasmas in thermal 
equilibrium and define thermodynamic quantities for number densities which 
do not necessarily satisfy the condition of charge neutrality. It is shown that 
these quantities play a role in compressibility theorems for the pair correlation 
functions and in the generalized Debye shielding length. A fourth moment 
condition for the pair correlation functions is derived. We discuss to what 
extent non-uniform systems may be described in terms of local thermodynamics 
with added coulomb interactions. 

1. INTRODUCTION 

It  is well known that classical equilibrium systems containing freely moving 
charges are neutral in the bulk [1, 2]. Any  net charge distributes itself over the 
surface of the system; charge fluctuations in the interior are extremely small. 
Thermodynamic  quantities defined from the grand canonical partition function 
by means of a thermodynamic  limiting procedure are dominated by the neutral 
bulk. In non-uni form systems charge neutrality need not be satisfied locally, e.g. 
near the boundary  of an electrolyte solution electric double layers can be formed 
[3]. We show in this paper that it is then possible to work with local thermodynamic  
functions which depend on the local number  densities not necessarily satisfying 
the condition of electroneutrality. The  functions can be defined by the methods 
of statistical mechanics for non-uni form systems. In w167 2 and 3 we describe the 
procedure, emphasizing the peculiarities of coulomb systems. For  simplicity we 
use a model in which the solvent influences the coulomb interactions only through 
the dielectric constant, but  the formalism is easily extended to take full account of 
the polar properties of the solvent. 

In  w 4 we define correlation functions by functional differentiation of the 
Helmholtz free energy functional with respect to the density. It  is shown that the 
long range part of the pair correlation functions is conveniently expressed in 
terms of a renormalized interaction involving the screened electrostatic Green 
function. The  screening length is a generalization of the Debye length to higher 
density. Under  certain conditions it can be expressed in terms of the local thermo- 
dynamic functions defined earlier. In  w 5 we show that compressibility theorems 
for the correlation functions also involve these thermodynamic  functions. The 
relation to the usual type of compressibility theorem which follows from the grand 
canonical partition function is given in the Appendix. In  w 6 we show that the pair 
correlation functions satisfy a fourth moment  condition. The  moment  involves 
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1180 H. van Beijeren and B. U. Felderhof 

the local thermodynamic  functions and hence is of less universal character than the 
zeroth and second moment  conditions derived previously [4]. In  w 7 we treat the 
Debye-Hfickel  theory as an example and in w 8 we discuss under  what conditions 
the thermodynamic  functions can be used to describe non-uni form situations in 
terms of local thermodynamics with added coulomb interactions. As an application 
of the formalism in w 9 we evaluate the fluctuations of the total charge in a spherical 
volume element in a solution which on average is uniform and neutral. I f  the 
radius of the sphere is larger than the Debye length the fluctuations are propor- 
tional to the surface area, if it is smaller they are proportional to the volume of the 
sphere with an amplitude determined by the local thermodynamic  functions. 

2. EQUILIBRIUM CONDITIONS 

We consider an electrolyte solution consisting of ions with charges e~ in a 
neutral solvent at temperature T. The  solution is confined to a vessel of volume V. 
The  polar properties of the system are simplified and taken into account only by 
including the dielectric constant of the solvent in the coulomb interaction. More-  
over we assume that the medium outside V is uniform with the same dielectric 
constant, so that the coulomb interaction between ions is given by 

e~ep (2.1) 
rj)-- i;--rj I 

The short-range interactions between all particles, ions as well as solvent mole- 
cules, are fully included in the potential energy. Thus  we consider a multi- 
component  system with short-range interactions and with added coulomb inter- 
actions between the charged particles. All interactions are assumed to be transla- 
tionally invariant. Often one considers a further simplified system in which the 
solvent is treated as a structureless continuum. This is called the primitive model. 

We denote the average number  densities in thermal equilibrium by an s-com- 
ponent vector {n~(r)}-  n(r) (s is the number  of solvent and solute components).  
As we demonstrate in w 3 these satisfy equilibrium conditions 

#,(r ,  [ n ] ) + e ,  qS(r, [n])=/~,~, (2.2) 

where #~(r, [n]) is the chemical-potential of species a at r. The  latter has a func- 
tional dependence on the densities n(r ' )  in a restricted neighbourhood of the point 
r. The  average coulomb potential ~b(r) also depends on the average densities and 
in the absence of external electric fields is given by 

r.E e/~n/~(r ' )  
_ /~ r d r ' .  ( 2 . 3 )  

By construction qS(r) satisfies the electrostatic Maxwell equations in all space. 
The values of the constants {#~=} on the r ight-hand side of (2.2) may be re- 

stricted by dissociation equilibria, but  it is assumed that otherwise they can be 
prescribed arbitrarily. The  superscript z indicates that the {/t~ z } are related to the 
activities {z~} appearing in the grand canonical ensemble by 

lt~ z = k  T In (z~A~3), (2.4) 
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Thermodynamics of electrolyte solutions 1181 

where A~ is the de Broglie wavelength for species c~. For  a system of given shape 
and volume it follows f rom the grand canonical ensemble  that  to each set of values 
p~ there corresponds a set of average densities n(r)  satisfying (2.2). 

T h e  lef t -hand side of (2.2) will be called the electrochemical potential  of 
species c~. Of  course at equil ibrium this e q u a l s / ~ ,  but  for non-equi l ibr ium the 
lef t-hand side of  (2.2) is still defined whereas /~ :  has no meaning.  T h e  equi l ibr ium 
condition states that  at thermal  equi l ibr ium the electrochemical potentials are 
constant  th roughout  the system. For  suitable choices of potentials p~ the system 
is neutral. Then  the ions will be dis tr ibuted uni formly  apart  f rom small boundary  
effects. T h e  chemical potentials p0:(V) for which the system is neutral  depend 
slightly on the chosen volume V, because the functional dependence in (2.2) is 
slightly vo lume-dependen t  due to boundary  effects, but  they tend to a well defined 
limit p0~(oo) as the vessel becomes large in a regular manner  [5]. T h e  chemical 
potentials p0 ~ define a hypersurface S o in p=-space called the neutral  hypersurface.  

For  values pz different f rom p0 ~ the system is charged. For  a sufficiently large 
system the excess charges distribute themselves along the surface and their effect 
is screened f rom the interior within a distance of the order  of the Debye  length. 
T h e  bulk of the system is neutral  again. T h e  surface charge distr ibution can be 
found to a good approximat ion f rom the laws of electrostatics for ideal conductors.  
Suppose  p~ corresponds to a positively charged system. Then  by decreasing the 
p j  of the positively charged species and increasing those of the negatively charged 
ones the system will be driven back to neutrality. Hence  there must  be a 4) 0 
such that  

Pz = Po: + eq~0, (2.5) 

where e = {%}. We may compare  this equat ion to (2.2) in the interior of the system 
where n(r)  reduces to a set of almost un i form bulk densities and qS(r, In]) is almost 
constant, according to the laws of electrostatics. I t  follows then that ~b 0 is the 
electrostatic potential  in the interior and /J= and /J0 =, related by  (2.5), describe 
systems with the same bulk densities. T h e  difference between the systems des- 
cribed by  p~ and/J0 = is that  the former  possesses a net surface charge which pro- 
duces an electrostatic potential  in the interior, whereas the latter does not. We can 
define a modified potential  

q/(r) = ~(r)  -- q~o (2.6) 

and rewrite the equi l ibr ium condition in the form 

p(r,  [n]) + e ~ ( r )  =Po: .  (2.7) 

