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Thermodynamics and correlation functions of
plasmas and electrolyte solutions

by H. VAN BEIJEREN and B. U. FELDERHOF

Institut fur Theoretische Physik A,
Rheinisch-Westfalische Technische Hochschule Aachen,
5100 Aachen, Germany

(Recewved 21 December 1978)

We consider multi-component electrolyte solutions and plasmas in thermal
equilibrium and define thermodynamic quantities for number densities which
do not necessarily satisfy the condition of charge neutrality. It is shown that
these quantities play a role in compressibility theorems for the pair correlation
functions and in the generalized Debye shielding length. A fourth moment
condition for the pair correlation functions is derived. We discuss to what
extent non-uniform systems may be described in terms of local thermodynamics
with added coulomb interactions.

1. INTRODUCTION

It is well known that classical equilibrium systems containing freely moving
charges are neutral in the bulk [1, 2]. Any net charge distributes itself over the
surface of the system; charge fluctuations in the interior are extremely small.
Thermodynamic quantities defined from the grand canonical partition function
by means of a thermodynamic limiting procedure are dominated by the neutral
bulk. In non-uniform systems charge neutrality need not be satisfied locally, e.g.
near the boundary of an electrolyte solution electric double layers can be formed
[3]. We show in this paper that it is then possible to work with local thermodynamic
functions which depend on the local number densities not necessarily satisfying
the condition of electroneutrality. The functions can be defined by the methods
of statistical mechanics for non-uniform systems. In §§ 2 and 3 we describe the
procedure, emphasizing the peculiarities of coulomb systems. For simplicity we
use a model in which the solvent influences the coulomb interactions only through
the dielectric constant, but the formalism is easily extended to take full account of
the polar properties of the solvent.

In § 4 we define correlation functions by functional differentiation of the
Helmholtz free energy functional with respect to the density. It is shown that the
long range part of the pair correlation functions is conveniently expressed in
terms of a renormalized interaction involving the screened electrostatic Green
function. The screening length is a generalization of the Debye length to higher
density. Under certain conditions it can be expressed in terms of the local thermo-
dynamic functions defined earlier. In § 5 we show that compressibility theorems
for the correlation functions also involve these thermodynamic functions. The
relation to the usual type of compressibility theorem which follows from the grand
canonical partition function is given in the Appendix. In § 6 we show that the pair
correlation functions satisfy a fourth moment condition. The moment involves
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the local thermodynamic functions and hence is of less universal character than the
zeroth and second moment conditions derived previously [4]. In § 7 we treat the
Debye—Hiickel theory as an example and in § 8 we discuss under what conditions
the thermodynamic functions can be used to describe non-uniform situations in
terms of local thermodynamics with added coulomb interactions. As an application
of the formalism in § 9 we evaluate the fluctuations of the total charge in a spherical
volume element in a solution which on average is uniform and neutral. If the
radius of the sphere is larger than the Debye length the fluctuations are propor-
tional to the surface area, if it is smaller they are proportional to the volume of the
sphere with an amplitude determined by the local thermodynamic functions.

2. EQUILIBRIUM CONDITIONS

We consider an electrolyte solution consisting of ions with charges ¢, in a
neutral solvent at temperature 7. The solution is confined to a vessel of volume V.
The polar properties of the system are simplified and taken into account only by
including the dielectric constant of the solvent in the coulomb interaction. More-
over we assume that the medium outside I is uniform with the same dielectric
constant, so that the coulomb interaction between ions is given by

€,p

w,p(r;, ¥)) = (2.1)

glr,—r|
The short-range interactions between all particles, ions as well as solvent mole-
cules, are fully included in the potential energy. Thus we consider a multi-
component system with short-range interactions and with added coulomb inter-
actions between the charged particles. All interactions are assumed to be transla-
tionally invariant. Often one considers a further simplified system in which the
solvent is treated as a structureless continuum. This is called the primitive model.

We denote the average number densities in thermal equilibrium by an s-com-
ponent vector {n,(¥)} =n(r) (s is the number of solvent and solute components).
As we demonstrate in § 3 these satisfy equilibrium conditions

(¥, [n]) +e,0(r, [n]) = 1,7, (2.2)

where ,(r, [n]) is the chemical potential of species & at r. The latter has a func-
tional dependence on the densities n(r’) in a restricted neighbourhood of the point
r. The average coulomb potential ¢(r) also depends on the average densities and
in the absence of external electric fields is given by

geﬁnﬂ(r’)
o(r) :JW dr’. (2.3)

By construction ¢(r) satisfies the electrostatic Maxwell equations in all space.