In  the interior the modif ied potential  N(r) vanishes approximately.  F r o m  electro- 
statics one finds that  the total charge is O ~ C~0 where C is the capacity of the ideal 
conductor  with the same volume.  T h e  capacity is of order eL, where L is the linear 
dimension of the system, so that  for fixed q~0 the total coulomb energy Q2/2C is 
also of order  L. Hence  in the the rmodynamic  limit the coulomb energy does not 
contr ibute  to the the rmodynamic  propert ies  per  unit  volume (with the exception 
of the specific Gibbs  free energies g= = #=~), nor  to those of the surface per  unit area. 
The  the rmodynamic  propert ies  per  unit  volume are entirely dominated  by the 
neutral  bulk of the system. In  part icular  the pressure p(pZ), as found f rom the 
grand canonical part i t ion function, equals p(Ito =) for p~ and p0 = related by (2.5). 
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1182 H. van Beijeren and B. U. Felderhof  

We shall denote this pressure function by p0(/~). It has the obvious proper ty  

e~(OPo/O~ z) = ~ e~n0~=0, (2.8) 

which is nothing else than the well known electroneutrali ty condition. This state- 
ment  was proven rigorously by Lieb and Lebowitz [5]. We note that for systems 
with a finite geometry,  boundary  effects can influence significantly the composition 
of the bulk. For  a t reatment  of systems with a plane geometry  see reference [6]. 

When additional one-body potentials { ~ ( r ) }  are imposed the equil ibrium 
condition (2.2) is changed to 

/~(r, [n]) + eq~(r, [n]) + Q ( r )  =/~=. (2.9) 

The  solution n(r)  is modified accordingly and by suitable choice of the potentials 
O(r )  any equil ibrium distribution can in principle be achieved. 

3 .  F R E E  E N E R G Y  F U N C T I O N A L  

The  statistical mechanics of non-uni form systems has been developed by 
Morita and Hiroike [7], De Dominicis [8], Percus [9], Stell [10], and others [11]. 
T h e  grand canonical partit ion function ~ is considered as a functional of the 
generalized activities 

z~(r) =z~ exp [--fl(1)~(r)] (3.1) 

or of their logarithms 

7~(r )  = In  z ~ ( r )  = f l ( /~= - ( l )~(r)).  (3 .2 )  

As shown for example in the review by Stell [103 the grand canonical distribution 
functions can be obtained from E by functional differentiation with respect to 
z~*(r) or y~(r). Here  we shall explicitly need the first two functional derivatives of 
In E with respect to 7~(r), which are 

61n 
(~y~(r) ----- n~(r), (3.3 a) 

62 In .~ 
67~(r)67~(r ,)=F~(r ,  r ') =n~(r)6~p6(r-- r ')  +F~p(r, r ~) 

=n~(r, r ') +n~( r )6~6( r  - r ') -- n~(r)n~(r'), (3.3 b) 

where n~  is the two-particle distribution function for species ~ and ti- 
T h e  Helmholtz  free energy is defined as a functional of the one-particle 

densities n~(r) by a Legendre transformation 

~ ( [ n ] )  = ffi"t(En]) + ffeXt(En]), (3.4 a) 

fl~,~i"t([n]) = - I n  E([y]) + ~ ~ n~(r )~(r )dr ,  (3.4 b) 
a V 

o~ext(En]) = ~ ~ n~ (r)qb~(r)dr. (3.4 c) 
a V 

In equation (3.4 a) the free energy o~ is separated into an internal and an external 
part. The  latter is simply the total potential energy due to the external potentials 
O(r) .  In (3.4 c) the qb must  be considered as given functions, not as functions of 
the density. T h e  functional derivatives of flint with respect to the densities can be 
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Thermodynamics of electrolyte solutions l 183 

expressed in te rms of direct correlation functions. Specifically we have for the 
first two derivatives 

8 ~  int 

fi 6n~(r--~ =7~(r), (3.5 a) 

62~i" t  62~" 
fl 6n~(r)6n~(r') - fl 6n~(r)bn~(r')' 

=--?=~(r ,  r ' ) = - - c , p ( r ,  r')+6=a6(r-r')/n=(r). (3.5 b) 

Note  that E~a a n d / ~ p  satisfy the Orns te in -Zern ike  relation [12] 

. . . . .  ~ 6n~(r) 67~(r" ) dr"  
- ~ ~ P ~ ( r ,  r )cT#(r , r ')dr"= ~ 67~(r" ) 6np(r') 

= 6=#6(r' -- r"). 
For  systems with 

energy as 

(3.6) 

coulomb interactions we can separate the internal free 

~i"t([n], T)=Y~ T) +Er176 (3.7) 

where the coulomb energy is given by 

1 E~~ =~ ~ ~ w=~(r, r')n=(r)n~(r')drdr', (3.8) 
=p 

with w~( r ,  r ' )  as defined in (2.1). T h e  chemical potentials p=(r, [n]) can be 
defined as 

6 f f  0 
/~=(r, [n])  = 6n=(r)" (3 .9)  

T h e  reason for making the separation (3.7) is that  the chemical potentials defined 
by  (3.9), as well as all other the rmodynamic  quantit ies which can be obtained f rom 
the free energy functional i f0 ,  are local functionals of  the densities. This  means  
that y(r )  depends only on the density fields n( r ' )  in the ne ighbourhood of r with a 
radius proport ional  to the Debye  shielding length. Mayer  [13] has shown this first 
by  devising a r e summat ion  of the divergent  virial expansion for the pressure of  an 
infinite system with coulomb interactions. He  found indeed that the pressure,  and 
as a consequence also the free energy density, separated into a coulomb contr ibu-  
tion of type (3.8) and a contr ibut ion which for un i form systems could be made 
plausible to have a range on the order of the Debye  length. Especially at low 
densities N[ayer 's  results coincide with those of Debye-H( icke l  theory. 

Equat ion (3.9) together  with (3.2), (3.5 a), (3.7) and (3.8) leads to the equi- 
l ibr ium condition (2.9). As explained in the preceding section, in the absence of 
external potentials the bulk of the system will he uniform, with electric double 
layers near the boundaries.  At the boundar ies  there will be characteristic wall 
effects which are convenient ly  described by the introduction of a surface phase 
with corresponding the rmodynamic  functions [6]. 

In  a non-un i fo rm system we can measure  the densities relative to a reference 
state n0(r ) by  writ ing 

n(r)  = no(r ) + n l ( r  ). (3.10) 
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1184 H. van Beijeren and B. U. Fe lde rho f  

By expansion about  the reference state we obtain  for  the chemical  potent ials  

#~(r, [n])=#~(r, [no] ) -kT  ~ ~ ~p~ r')nz/~(r')dr' 

-�89 ~ II c ~  ~ r', r")nllj(r')nlv(r")dr'drH+ ' ' ' ,  (3.11) 

where  the ~0 are the direct  corre la t ion func t ions  for  the reference state. T h e  
superscr ip t  0 indicates tha t  these func t ions  are ob ta ined  f rom i f0  by funct ional  
der ivat ion wi th  respect  to the densities, bu t  of  course  ~ 0  . . . = ~ p ~ . . .  for three 
or  m o r e  indices because  of  (3.8). F r o m  (3.11) one may  conc lude  tha t /*  is a shor t -  
ranged  funct ional  of  the densit ies also in n o n - u n i f o r m  systems,  p rov ided  all the 
direct  correlat ion func t ions  in the reference state are sufficiently short  ranged.  

Cons ider  in par t icular  the t h e r m o d y n a m i c  limit of  a large neutra l  sys tem with 
un i fo rm  densit ies n o ~_ {n0~ } satisfying the  condi t ion  o f  e lec t roneutra l i ty  e . n 0 = 
~e~no~ = 0. I n  such a state the chemical  po ten t ia l s / , (no)  =/ ,0  z lie on the neutral  
hypersur face  S0, and the direct  correla t ion func t ions  ~0 are t ranslat ional ly in- 
var iant  and shor t  ranged.  Choos ing  the densit ies n 1 (r) to be spatially un i fo rm we 
see tha t  the  chemical  potent ials  /,([n 0 + nl]  ) are also uni form.  T h u s  by  Tay lo r  
expans ion  we have der ived chemical  po ten t ia l s / , (n )  as func t ions  of  n which  do no t  
necessari ly satisfy the e lec t roneutra l i ty  condit ion.  Equiva len t ly  the chemical  
potent ials  can be defined in te rms  of  ( r e summed)  Maye r  funct ions  by  ex tending  
these defini t ions to n o n - u n i f o r m  and /o r  non -neu t r a l  systems.  Ei ther  way  it follows 
that  for  a sys tem with un i fo rm  densities, bu t  not  necessari ly satisfying the electro- 
neut ra l i ty  condi t ion,  the chemical  potentials  can be ob ta ined  f rom the free energy  
densi ty  f~ = ~ - ~  as 

/,(n) = ~f~ (3.12) 

By L e g e n d r e  t r ans fo rma t ion  we can define the pressure  as a func t ion  of  the 
chemical  potentials.  

p(/,) = _ fo  + ~ n~l~, (3.13) 

where  n as a func t ion  o f / ,  has to be solved f r o m  (3.12). F r o m  the equ i l ib r ium con-  
di t ion (2.2) it follows that  in a n o n - u n i f o r m  sys tem with  �9 = O  the  gradient  of  p 
is locally balanced b y  the electrostat ic field. N o t e  that  p(/,) differs f rom the funct ion 
po(/, z) defined in the previous  sect ion f r o m  the t h e r m o d y n a m i c  limit in the g rand  
canonical  ensemble .  Cons ider ing  these funct ions  in the same/*-space  we see that  

ep ~p0 P(/*) =P0(/*) on So, n o on S 0. (3.14) 
~/, 0/, 

T h e  func t ion  P0(/*) is degenera te  in the sense that  ~e~((?po/OFt~) = 0 everywhere  in 
/*-space. We con tend  that  the func t ion  p(/,) contains  more  physical  informat ion.  

4. RELATIONS BETWEEN CORRELATION FUNCTIONS 

Fo r  sys tems wi th  c ou l om b  interact ions  it follows f r o m  (3.5 b) and (3.7) that  
the direct  correla t ion func t ions  ~ can be split into a par t  given by  the long-range  
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Thermodynamics  of  electrolyte solutions 118 5 

interaction and a part of short range 

?~ = ~ ~  flw~. (4.1) 

Corresponding to the short-range direct correlation functions ~ 0 ,  we define a set 
of auxiliary quantities l# o, called the short range pair cluster functions (this 
nomenclature does not imply that the P~# are long-ranged functions, they have a 
longer range than the /~  o however) and connected to the ?~po by the Orns te in-  
Zernike relation 

- ~ S P=~~ r')~;p~ ", r')dr"=6=p6(r-r'). (4.2) 
7 

We may represent P=~(r, r'), ~=~(r, r '),  etc., as matrix kernels r- and C. Th e  
multiplication of two of these kernels is defined by 

( M N ) ~ ( r ,  r ' ) =  ~ S 21//=; (r, r ' )N~e( r ' ,  r ' ) d r ' .  (4.3) 
7 

With these conventions the Ornste in-Zernike relations (3.6) and (4.2) can be 
rewritten as 

~ =  - C  -1, (4.4 a) 

go = _ (Go) -1. (4.4 b) 

Since we see from (3.5 b) and (3.11) that the short-range direct correlation 
functions G ~ are functional derivatives of the chemical potentials 

~o(r, r ')  = -- fi(tSla(r)/~n(r')) , (4.5) 

it follows that the short-range pair cluster functions ~.0 are given by the inverse 
functional derivatives 

~~ ~')=kT(an(r)/ao(r')). (4.6) 

From (4.1) and (4.4) it follows that f: is related to i :~ by 

f: =(I  + fif :~ ~ f:~ (4.7) 

A more convenient relation is found by expressing the pair function i: in the 
form 

f= = ~.0 _ fl~=o U ~:o, (4.8) 

where the renormalized interaction U must  satisfy 

U = W - f l W f  =~ U (4 .9 )  

or equivalently 

U =(n +/~Wf=~ (4.10) 

Equations (4.7) and (4.10) show that r" and U develop from ~:0 resp. W by an 
alternating chain of short-range correlations and long-range interactions. Similar 
relations were previously derived by one of us in a semi-macroscopic theory [14]. 

For  W given by (2.1) we can express the renormalized interaction U in terms 
of a scalar function g~ as 

U~p(r, r')=e=e~g~(r,  r'). (4.11) 
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1186 H. van Beijeren and B. U. Felderhof  

F rom (4.9) it follows that gE satisfies the integral equation 

I I 1 ff l  elr - -  - -  e=e~F~ ( r  , r ' ) g ~ ( r  ' ' ,  r ' ) d r " d r ' ,  (4.12) g E(r, r ' ) = e l r _ r , i  fl r,, I Z  ^ o ,, 

f rom which we find, by acting with the Laplace operator, 

VZg~(r, r ') 4 r e  fl ~ Z e=epP=~~ r, r')gE( r ' ,  r ' )dr" -  47c b ( r -  r'). (4.13) 

This  is a generalization of the linear Poisson-Boltzmann equation occurring in 
Debye-Hfickel  theory [15] and ge(r, r ') can be identified with the electrostatic 
Green  function for the geometry  under  consideration. As a consequence of (4.8) 
and (4.11) the long-distance behaviour of all pair funct ions/%a(r ,  r ')  is given by 
the same scalar function g~:(r, r'). For  uniform systems this is most easily seen by 
Fourier  transforming (4.8), with the result 

f:(k) = f:~ - f lF:~ U(k) [ :~ (4.14) 

The  Fourier  t ransform U(k)  is found from (4.13) as 

(4~/e)e=ep (4.15) 
e=p(k) = k2 +(4rcfl/e) ~ e=e~fi'=~ ~ " 

=p 

T o  obtain the long range behaviour of [= we have to find the singularity of the 
r ight-hand side of (4.14) which is closest to the real axis. I f  indeed ~0 is of shorter 
range than U (in the Debye-Hfickel  case ~~ r ') is proportional  to a b-function 
b ( r - r ' ) ! )  then this singularity is found as a zero point of the denominator  in 
(4.15). Hence both  U and [= decay asymptotically as exp ( - / ~ r )  for large r, where 
/~ has to be determined from 

/~72 - ( 4 u f l / e )  ~ e~eaP=p~ = 0. ( 4 . 1 6 )  

I f  the range of [~0 is much shorter than ~--1  we may replace/~=~~163 approxi- 
mately by P~~  and (4.16) simplifies 

. / ~ 2 ~ K  2 4~ t~  0n= ------ e=efl , 
e =~ 0yp 

(4.17) 

where we have used (4.6) and the fact that in a uniform system 

Dn/Cp = ~ (5n(r) /bp(r ' ) )dr ' .  