The values of the constants {,”} on the right-hand side of (2.2) may be re-
stricted by dissociation equilibria, but it is assumed that otherwise they can be
prescribed arbitrarily. The superscript z indicates that the {yx,”} are related to the
activities {z,} appearing in the grand canonical ensemble by

1 =kT In (2,A,%), (2.4)
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where A, is the de Broglie wavelength for species a. For a system of given shape
and volume it follows from the grand canonical ensemble that to each set of values
H# there corresponds a set of average densities n(r) satisfying (2.2).

The left-hand side of (2.2) will be called the electrochemical potential of
species a. Of course at equilibrium this equals ,?, but for non-equilibrium the
left-hand side of (2.2) is still defined whereas y,” has no meaning. The equilibrium
condition states that at thermal equilibrium the electrochemical potentials are
constant throughout the system. For suitable choices of potentials g* the system
is neutral. Then the ions will be distributed uniformly apart from small boundary
effects. The chemical potentials p,*(V) for which the system is neutral depend
slightly on the chosen volume V/, because the functional dependence in (2.2) is
slightly volume-dependent due to boundary effects, but they tend to a well defined
limit po*(o0) as the vessel becomes large in a regular manner [5]. The chemical
potentials p,* define a hypersurface S in g*-space called the neutral hypersurface.

For values py* different from u,° the system is charged. For a sufficiently large
system the excess charges distribute themselves along the surface and their effect
is screened from the interior within a distance of the order of the Debye length.
The bulk of the system is neutral again. The surface charge distribution can be
found to a good approximation from the laws of electrostatics for ideal conductors.
Suppose u” corresponds to a positively charged system. Then by decreasing the
u,” of the positively charged species and increasing those of the negatively charged
ones the system will be driven back to neutrality. Hence there must be a ¢,
such that

B =po" +ed,, (2.5)

where € = {¢,}. We may compare this equation to (2.2) in the interior of the system
where n(r) reduces to a set of almost uniform bulk densities and ¢(r, [n]) is almost
constant, according to the laws of electrostatics. It follows then that ¢, is the
electrostatic potential in the interior and u* and pu,®, related by (2.5), describe
systems with the same bulk densities. The difference between the systems des-
cribed by p* and p,” is that the former possesses a net surface charge which pro-
duces an electrostatic potential in the interior, whereas the latter does not. We can
define a modified potential

y(ry=d(r)— ¢, (2.6
and rewrite the equilibrium condition in the form

u(r, [n]) +ew(r) = py®. (2.7)

In the interior the modified potential y(r) vanishes approximately. From electro-
statics one finds that the total charge is Q = C¢,, where C is the capacity of the ideal
conductor with the same volume. The capacity is of order ¢, where L is the linear
dimension of the system, so that for fixed ¢, the total coulomb energy O%/2C is
also of order L. Hence in the thermodynamic limit the coulomb energy does not
contribute to the thermodynamic properties per unit volume (with the exception
of the specific Gibbs free energies g, = 11,°), nor to those of the surface per unit area.
The thermodynamic properties per unit volume are entirely dominated by the
neutral bulk of the system. In particular the pressure p(#°), as found from the
grand canonical partition function, equals p(p,*) for p* and py® related by (2.5).

462
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We shall denote this pressure function by pg(#7). It has the obvious property

2. €x(0Pol0p,") = X egm0, =0, (2.8)
-4 a
which is nothing else than the well known electroneutrality condition. This state-
ment was proven rigorously by Lieb and Lebowitz [5]. We note that for systems
with a finite geometry, boundary effects can influence significantly the composition
of the bulk. For a treatment of systems with a plane geometry see reference [6].
When additional one-body potentials {®,(r)} are imposed the equilibrium
condition (2.2} is changed to

u(r, [n]) +eg(r, [n]) +®(r)=p". (2.9)

The solution n(r) is modified accordingly and by suitable choice of the potentials
®(r) any equilibrium distribution can in principle be achieved.