In the sequel we shall refer to A = K  -1 as the generalized Debye-Hfickel  
screening length. We have to keep in mind however that in fact ~2 describes the 
asymptotic exponential  decay of the pair correlation function and K equa ls / s  only 
if the range of the short range correlation functions p=p0 is much  smaller than 
/~-a .  Stell and Lebowitz [16] have introduced a generalized Debye screening 
length which looks very similar to (4.17), but  instead of our [=0 they used the pair 
correlation function of a reference system in which only short-range interactions 
are present. Fur thermore  H~ye and Stell [17] derived a quanti ty similar to K for a 
one-component  system with neutralizing background, but  they expressed little 
hope of generalizing their relation to many-component  systems [18]. 
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Thermodynamics of electrolyte solutions 1187 

5. COMPRESSIBILITY THEOREMS 

In the preceding section we have shown that  the pair correlations and re- 
normalized interactions can be calculated f rom the shor t - range direct correlation 
functions G ~ and the long-range interactions W. The  derived expressions are valid 
for arbi trary geometry.  Here  we consider the the rmodynamic  limit of a neutral  
system where all the above functions become translationally invariant. We show 
that the integrals of the various correlation functions can be related to thermo-  
dynamic derivatives by  generalized compressibi l i ty  theorems.  

F rom (4.5) we see that  

S t:~ r -  r ' ) d r ' =  - f l (0p /~n)o ,  (5.1) 

where the subscript  0 indicates that  the derivative is to be evaluated for the neutral  
state. F r o m  (4.6) it follows immediate ly  that correspondingly 

~'~ - r')dr" = kT(On/~p)o. (5.2) 

In  (4.17) we have defined a screening paramete r  K in te rms of these derivatives. 
I t  follows f rom (4.11) and (4.15) that  

gE(r - r ' ) d r '  = (4n/eK2). (5.3) 

F r o m  (4.8), (4.11), and (5.3) we find 

(On)  _ k T ( O n ~ . 4 n e e  . (On~ , 
j e--(, '-,")d,"=kT ~ o \0~'/o ~K 2 \~V/o 

=kT(On~ 4 n k T d d ,  (5.4) 
\81'/o ~K 2 

where we have int roduced the vector  

d =(8n18#)o.  e. (5.5) 

With the aid of (3.3 b) and (3.5 b) the theorems (5.1) and (5.2) can be rewrit ten as 

n o -  1 - S  c~ r - r ' ) d r '  = fl(Sg/On)o, 

n o + ~ F~ - r ' )dr"  =kT(Cn/Sp) o, (5.6) 

where we have introduced the diagonal matr ix  n o with elements  n0~p=n0afi~p. 
I f  we fur ther  introduce the pair correlation functions h,a(r ) by 

F~a( r ) = no~noah~a(r), (5.7) 

then theorem (5.4) becomes 

+ n0 n0  h.(,-- , - ' )d,- '  = k T (  
4nkT  

\Sfffl/0 eK 2 d~da. (5.8) 

T h e  second t e rm on the right represents a peculiar modification of the usual form 
of fluctuation theorem. F rom (3.2), (3.3) and (5.7) it follows that  (5.8) can also 
be writ ten 

no=3=~ + n0=no~ ~ h~p(r -- r ' )dr"  = k T(~no=/Oy~)o . (5.9) 
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1188 H. van Beijeren and B. U. Fe lde rhof  

In  the A p p e n d i x  we show this on the basis of  pure ly  t h e r m o d y n a m i c  arguments .  
T h e  f o r m  (5.9) agrees wi th  the usual  der ivat ion of  the f luctuat ion t heo rem f rom 
the g rand  canonical  ensemble .  

Le t t ing  bo th  sides of  (5.8) act on e and using (4.17) and (5.5) we find 

~ epnopk~(r 12)dr2 = -- % (5.10) 

T h i s  shows that  the average charge  of  the  screening c loud  about  each ion is equal  
and opposi te  to that  of  the ion, i.e. in the neutra l  state each ion is fully screened.  
Us ing  e .  n o = 0  this relat ion also follows immedia te ly  f r o m  (5.9). T h e  relat ion 
(5.10) is k n o w n  as the z e r o t h - m o m e n t  condi t ion.  I n  the  next  sect ion we derive 
co r r e spond ing  second and f o u r t h - m o m e n t  condit ions.  

Final ly  we derive an expression for the inverse of  the compressibi l i ty ,  us ing 
(3.14) and (5.6) 

= X .0 n0  kT[n0 c 0(r_ r')d,']. 
ap nO 

H e r e  x~ = noJn o is the concen t ra t ion  of species a. I n  the next  section we show how 
(5.11) can be t r ans fo rmed  to an express ion involving the  pair  correla t ion funct ions  
hap instead of  the direct  corre la t ion func t ions  G~ ~ 

6. SECONB AND FOURTH MOMENT CONDITION 

T h e  second and four th  m o m e n t  condi t ions  give relations similar to (5.10) 
with addit ional  factors/ '12 2 and r12 4 in the  in tegrand.  We  follow the m e t h o d  of  
Mi tchel l  et al. [19], who  used  it to derive the s e c o n d - m o m e n t  condi t ion ,  first 
f ound  in a different fashion by  Sti l l inger and Love t t  [4]. 

I t  is convenien t  to in t roduce  the Four ie r  t r ans forms  

C ~ ( k )  =%/(n0~n0~ ) S exp ( - ik  . r 12) c~(rl 2)drl 2, 

H ~ ( k )  =x/(no~nop ) ~ exp ( - i k .  rla)h~,(r12)dr12. (6.1) 

W i t h  these definit ions the Orns t e i n -Z e rn ike  equa t ion  (3.6) for  a un i fo rm sys tem 
can be wri t ten  as 

[6~ - C~v(k)][67~ + H ~ ( k ) ]  = 6~,  (6.2) 
7 

or in matr ix  nota t ion  

[I - C ( k ) ] [ I  + H ( k ) ]  = I. 

I t  is plausible tha t  C(k)  has a k-expans ion  of the f o r m  

4n~v/(no~no~)e~ep k-2 + f Cafl(2n)k 2n~ f 
C ~ ( k )  = -- ek T 

n = O  n = - - 1  

(6.3) 

C~p(2n)k 2n. (6.4) 
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Thermodynamics of electrolyte solutions 1189 

The  first term originates from the long-range coulomb interaction in (4.1), whereas 
the remaining series represents the Fourier  t ransform of the short-range direct 
correlation function c=~~ The  Mayer  resummation of the cluster expansion 
for coulomb systems [13, 20-23] strongly suggests that the latter decays as 
exp - 2 ~ r l  2) at large distance, where ~ is the Debye shielding parameter  

I.~_T -11/2 K= 4n ~ noee 2j . (6.5) 

If this is correct all moments  of this function exist and its Fourier  t ransform can 
be expanded as 

~ e x p ( - - i k  rl2)c=lj~ = ~ ( - -1)~ �9 (2rn~-l)! k2m I r122mcap O(rl2)dP12' (6.6) 
rn = 0  

where we have used the isotropy of c~B~ Hence we have 

( - 1 ) "  (6.7) CaP (z ") =x/(n0~n0 t~) (2n + 1 ) ] ~ r l  2 Z"c~a~ 2 ) d r l  2' 

From (6.2) and (6.4) it fol lows that the series expansion of the pair correlation 
function must  have the form 

H~#(k) = ~ H~o(2")k 2", (6.8 a) 
n = 0  

( - 1 ) "  
H'P~2") =v'(n~176 (2n + I)! S raz2"h,p(ra2)dr12 �9 (6.8 b) 

I f  the coefficients C,a (2") are known, then the Har (2") can be found with the aid of 
(6.2). As was shown by Mitchell  et al. [19], knowledge of C,a (-2), as given in (6.4), 
is sufficient to obtain H,O (~ and a special linear combination of the H~a (2). The  
resulting expressions are called the zeroth and second-moment  conditions. Here  
we use the knowledge of C~a (~ as given by  (5.6), to express a special linear com- 
bination of the H,p ~4) in tel:ms of thermodynamic  derivatives. 

It  is convenient  for the analysis of (6.3) to write C,a (- z) as 

C ( - 2 )  = _ _ / s  ' (6.9) 

where c has components  c a = tc-l(4rCnoae~2/ehT) 1/2. Apparent ly  c .  c = 1 so that 
c c  is a projector. We introduce the complementary projector 

P = I - c c ,  ( 6 . 1 0 )  

which projects onto the space of neutral compositions in the sense that ~aP~a(6na/ 
~/noa ) = 6n~/x/'no~ implies ~e~3n~ = O. 

We start solving (6.3) by comparing coefficients of k 2n. For  n = - 1 we find 

C(-2)(I  + H (~ = --1r + H (~ =0,  (6.11) 

so that 

H (0)  . C ~--- - -  C~ 

I + H ~~ = P ( I  + I-I (~ = ( I  + H(~ 

(6.12 a) 

(6.12 b) 
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1190 H. van Beijeren and B. U. Fe lde rho f  

where  we have used the s y m m e t r y  of  H(k).  T h e  p rope r ty  (6.12 a) is equivalent  to 
the z e r o t h - m o m e n t  condi t ion  (5.10). 

C o m p a r i n g  coefficients of  k ~ in (6.3) we find 

(I - C(~ + H (~ -- C ( -2 )  H (2)=  I .  (6.13) 

Mul t ip l ica t ion  by  I - P f r o m  r ight  and left and use of  (6.12 b) yields 

- ( I  - P ) C ( -  2)H(2)(I - P) = I - P, (6.14) 

/s H(2). c = l .  (6.15) 

T h e  latter equa t ion  is the s e c o n d - m o m e n t  condi t ion  [4] 

e~epno,nop ~ rlz2h~p(r12)dr12 = -3ekT/2rc. (6.16) 

Mul t ip l ica t ion  of  (6.13) f r o m  the left wi th  | - P and  f r o m  the  r igh t  wi th  P yields 
a relation 

(I - P)(I - C ( ~  + H (~ = - ~ : 2 ( I -  P ) H ( 2 ) P  (6 .17)  

which  will be used later. Mul t ip l ica t ion  of  (6.13) to the left and to the r ight with 
P finally yields 

P ( I  - C(~  P ( I  + H (~ = P. (6 .18)  

This  shows tha t  H (~ can be ob ta ined  by  inversion of  I - C (~ wi th in  neut ra l  space. 
Equa t ion  (6.18) m a y  be checked  explici t ly wi th  the aid of  (5.6), (5.8), (6.1), and 
(6.10). 

We  m a y  use (6.18) to express  the compress ibi l i ty  t heo rem (5.11) in terms of  the 
pair  corre la t ion func t ions  H.  W i t h  the aid of  (6.1) this equat ion  can be rewri t ten  as 

O p _ k T  no1/2 . ( I - C ( O ) )  �9 no 1/2 (6.19) 
On n 

where  the vec tor  no 1/2 is given by (not/2)~=,v/no,. We have Pno  1/2= no 1/2, hence  
we can use (6.18) to re-express  (6.19) as 

81) k T  
0 ~ - ~  - n01/2 " P ( I - C ( 0 ) ) P  ' n01/2,  

h T  
= - -  n01/2 �9 (J + H ( 0 ) ) -  t . n 0 t / 2 .  (6.20) 

n 

T h e  inverse of  I + H (~ has to be taken in neutra l  space, tha t  is the space of  all 
matr ices  wh ich  are b o t h  to the left and to the  r igh t  o r thogona l  to  c. 

C o m p a r i n g  coefficients of  k 2 in (6.3) we find 

( I - C (~ H (2) - C ( - 2) H(, , )  _ C(2)( I + H (~ = 0. (6.21) 

Mul t ip l ica t ion  wi th  I - P f rom left and r ight  yields 

_ / < 2 ( i  _ p)  H (4 ) ( I  _ p )  = ( I  - P ) ( I  - C(~  P H ( 2 ) ( I  - P) 

+ ( I  - P ) ( I  - C ( ~  - P)  H ( 2 ) ( I  - P ) ;  ( 6 . 2 2 )  

this equa t ion  was a l ready ob ta ined  in reference [19]. Subs t i tu t ing  (6.15) and the 
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Thermodynamics of electrolyte solutions 1191 

adjoint  of  (6.17) we find 

x 4 ( I  - P ) H ( 4 ) ( I  - P )  = ( I  - P ) [ ( I  - C ( ~  + H ( ~  - C (~  

- (I - C(~ - e).  (6.23) 

F r o m  (4.17), (5.6) and (5.8) we obtain  

(J - C(~ + H(~ - C (0)) = J - C (0) - (Ic2/K2)r162 (6.24) 

so that  

r . H(4) . c = __  (/r 1. (6.25) 

Us ing  (6.8) we can wri te  this as the four th  m o m e n t  condi t ion  

e~epno~no~ ~ r124h~p(r12)dr12 = --30ekT/nK 2. (6.26) 
~p 

F r o m  (4.17) and (5.1) it follows that  the integral  can be expressed in terms of 
t h e r m o d y n a m i c  derivatives, or al ternatively in t e rms  of  an integral  over the shor t -  
range par t  of  the direct  correlat ion funct ion.  As Mitchel l  et al. [19] remarked,  the 
fou r th  m o m e n t  condi t ion  cannot  be expressed in terms of  the c o u l o m b  interact ion 
alone, bu t  also involves the shor t - range  interact ions.  H e n c e  it does not  have the 
universal  charac ter  of  the zero th  and second  m o m e n t  condi t ions  (5. ! 0) and (6.16). 
None the less  the condi t ion  m a y  provide  a useful  cons is tency  check in approx imate  
calculations.  W e  can see that  h igher  m o m e n t s  of  the  pair  corre la t ion func t ion  
cannot  be expressed in terms of  t h e r m o d y n a m i c  derivatives only. 