3. FREE ENERGY FUNCTIONAL

The statistical mechanics of non-uniform systems has been developed by
Morita and Hiroike [7], De Dominicis [8], Percus [9], Stell [10], and others [11].
The grand canonical partition function E is considered as a functional of the
generalized activities

2¥(r) =2z, exp [ — f®,(r)] (3.1)

or of their logarithms
Yo(r) =1n 2F(r) = fu," — P,(r)). (3.2)

As shown for example in the review by Stell [10] the grand canonical distribution
functions can be obtained from E by functional differentiation with respect to
2¥(r) or y,(r). Here we shall explicitly need the first two functional derivatives of

In E with respect to y,(r), which are
dIn B
m=na(r), (3.3 a)
ﬁg—:ﬁ (r, ¥') =nr)8,,6(r—r )+ F, ,(r, v')
S7Ndyg(r) e T
=,5(F, 1) +1,(r)8,50(r —r’) —n(rny(r’), (3.3b)
where #,4 is the two-particle distribution function for species « and .
The Helmholtz free energy is defined as a functional of the one-particle
densities 7n,(r) by a Legendre transformation

F([n])=F"([n]) + F=([n]), (3.4a)
BF™([n) = —In E([y) + X | n(r)7.(r)dr, (3.40)
F([(n]) = Z f n, (N®(r)dr. (3.4¢)

In equation (3.4 a) the free energy & is separated into an internal and an external
part. The latter is simply the total potential energy due to the external potentials
®(r). In (3.4 ¢) the @, must be considered as given functions, not as functions of
the density. The functional derivatives of #' with respect to the densities can be
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expressed in terms of direct correlation functions. Specifically we have for the
first two derivatives

5 gz int
B =7m), (359
62eg;int _ 523‘;
Sn(F)ony(r) " Sn(r)ony(r’y
= —Cop(r, )= —cup(l, F') +8,,0(r — 1) n(r). 3.5b)

Note that ¢,; and F, s satisfy the Ornstein—Zernike relation [12]
on,(r) oy,(r")
0y, (r") ony(r’)
=0,p0(r' —r"). (3.6)

”

-3 F’uy(r, r)E,p(r", ¥ydr” = Y |
Y b

For systems with coulomb interactions we can separate the internal free
energy as

F™([n], T)=F°([n], T)+E*"([n)), (3.7)
where the coulomb energy is given by
1
E**"([n]) =3 Zﬂ jVj wWop(F, ¥ (P)ng(r )drdr’, (3.8)

with w,,(r, r’) as defined in (2.1). The chemical potentials p,(r, [n]) can be
defined as

SF°
Smy(r)

L, [n]) = (3.9)
The reason for making the separation (3.7) is that the chemical potentials defined
by (3.9), as well as all other thermodynamic quantities which can be obtained from
the free energy functional #°, are local functionals of the densities. This means
that p(r) depends only on the density fields n(r’) in the neighbourhood of r with a
radius proportional to the Debye shielding length. Mayer [13] has shown this first
by devising a resurmmation of the divergent virial expansion for the pressure of an
infinite system with coulomb interactions. He found indeed that the pressure, and
as a consequence also the free energy density, separated into a coulomb contribu-
tion of type (3.8) and a contribution which for uniform systems could be made
plausible to have a range on the order of the Debye length. Especially at low
densities Mayer’s results coincide with those of Debye—Hiickel theory.

Equation (3.9) together with (3.2), (3.5 a), (3.7) and (3.8) leads to the equi-
librium condition (2.9). As explained in the preceding section, in the absence of
external potentials the bulk of the system will be uniform, with electric double
layers near the boundaries. At the boundaries there will be characteristic wall
effects which are conveniently described by the introduction of a surface phase
with corresponding thermodynamic functions [6].

In a non-uniform system we can measure the densities relative to a reference
state ny(r) by writing

n(r)=ngy(r)+n,(r). (3.10)



[ German National Licence 2007] At: 20:29 22 March 2011

Downl oaded By:

1184 H. van Beijeren and B. U. Felderhof

By expansion about the reference state we obtain for the chemical potentials

Au'a(r) [n])=ﬂa(r’ [“o])_kT ; j gaﬂo(r’ rl)nlﬂ(r,)dr,
—3kT Y {f 6,5,°00, ¥, ¥ )ny p(r)ny (¥")dr’dy” + - - -, (3.11)
By

where the ¢° are the direct correlation functions for the reference state. The
superscript 0 indicates that these functions are obtained from #° by functional
derivation with respect to the densities, but of course faﬂyo .. =lyg, . .. for three
or more indices because of (3.8). From (3.11) one may conclude that g is a short-
ranged functional of the densities also in non-uniform systems, provided all the
direct correlation functions in the reference state are sufficiently short ranged.