7. DEBYE--H1]CKEL THEORY 

Le t  us consider  how D e b y e - H f i c k e l  t heo ry  fits in wi th  the formal i sm descr ibed 
in the p reced ing  sections. T h i s  t heo ry  is based  on the  a s sumpt ion  tha t  to lowest 
approx ima t ion  in the densities the  chemical  potent ia ls  of  the ionic species are 
given by  

/~(r)  = k T  In [n~(r)/n~ +] +u~(nl, T), : ( = 2 ,  . . . , s, (7.1) 

where  the n,  + are s t andard  densities and  the funct ions  u,(nl, T) refer to the 
behav iou r  of  a single :(-ion in the  pure  solvent.  I t  is conven ien t  to choose  the 
s tandard  densit ies n~ + such that  t hey  satisfy the e lec t roneutra l i ty  condi t ion  
~e~n~ + ~0. I t  follows f rom (3.11) and (7.1) tha t  in D e b y e - H f i c k e l  theory  the 
shor t - range  direct  correlat ion funct ions  in a neutra l  state n o show ideal gas 
behaviour  

~ ~  r ' )  = -no=-lf~p6(r-r ') ,  (:(, f l = 2 , . . . ,  s). (7.2) 

Cor re spond ing ly  we find f r o m  (4.2) for  the shor t - range  pair  cluster  funct ions  [:0 

~'=p~ (:(, f l = 2  . . . .  , s) (7.3) 

and for the  pair  correla t ion func t ions  f r o m  (3.3 b), (4.8) and (5.7) 

h ~ ( r -  r ' )  = -fle~epgE(ir-r'[) (:(, f l = 2 , . . . ,  s), (7.4) 

where  the G r e e n  func t ion  is given by  

gE(r) = exp ( - Er)/er, (7.5) 
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1192 H. van Beijeren and B. U. Fe lderhof  

with the Debye-Hf icke l  parameter  

tr = ( 4 n  ~ no,e,2/ekT) 1/2. 

For  the functions C(k)  and H(k )  defined in (6.1), (6.3) we obtain the following 
expressions with the aid of (2.1), (3.5 b), (4.1) and (7.4) 

N2 /{2 
C(k) --- -~-~ r162 H(k )  - -  k2 + K2 cr (7.6) 

with r defined below (6.9). By expanding H in powers of k we easily check that  the 
m o m e n t  conditions (6.12), (6.15) and (6.25) are all fulfilled. Fur the rmore  (6.18) 
is trivially satisfied. 

T h e  compressibi l i ty of a Debye-Hf icke l  system follows f rom (5.11) to have the 
ideal gas form 

~p/On=kT. (7.7) 

By integration we obtain the ideal gas express ionp = nk T f o r  the pressure.  Together  
with (7.1) this is sufficient to obtain all desired the rmodynamic  functions for a 
neutral  Debye-Hf icke l  system. All of these turn  out to have the ideal gas form. 

On the other hand we may  compute  corrections to the ideal gas thermodynamics  
f rom the pair correlation functions h~p, e.g. by  a charging procedure  or by using 
the virial equat ion of state or the energy equat ion of state, given respectively as 

1 
p = n o k T - -  ~ ~ ~ n0~n0p[1 +h~p(r)]r �9 8~0~(r) dr, (7.8 a) 

~ Or 

3 1 
u =~ nokT+ ~ ~ ~ no~nop[1 +h~( r ) ]  ~p(r )dr .  (7.8 b) 

For  example,  for the free energy density we find the Debye-Hf icke l  correction 

fDI-I = _ k Ttr /12 n (7.9) 

and hence we may  obtain similar corrections for pressure,  chemical potentials, etc. 
Th is  leads us to the following remark :  it is often said that  Debye-Hf icke l  

theory  is asymptotical ly exact as the ion-densities approach zero. What  is meant  is 
that  this theory correctly produces  the leading corrections to the ideal gas expres- 
sions for the the rmodynamic  quantit ies of a dilute ionic solution. I t  does not mean 
that  the theory is completely internally consistent. T h a t  is clearly not the case; 
start ing f rom the ideal gas expressions (like (7.1)) for the the rmodynamic  quantities 
we arrive through (7.8 a) or (7.8 b) at expressions like (7.9), which embody  correc- 
tions to the ideal gas laws. 

I t  is wor th  ment ioning that precisely the same internal inconsistencies exist in 
the mean spherical model,  in t roduced by  Waisman and Lebowitz  [24]. Indeed  in 
the limit of vanishing ion diameters  this model  becomes identical to Debye-Hf icke l  
theory. 
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Thermodynamics of electrolyte solutions 1193 

8. LOCAL THERMODYNAMICS AND GENERALIZED SCREENING LENGTH 

T h e  formal ism developed in w167 3 - 6  can be regarded as a natural  extension of 
Debye-Hf icke l  theory to higher ion densities. I f  the range of the short-range 
correlation functions is m u c h  shorter  than the generalized Debye  shielding length 
/~-1 defined by  (4.16), some drastic simplifications are possible. 

First, as discussed already in w 4 , / ~  may  be replaced by  K,  which was defined 
by (4.17) in te rms of the rmodynamic  quantities. 

Secondly, the Debye  shielding length is the typical length scale for spatial 
non-uniformit ies  involving deviations f rom electroneutrality,  as can be seen for 
example f rom the theory of electrical double layers [3]. T h e  reason, of course, is 
that  all local charges are shielded by a cloud of opposite charge with an extension of 
a few Debye  lengths. I f  the range of the short- range correlation functions is m u c h  
shorter  than  the Debye  length, non-local  the rmodynamic  relations of the type 
(3.11) may  be replaced by local equi l ibr ium relations (that is all t he rmodynamic  
quantit ies at a given posit ion depend only on the rmodynamic  variables at the same 
position and the functional relations between these quantit ies are the same as in 
uni form equil ibrium).  T o  the local the rmodynamics  the coulomb interactions mus t  
be added, just  as in Debye-Hf icke l  theory. 

In  fact, if we look at the length scale of the Debye  length the complete formal ism 
can be reduced entirely to Debye-Hf icke l  theory involving what might  be called 
dressed ions. T o  see this first notice that  on this length scale the short- range pair 
cluster functions are of  the form 

with 

(8.1) 

n' = A �9 n, e' = A �9 e. (8.4) 

We can easily check that  in this representat ion the matr ix  W given by (2.1) trans- 
forms to 

W'(r) = A W ( r ) A  ~ = 
e'e '  

(8.5) 
8r 

F r o m  (4.7), (4.10) and (4,13) it follows then that  the matr ices  ~:' and O ' ,  as well 
as the Green  function gr, are of the Debye -H/ i cke l  form. However  the charges 

~, po = k TSn~/8#~ (8.2) 

according to (4.6). Hence  f:0 is a real, symmetr ic  sxs-matrix and can be diagonalized 
by an orthogonal  transformation, .viz.  

~0, = A ~ 0 A * ,  (8.3) 

where A is some orthogonal matrix. The eigenvectors v (v) of [~o, with elements 
vu(V) =Aunt , can be interpreted as classical quasi-particles,  which are just  linear 
combinat ions of the s particle species present  in the solution. Especially if the off- 
diagonal elements  of ~0 are relatively small, v (~) can be interpreted as a dressed ion 
of species v, in which a particle of species v is sur rounded  by  a cloud of other 
particles generated by the shor t - range pair  cluster functions ~0. Densit ies and 
charges of the quasi-particles v are given by  the relations 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
G
e
r
m
a
n
 
N
a
t
i
o
n
a
l
 
L
i
c
e
n
c
e
 
2
0
0
7
]
 
A
t
:
 
2
0
:
2
9
 
2
2
 
M
a
r
c
h
 
2
0
1
1



1194 H. van Beijeren and B. U. Felderhof  

mus t  be replaced by  the renormalized charges e ' .  and ~2 by  

K 2 =(4g/skT)  Z ,2~-, o,=(4~c/ekT) ,^  o, , E e .F. ,  e, =(4g/ekT)  E e2,u~ e v -r~vv 

v vl~ v #  

in accordance with (4.6) and (4.17). 
Now the question arises under  what  c i rcumstances the range of the short- range 

correlation functions is indeed m u c h  shorter  than the Debye  shielding length. The  
leading correction to the short- range direct correlation function, resulting f rom the 
coulomb interactions between the ions and consistent with (3.5) and the D e b y e -  
Hfickel correction (7.9) to the free energy density, is 

1 
%P~ = 2  ekTr - . (8.6) 

T h e  typical range of this function is �89162 which is not small compared  to the 
Debye  shielding length. In  addition to (8.6) there exist contr ibut ions to the short-  
range direct correlation functions result ing f rom shor t - ranged interactions like 
hard core repulsions, which have a typical range of the order of the hard core 
d iameter  d. I f  these contr ibut ions dominate  the electrical contr ibut ions the condi- 
t ion for the validity of the Debye-Hf icke l  approximat ion  may  still be satisfied. T o  
obtain a criterion for this we may  compare  the contr ibut ions to d/~/~3 n f rom the two 
parts  of  the shor t - range direct correlation function. T h e  electrical part  contributes 
on the order of kTK3/50n 2, whereas the hard core part  contr ibutes on the order 
k Td 3. Hence we obtain the condition 

50nd3nK- 3 >> 1. (8.7) 

Of  course we have to require, in addition, 

ted ~ 1. (8.8) 

In  laboratory plasmas the densities are usually far too small (typically n ~  
1016 c m - 3 )  to satisfy (8.7). Perhaps  the plasmas generated by  pellet implosion are 
an exception, but  these certainly are quite far removed  f rom equil ibrium. In  the 
interior of stars we can easily find densities in the order  of n~1021 cm -3,  such 
as needed to obtain appreciable contr ibut ions to ~/,/0n f rom the hard-core  parts  of  
t ~ (assuming d ~  5A). In  that  case (8.7) is fulfilled if we require tc-1/> 50 A. T h e  
latter requ i rement  leads to tempera tures  > 5 • 1 0  6 K, as follows f rom (6.5). Such 
tempera tures  do occur in the interior of stars, b.ut then light elements  like hydrogen 
and hel ium are complete ly  ionized and the remaining nuclei have an effective hard 
core diameter  ,~ 1 ,~. So we havd to require in addition the presence in fair amounts  
of relatively heavy elements to satisfy (8.7) at these temperatures .  

In  aqueous electrolyte solutions the large value of e, which is about  88, helps 
to increase K -1, but  the comparat ively  low tempera ture  makes it impossible to 
satisfy (8.8) at densities where the shor t - range interactions contr ibute  appreciably 
to O/~/On. Yet there is one interesting case where a non-tr ivial  reduction to a D e b y e -  
Hfickel system may, at least in principle, be possible. Th is  is the case where there 
exists a strong tendency to fo rm dimers  between ions of opposite charge. We could 
imagine oppositely charged ions to have a coulomb energy >> k T if they are close 
enough together  (this was suggested by Mayer  [13] already in 1950). In  that case 
the main contr ibut ions to the direct correlation funct ion of these particles may  
come f rom the coulomb interaction in configurations where the particles are within 
a distance m u c h  smaller than the Debye  length f rom each other. 
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Thermodynamics of electrolyte solutions 1195 

We  es t imate  this effect by  a s suming  tha t  for short  d is tances  the shor t - range  
direct  corre la t ion  func t ion ,  due to c o u l o m b  in te rac t ions  is g iven  approx ima te ly  by  

( e~%~ t Z=Z~e2~ c=p~ = exp \ ekTrJ - 1 = exp ghTr } - 1. (8.9) 

For  Z=Zp = - 4  and  Z=Z~ = - 6  and  for some values  of r be t w e e n  4 and  6 -~ the 
m a g n i t u d e  of C O is g iven in  the table.  T h e  c o n t r i b u t i o n s  to ~y~/On~ f rom this  can 
be es t imated  as follows: flOy=/~n~lO s ~3 for ZaZ~=-4 and  ~ 1 0 6  A 3 for 

Z~Zp = - 6. Fo r  this  to a m o u n t  to at least 10 per  cent  of the ideal gas c on t r i bu t i on ,  
one m u s t  have n=, n~ > 10 - 6 ~k - 3 for Z=Z~ = - 4 and  n=, n~ > 10 - v ,~ - 3 for Z~Z~ 

- 6. Fo r  the D e b y e  l eng th  this  leads to re- 1 < 40 ,~ for Z=Z~ = - 4 and  so- i < 90 A 

for Z=Z~ = - 6. T h i s  wou ld  imp ly  that  for 2 - 2  and  2 - 3  electrolytes it wou ld  indeed  
be possible  to have app rec i ab l e  correct ions  to D e b y e - H f i c k e l  t heo ry  wi th  a good 
separa t ion  be tween  the range of the sho r t - r ange  cor re la t ion  func t ions  and  the 

Debye  length.  

c,~~ for Z, Zp~- - 4  and Z~Zp= -6. 

r/A Z~Z e = -4  Z=Z e = -6 

4.O 55O 129OO 
4-2 407 8220 
4.4 310 5450 
4.8 192 2660 
5.2 128 1451 
5.6 90 863 

H o w e v e r  we have to be very  caut ious  for a n u m b e r  of reasons.  F i r s t  we see 
f rom the table  tha t  the  value of c~ changes d ramat ica l ly  in  the range  abou t  
r ~ 4  A. I n  mode l  ca lcula t ions  values  of abou t  4 ,~ are c o m m o n l y  used  for the 
effective ha rd  core d iameter ,  b u t  it is clear tha t  the  resul ts  sketched here are 
ex t remely  sensi t ive to this  value.  A somewhat  larger d iamete r  could comple te ly  
des t roy the inf luence  of the d imer iza t ion  effect, whereas  a s l ight ly smal ler  d iamete r  

wou ld  enhance  it drast ical ly.  
Secondly ,  if the potent ia l  energy  of an ion pair  is ~ - k T  this pair  is very likely 

in a b o u n d  state. So we m u s t  w o n d e r  if we should  no t  regard the pair  as a molecule  
u n d e r  these c i r cums tances  and  if we should  no t  use q u a n t u m  mechan ics  ins tead  of 
classical mechan i c s .  However ,  if we calculate  the radial  q u a n t u m  n u m b e r  for a 
state of energy  - lOkT, t rea t ing  the ion -pa i r  as a pair  of po i n t  charges wi th  
cou lomb  in te rac t ion  Z~Z~e2/gr, we find an es t imate  of n ~ 100-500 .  For  such large 
q u a n t u m  n u m b e r s  the classical a p p r o x i m a t i o n  shou ld  be very  good. I n  add i t ion  
we f ind tha t  the energy  difference be twe e n  n e i g h b o u r i n g  q u a n t u m  states is on ly  a 
f rac t ion of kT so that  i ndeed  the ions can move  ra ther  freely wi th  respect  to each 
other.  I t  looks as t h o u g h  the concep t  of molecu le  fo rma t ion  is no t  needed  to 
describ, e the  ion  pairs, as long as they  stay so far apar t  f rom each o ther  tha t  their  

in te rac t ion  is pu re ly  coulombic .  
F ina l ly  we m u s t  ask the  ques t ion  if, for in te rac t ions  which  are so short  ranged,  

the  inf luence  of the so lvent  on  the cou l omb  in te rac t ions  can be descr ibed  s imply  
by  m e a n s  of a dielectr ic cons tant .  I n  any  case we ough t  to take in to  accoun t  the 

M.P, 4 H  
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1196 H. van Beijeren and B. U. Felderhof  

molecular  s t ructure of the solvent in the case of small separations between the ions. 
In  spite of these objections it does not seem impossible that  certain electrolyte 

solutions with high ion charges could be described by  a generalized Debye-Hf icke l  
model  and it might  be worthwhile  to investigate this point  in more  detail. 