Consider in particular the thermodynamic limit of a large neutral system with
uniform densities n, = {n,, } satisfying the condition of electroneutrality e . n, =
Y 2€a10,=0. In such a state the chemical potentials p(ngy) = p,? lie on the neutral
hypersurface S,, and the direct correlation functions ¢° are translationally in-
variant and short ranged. Choosing the densities n; (r) to be spatially uniform we
see that the chemical potentials g([n,+ n,]) are also uniform. Thus by Taylor
expansion we have derived chemical potentials p(n) as functions of n which do not
necessarily satisfy the electroneutrality condition. Equivalently the chemical
potentials can be defined in terms of (resummed) Mayer functions by extending
these definitions to non-uniform and/or non-neutral systems. Either way it follows
that for a system with uniform densities, but not necessarily satisfying the electro-
neutrality condition, the chemical potentials can be obtained from the free energy
density fo(n) = F°(n)/V as

u(n)=0%én. (3.12)

By Legendre transformation we can define the pressure as a function of the
chemical potentials.

pwy=—1°+ Y nyu,, (3.13)

where n as a function of g has to be solved from (3.12). From the equilibrium con-
dition (2.2) it follows that in a non-uniform system with @ =0 the gradient of p
is locally balanced by the electrostatic field. Note that p(g) differs from the function
bo(#?) defined in the previous section from the thermodynamic limit in the grand
canonical ensemble. Considering these functions in the same u-space we see that

op 0
() =po(w) on Sy, L_P0_p on s, (3.14)
op op
The function p,(y) is degenerate in the sense that Y ,e,(0po/0t,) =0 everywhere in

H-space. We contend that the function p(g) contains more physical information.

4. RELATIONS BETWEEN CORRELATION FUNCTIONS

For systems with coulomb interactions it follows from (3.5 ) and (3.7) that
the direct correlation functions ¢,; can be split into a part given by the long-range
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interaction and a part of short range

A

Cup=Cug® — P, (+.1)

Corresponding to the short-range direct correlation functions ¢ Caﬂ , we define a set
of auxiliary quantities Faﬂ , called the short range pair cluster functions (this
nomenclature does not 1mp1y that the £ «p are long-ranged functlons they have a
longer range than the Faﬂ however) and connected to the ¢ CuB by the Ornstein—
Zernike relation

_ Z j‘ Fuﬁo(r; r//)é\yﬂO(r//’ r/)dr//=6aﬁ5(r_ I"/). (42)
v

We may represent F‘aﬂ(r, r), 5aB(r, r’), etc., as matrix kernels F and €. The
multiplication of two of these kernels is defined by

(MN),4(r, r) = Z§ M., (r, ¥")N_,(r”, ¥)dr". (4.3)
Y
With these conventions the Ornstein—Zernike relations (3.6) and (4.2) can be
rewritten as
F=-C1, (4.4 a)
—(€%9 L, (4.4 b)

Since we see from (3.5 b) and (3.11) that the short-range direct correlation
functions €° are functional derivatives of the chemical potentials

&o(r,r) = — B(3u(r)/on(r)), (4.3)

it follows that the short-range pair cluster functions F° are given by the inverse
functional derivatives

FO(r, r')=RT(5n(r)/dpu()). (4.6)
From (4.1) and (4.4) it follows that F is related to F° by
F=(I+BF°W) 'F°. 4.7)

A more convenient relation is found by expressing the pair function F in the
form

F—FO_ pROUR, (4.8)
where the renormalized interaction U must satisfy
U=W-38WF°U (4.9)
or equivalently
U=(+pWF> 'w. (4.10)

Equations (4.7) and (4.10) show that F and U develop from F° resp. W by an
alternating chain of short-range correlations and long-range interactions. Similar
relations were previously derived by one of us in a semi-macroscopic theory [14].

For W given by (2.1) we can express the renormalized interaction U in terms
of a scalar function gF as

U, p(r, ) =eses (v, v). 4.11)



20:29 22 March 2011

Downl oaded By: [German National Licence 2007] At:

1186 H. van Beijeren and B. U. Felderhof

From (4.9) it follows that gF satisfies the integral equation

’ 1 1 9 ” ”r " ’ ” "
gE(r, r):qr—_r—/l—ﬁffmgeaeﬂﬂwo(r , POE(”, v)dr de”, (4.12)

from which we find, by acting with the Laplace operator,
4 . 4
V2gE(r, 1) ——= B[ Y e,eplus0r, PEE, K)AF = == S(r—r').  (4.13)
£ oy &

This is a generalization of the linear Poisson—-Boltzmann equation occurring in
Debye-Hiickel theory [15] and gf(r, r’) can be identified with the electrostatic
Green function for the geometry under consideration. As a consequence of (4.8)
and (4.11) the long-distance behaviour of all pair functions Faﬁ(r, r’) is given by
the same scalar function g®(r, r’). For uniform systems this is most easily seen by
Fourier transforming (4.8), with the result

F(k) = FO(k) — BF°(k) U(k)F°(k). (4.14)
The Fourier transform U(k) is found from (4.13) as

(4m/e)eeq
k2 +(4nfle) Y. eeplypO(k)
ap

U,p(k) = (4.15)

To obtain the long range behaviour of F we have to find the singularity of the
right-hand side of (4.14) which is closest to the real axis. If indeed F is of shorter
range than U (in the Debye—Hiickel case FO(r, r’) is proportional to a é-function
o(r—r’)!) then this singularity is found as a zero point of the denominator in
(4.15). Hence both U and F decay asymptotically as exp (— K7) for large r, where
K has to be determined from

K2 —(4nple) Y, e,epF " (1K) =0. (4.16)
ap

If the range of F® is much shorter than K~ we may replace Faﬁo(ilz') approxi-
mately by Faﬂo(()) and (4.16) simplifies

e 4.17)

where we have used (4.6) and the fact that in a uniform system
on/op= [ (dn(r)/dp(r"))dr .

In the sequel we shall refer to A=K ! as the generalized Debye—Hiickel
screening length. We have to keep in mind however that in fact K describes the
asymptotic exponential decay of the pair correlation function and K equals K only
if the range of the short range correlation functions Faﬂo is much smaller than
K~1. Stell and Lebowitz [16] have introduced a generalized Debye screening
length which looks very similar to (4.17), but instead of our F° they used the pair
correlation function of a reference system in which only short-range interactions
are present. Furthermore Hoye and Stell [17] derived a quantity similar to K for a
one-component system with neutralizing background, but they expressed little
hope of generalizing their relation to many-component systems [18].
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5. COMPRESSIBILITY THEOREMS

In the preceding section we have shown that the pair correlations and re-
normalized interactions can be calculated from the short-range direct correlation
functions €° and the long-range interactions W. The derived expressions are valid
for arbitrary geometry. Here we consider the thermodynamic limit of a neutral
system where all the above functions become translationally invariant. We show
that the integrals of the various correlation functions can be related to thermo-
dynamic derivatives by generalized compressibility theorems.

From (4.5) we see that

§ &(r—r)dr' = —B(0u/on),, (5.1)

where the subscript 0 indicates that the derivative is to be evaluated for the neutral
state. From (4.6) it follows immediately that correspondingly

{ FO(r—r")dr’ =kT(dn/dp), . (5.2)

In (4.17) we have defined a screening parameter K in terms of these derivatives.
It follows from (4.11) and (4.15) that

[ gE(r —r))dr’ =(4njcK?). (5.3)
From (4.8), (4.11), and (5.3) we find

o on on\ 4nee [oOn
_y "=kTl— 1 — . =
j Flr—rddr =k <6ﬂ>0 kT<al‘>o eK? <5ﬂ>o’

on 4nkT
=kT|— ) —5-d 5.4
g <5ﬂ>0 eK? 4 G4

where we have introduced the vector
d=(dn/dp), . e. (5.5)
With the aid of (3.3 b) and (3.5 b) the theorems (5.1) and (5.2) can be rewritten as
no” ' —f < (r—r)dr’=p(0n/dn),,
n,+ { FO(r—r")dr’ =kT(dn/0p),, (5.6)

where we have introduced the diagonal matrix n, with elements 74,5 =10,0,-
If we further introduce the pair correlation functions %,4(r) by

Faﬂ(r) :nOanOﬂhaﬁ(r); (57)
then theorem (5.4) becomes
Oon 47k T
104045 +MoaMog } By (r~r’)dr’=kT< “) - —=dd, (5.8)
0a“ap 02"0p j. I} a'uﬂ 0 K2 B

The second term on the right represents a peculiar modification of the usual form
of fluctuation theorem. From (3.2), (3.3) and (5.7) it follows that (5.8) can also
be written

10404p + MoaMog f Bog(r — r)dr’ =k T(0ny,[04%),. (5.9)
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In the Appendix we show this on the basis of purely thermodynamic arguments.
The form (5.9) agrees with the usual derivation of the fluctuation theorem from
the grand canonical ensemble.

Letting both sides of (5.8) act on e and using (4.17) and (5.5) we find

I Z egnophyp(ri2)dr, = —e,. (5.10)
B

This shows that the average charge of the screening cloud about each ion is equal
and opposite to that of the ion, i.e. in the neutral state each ion is fully screened.
Using e . ny =0 this relation also follows immediately from (5.9). The relation
(5.10) is known as the zeroth-moment condition. In the next section we derive
corresponding second and fourth-moment conditions.

Finally we derive an expression for the inverse of the compressibility, using
(3.14) and (5.6)

(), -2 () ().