9. CHARGE FLUCTUATIONS 

Compressibi l i ty theorems of the fo rm (5.4) are int imately connected with ex- 
pressions for the fluctuations ((AN~) 2) in the total n u m b e r  of particles of species 
c~ in a volume element  larger than the range of the correlation function. By the 
usual a rgument  we find that ((AN~) 2) is proport ional  to the size of the volume 
element.  If, however,  we calculate the fluctuations of the total charge ((AQ) 2) in 
this way, we find f rom (5.4) that  a cancellation occurs so that  the charge fluctua- 
tions vanish. Th i s  shows that  charge neutral i ty is mainta ined to a strict degree. 
We demonst ra te  here that  ( (AQ) 2) is proport ional  to the surface area of the 
volume e lement  under  consideration. 

We calculate in part icular  the charge fluctuations in a sphere of  volume g in a 
spatially un i form neutral  solution. We use local thermodynamics ,  as described in 
the last section, and assume that  the shor t - range pair  cluster function [:0 can be 
replaced by a delta function. T h e n  it follows f rom (4.8), (4.1 1), (4.17) and (5.2) that  

( (AQ) 2) = ~ e -  ~( r  - r ' ) .  e d r  d r ' ,  (9.1 a) 
v 

V k T  4n ---4n-n S , (9.1 b) 

with 

1 
Sv = ~  S~ g r ( r  - r') dr dr'. (9.2) 

v 

T h e  integral S v can be calculated f rom (4.13) where again we replace f:0 by  a delta 
function. In  order to find the integral ~ v g E ( r - r  ") dr' it then suffices to solve 
the equat ion 

V 2 q~ - K 2 ~b = - (4n/~)p, (9.3) 

for a charge density p(r) which is uni form inside the sphere and vanishes outside. 
Integrat ing the result  

4np 
~b(r) - ~  - ( 1  + K R )  exp ( - K R )  _Kr~ 

s i n h  
-- Kr  ] (r < R) (9.4) 

once more  over the sphere, we find 

Sv _ eK 24n - 3  ~ exp ( - K R ) ( K R  cosh K R -  sinh KR)  , (9.5) 

where R is the radius of the sphere. Hence  

ekT 
((AQ) 2) = - ~ -  (1 + K R )  exp ( - K R ) ( K R  cosh K R -  sinh KR),  (9.6) 
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Thermodynamics  o f  electrolyte solutions 1197 

which shows that  for R >> K - 1  

((AO) 2) ~ �89 T K R  2, 

For  R ~ K - 1  

(R >~ K -  1). (9.7) 

((AQ) 2) ~ � 8 9  3 = V e  " -ff~" e ( R  ~. K -  ' )  (9.8) 

so that  in this limit screening has no effect and the size of the charge fluctuations 
is determined by  the local thermodynamics .  

I f  we do not make the assumption that  ~0 can be replaced by  a delta-function, 
but  still require that  F:(r) decays exponential ly for large r with a decay length A, 
our results remain qualitatively the same. F r o m  (9.1 a), which is always valid, it 
follows that  also in that  case only a surface layer with a width proport ional  to A 
contr ibutes to the charge fluctuations. Hence  for a volume with a radius >~A the 
charge fluctuations are proport ional  to the surface area again. On the other hand 
for a volume with a radius ~ A it is still t rue that  shielding is not effective and the 
result (9.8) will be approximate ly  valid. 

10. CONCLUSIONS 

As we have shown, in ionic solution theory it is possible and useful to introduce 
local the rmodynamic  functions,  e.g. the chemical potentials,  which depend on the 
local n u m b e r  densities of all components .  The  latter need not satisfy the charge 
neutral i ty condition. T h e  functions are defined with the aid of the statistical 
mechanics  of  non-un i fo rm systems, but  only for the neutral  case do they coincide 
with the the rmodynamic  functions obtained f rom the grand canonical part i t ion 
function in the the rmodynamic  limit. We  have shown that  they occur naturally in 
compressibi l i ty  theorems for the various correlation functions, as well as in a 
four th  m o m e n t  condition on the pair  distr ibution function, and a generalized 
screening parameter .  I f  there is a separation of length scales between short-range 
correlations and the range given by the generalized Debye  shielding length, then 
it is possible to develop a theory for non-un i fo rm systems combining local the rmo-  
dynamics and coulomb interactions. 

APPENDIX 

In  this appendix  we prove  by  the rmodynamic  arguments  that  the right hand 
sides of (5.8) and (5.9) are identical. We recall f rom (3.14) that  on the neutral  hyper-  
surface S o in/~-space the pressure p(/~) is identical to p0(/l ~) when the variables/~ 
and /t ~ are identified. In addition the densities n =~p/c31~ and n o =Opo/e3,u ~ are 
identical on S o , so that the derivatives of the densities with respect  to the chemical 
potentials along S o mus t  also be  equal. T h e  latter p roper ty  will be  exploited in our 
proof. Consider  the following set of infinitesimal variations of the chemical 
potentials 

5124 = 51z , 5lip = - (et~dz/N~)512 (fl 4 = 2), 

with 

(A 1) 

d ~ = e  �9 ((~n/(~#~), N~ = ~ eydy. (A 2) 

4H2 
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1198 H. van Beijeren and B. U. Felderhof  

We can easily check that this is a variation on S O : the variation in charge density is 
given by 

~n ~n e~d a 
6 p = e . - ~ p "  61~=da6#-  ~ e .  6#, 

p§ Opp Nz  

=da6#[1 - (  ~ er =0 .  (A 3) 

The  resulting variations in the number  densities can be calculated as 

Cn~ Cn~ ~n~ epd z 
6 . , =  _ 6 # -  y 6#, 

t~z c~#~ N z 

pn~ 0n~ z] b# 
= Lauz N z  - -  ~ - -  e a d  - -  

a*  a C#a N z '  

= LOfl  e .  d -  ~ -  epd p Cpp N a ' 

p n ,  ] 6# (A 4) 
= Lc~# z e �9 d - d,d~ Nz, 

where we have used the symmetry  of Cn/~g. If  we apply the same variation to the 
n o =Cpo/C/~ the same density variations have to result. All the calculations per- 
formed in (A 4) go through as before with the exception that in the last line we have 
to replace d~ by zero since 

Z (Ono~/Olxp)e# = ~ (Ono~/O#~)e p =0.  
# # 

Hence 

~no~ 6# 
- - -  e . d - - .  (AS) bno~ - C#z N z 

Identification of (A 4) and (A 5) yields 

~no~ ~n~ d~d z 
C#z ~ C#~ e . d 

(A 6) 

which is the desired relation. 
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