=y MoaT0p (%) ’ (5.11)
0

2 Mo \0ng

= 3 20208 ppg 16, — [ enfO(r—F)dr.
a8 Mo

Here x, =nq,/ng is the concentration of species a. In the next section we show how
(5.11) can be transformed to an expression involving the pair correlation functions
h,g instead of the direct correlation functions ¢, 5°-

6. SECOND AND FOURTH MOMENT CONDITION

The second and fourth moment conditions give relations similar to (5.10)
with additional factors 7;,% and 7;,* in the integrand. We follow the method of
Mitchell et al. [19], who used it to derive the second-moment condition, first
found in a different fashion by Stillinger and Lovett [4].

It is convenient to introduce the Fourier transforms

Cop(k) =/ (ng,n5) j exp (—ik . ry;) ¢, p5(ry5)dry,,
Hatﬁ(k) =\/("0a”op) j exp (—ik . r12)haﬁ(”12)d"12~ (6.1

With these definitions the Ornstein—Zernike equation (3.6) for a uniform system
can be written as

Z [5ay - Cay(k)][éyﬁ +HyB(k)] = 5(1[}! (62)
¥
or in matrix notation
I —C][i + H(k)] =1I. (6.3)
It is plausible that €(k) has a k-expansion of the form

Voaop)luty -2 § 0 gz T 0 MR (6.4)

Cll)=—4
atﬁ( ) T SkT =

n=-1
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The first term originates from the long-range coulomb interaction in (4.1), whereas
the remaining series represents the Fourier transform of the short-range direct
correlation function cmﬂo(r1 ;). The Mayer resummation of the cluster expansion
for coulomb systems [13, 20-23] strongly suggests that the latter decays as
exp ( —2xr,,) at large distance, where k is the Debye shielding parameter

4n ]
|4 , 6.5
* Lk@"wea] (6.5)

If this is correct all moments of this function exist and its Fourier transform can
be expanded as
© ( _ 1)m

fexp(—ik . "'12)Caﬂo(’1z)d"12 = Z

Qm+1)! ksz 7122mcaﬂ0(1’12)dr12’ (6.6)
m=0 A)

where we have used the isotropy of caﬁo. Hence we have

" (=" .
Cmﬂ(z )=\/("0a"0ﬂ) m j ”122 Caﬂo(ﬂz)dru- (6.7
From (6.2) and (6.4) it follows that the series expansion of the pair correlation

function must have the form
QO

H, (k)= Y H,* k> (6.8 a)
n=0
(="

(2n)
Hop™ =v/(noatop) 5 5

j #1272 ag(ri2)dr 5. (6.8 b)

If the coefficients C,,*” are known, then the H,;*" can be found with the aid of
(6.2). As was shown by Mitchell et al. [19], knowledge of Caﬂ( =2 as given in (6.4),
is sufficient to obtain H,;® and a special linear combination of the Haﬁ(z). The
resulting expressions are called the zeroth and second-moment conditions. Here
we use the knowledge of C,,\?, as given by (5.6), to express a special linear com-
bination of the H,,*) in tefms of thermodynamic derivatives.

It is convenient for the analysis of (6.3) to write Cap(_z) as

C 2= _x2ce, (6.9)

where ¢ has components ¢, =k~ '(47ny.e,’/ekT)!/?. Apparently ¢.c=1 so that
cc is a projector. We introduce the complementary projector

P=1—cc, (6.10)

which projects onto the space of neutral compositions in the sense that zﬁPaﬂ(ﬁnﬂ/
V/1gg) = n,j\/ng, implies Y e,0n, =0.
We start solving (6.3) by comparing coefficients of k%". For n= —1 we find

CTP0+H®) = —k2cc(1+ HO) =0, (6.11)

so that
H® ¢=—c, (6.12 a)
1+ HO=PA+H?)=(1+HP, (6.12 )
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where we have used the symmetry of H(k). The property (6.12 a) is equivalent to
the zeroth-moment condition (5.10).
Comparing coefficients of k® in (6.3) we find

A—-COYM+HD) - CPIHP =I. (6.13)

Multiplication by I — P from right and left and use of (6.12 b) yields
—(1=-P)CIHDU-P)=1-P, (6.14)
k?c. H?  c=1. (6.15)

The latter equation is the second-moment condition [4]

Y eqegnognop | 71y (v 2)dry, = —3ekT|2m. (6.16)
af

Multiplication of (6.13) from the left with | — P and from the right with P yields
a relation

(1 =P)1 —CO)(1+ H®) = —x*(1 - P)H?P (6.17)

which will be used later. Multiplication of (6.13) to the left and to the right with
P finally yields

P(I —COYP(L+ H?)=P. (6.18)
This shows that H'®) can be obtained by inversion of | — € within neutral space.
Equation (6.18) may be checked explicitly with the aid of (5.6), (5.8), (6.1), and
(6.10).

We may use (6.18) to express the compressibility theorem (5.11) in terms of the
pair correlation functions H. With the aid of (6.1) this equation can be rewritten as

—=—n,'"2 - (1-C(0)) - n,'"?, (6.19)
n

where the vector ny'/? is given by (n4'/?), =1/n9,. We have Pny'/> =n,'/, hence
we can use (6.18) to re-express (6.19) as

2
% _ET 12 B —C(0)P - no'?,
on n

AT net’2 - (I+H(0) ' ngt/2. (6.20)
n

The inverse of I+ H( has to be taken in neutral space, that is the space of all
matrices which are both to the left and to the right orthogonal to c.
Comparing coefficients of k2 in (6.3) we find

(I—COYH? —CIH® - CO (I + HY) =0. (6.21)
Muiltiplication with 1 — P from left and right yields

—k2(1=P)HY(I —P) =(1 - P)(1 — CO)PHP(1 — P)
+(1=P)(I - CY(I—-P)H?(1-P); (6.22)

this equation was already obtained in reference [19]. Substituting (6.15) and the
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adjoint of (6.17) we find
K41~ PYH® (1 = P) = (I — P)[(1 — C)(J + H)(I — C)
—(1-C)(1-P). (6.23)
From (4.17), (5.6) and (5.8) we obtain
(I=COUA+HM1-C=1-C? —(x?/K?)cc (6.24)
so that
c- H® c= —(x?K?) L. (6.25)
Using (6.8) we can write this as the fourth moment condition

Y €,€5M0qM0 g | 7124haﬂ(712)dr12 = —30ekT/nK>. (6.26)
ap

From (4.17) and (5.1) it follows that the integral can be expressed in terms of
thermodynamic derivatives, or alternatively in terms of an integral over the short-
range part of the direct correlation function. As Mitchell et al. [19] remarked, the
fourth moment condition cannot be expressed in terms of the coulomb interaction
alone, but also involves the short-range interactions. Hence it does not have the
universal character of the zeroth and second moment conditions (5.10) and (6.16).
Nonetheless the condition may provide a useful consistency check in approximate
calculations. We can see that higher moments of the pair correlation function
cannot be expressed in terms of thermodynamic derivatives only.

7. DEBYE-HUCKEL THEORY

Let us consider how Debye—Huckel theory fits in with the formalism described
in the preceding sections. This theory is based on the assumption that to lowest
approximation in the densities the chemical potentials of the ionic species are
given by

1 (F)=kT In [n(r)/n," 1 +u,(n,, T), a=2,...,s, (7.1)

where the n," are standard densities and the functions u,(n;, T) refer to the
behaviour of a single a-ion in the pure solvent. It is convenient to choose the
standard densities n,” such that they satisfy the electroneutrality condition
F_‘(,zeo,11,,[Jr =0. It follows from (3.11) and (7.1} that in Debye—Huckel theory the
short-range direct correlation functions in a neutral state n, show ideal gas
behaviour

Lug?(r—r) = —no, " 18,,0(r—r"), (a, f=2,...,5). (7.2)
Correspondingly we find from (4.2) for the short-range pair cluster functions F°
F 0(r —r)=np,d,,0(r—r)), (o, f=2,...,5) (7.3)

and for the pair correlation functions from (3.3 b), (4.8) and (5.7)

hug(r —v') = —Beepg®(lr—r') (o, f=2,...,5), (7.4)

where the Green function is given by

gE(r) = exp (—xr)/er, (7.5)
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with the Debye—Hiickel parameter
k=(41 ) no.e,’[ekT)"?.

For the functions C(k) and H(k) defined in (6.1), (6.3} we obtain the following
expressions with the aid of (2.1), (3.5 4), (4.1) and (7.4)

2 2

K K
C(k)=~p cC, H(k)=-;2_+-—K2

cc, (7.6)
with ¢ defined below (6.9). By expanding H in powers of k we easily check that the
moment conditions (6.12), (6.15) and (6.25) are all fulfilled. Furthermore (6.18)
is trivially satisfied. ,

The compressibility of a Debye—Hiickel system follows from (5.11) to have the
ideal gas form

oplon=FkT. (7.7)

By integration we obtain the ideal gas expression p = nk T for the pressure. Together
with (7.1) this is sufficient to obtain all desired thermodynamic functions for a
neutral Debye—Hiickel system. All of these turn out to have the ideal gas form.
On the other hand we may compute corrections to the ideal gas thermodynamics
from the pair correlation functions 4,4, e.g. by a charging procedure or by using
the virial equation of state or the energy equation of state, given respectively as

1 0
p=nokT—=3% j nognogll +hug(N]r - M dr, (7.8 a)
6 35 or
3 1
u =3 nOkT+§ Z j 1oaMopl1 +hyg(r)] Pup(r)dr. (7.8 b)
af

For example, for the free energy density we find the Debye—Huickel correction
PR kT 127 (7.9)

and hence we may obtain similar corrections for pressure, chemical potentials, etc.

This leads us to the following remark: it is often said that Debye—Hiickel
theory is asymptotically exact as the ion-densities approach zero. What is meant is
that this theory correctly produces the leading corrections to the ideal gas expres-
sions for the thermodynamic quantities of a dilute ionic solution. It does not mean
that the theory is completely internally consistent. That is clearly not the case;
starting from the ideal gas expressions (like (7.1)) for the thermodynamic quantities
we arrive through (7.8 a) or (7.8 b) at expressions like (7.9), which embody correc-
tions to the ideal gas laws.

It is worth mentioning that precisely the same internal inconsistencies exist in
the mean spherical model, introduced by Waisman and Lebowitz [24]. Indeed in
the limit of vanishing ion diameters this model becomes identical to Debye—Hiickel
theory.
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8. LOCAL THERMODYNAMICS AND GENERALIZED SCREENING LENGTH

The formalism developed in §§ 3—6 can be regarded as a natural extension of
Debye—Hiickel theory to higher ion densities. If the range of the short-range
correlation functions is much shorter than the generalized Debye shielding length
K~ defined by (4.16), some drastic simplifications are possible.

First, as discussed already in § 4, K may be replaced by K, which was defined
by (4.17) in terms of thermodynamic quantities.

Secondly, the Debye shielding length is the typical length scale for spatial
non-uniformities involving deviations from electroneutrality, as can be seen for
example from the theory of electrical double layers [3]. The reason, of course, is
that all local charges are shielded by a cloud of opposite charge with an extension of
a few Debye lengths. If the range of the short-range correlation functions is much
shorter than the Debye length, non-local thermodynamic relations of the type
(3.11) may be replaced by local equilibrium relations (that is all thermodynamic
quantities at a given position depend only on thermodynamic variables at the same
position and the functional relations between these quantities are the same as in
uniform equilibrium). To the local thermodynamics the coulomb interactions must
be added, just as in Debye—Hiickel theory.

In fact, if we look at the length scale of the Debye length the complete formalism
can be reduced entirely to Debye—Hiickel theory involving what might be called
dressed ions. To see this first notice that on this length scale the short-range pair
cluster functions are of the form

F 0(r, ry=F,5(r—r) (8.1)
with

F,,° =kTon,|ou, (8.2)

according to (4.6). Hence F° is a real, symmetric sxs-matrix and can be diagonalized
by an orthogonal transformation, viz.

B — AROA T, (8.3)

where A is some orthogonal matrix. The eigenvectors v(*) of F°, with elements
v, =4,,7, can be interpreted as classical quasi-particles, which are just linear
combinations of the s particle species present in the solution. Especially if the off-
diagonal elements of F° are relatively small, v(*) can be interpreted as a dressed ion
of species v, in which a particle of species v is surrounded by a cloud of other
particles generated by the short-range pair cluster functions F°. Densities and

charges of the quasi-particles v are given by the relations
nN=A-n e=A"e. (8.4)

We can easily check that in this representation the matrix W given by (2.1) trans-
forms to

I

W) =AW@AT =52 (8.5)

&r

From (4.7), (4.10) and (4.13) it follows then that the matrices F’ and U’, as well
as the Green function g, are of the Debye—Hiickel form. However the charges
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must be replaced by the renormalized charges e’, and x* by
K?=(4n/ekT) Y. ¢*F,,% =(4njckT) Y, e,F, %%, =(4njckT) Y e F, %,
v vi vi

in accordance with (4.6) and (4.17).

Now the question arises under what circumstances the range of the short-range
correlation functions is indeed much shorter than the Debye shielding length. The
leading correction to the short-range direct correlation function, resulting from the
coulomb interactions between the ions and consistent with (3.5) and the Debye—
Huckel correction (7.9) to the free energy density, is

o _1 €,e5 €xp (—Kr) 2
Cap (1')—2 [_——skTr :l (8.6)

The typical range of this function is x !, which is not small compared to the

Debye shielding length. In addition to (8.6) there exist contributions to the short-
range direct correlation functions resulting from short-ranged interactions like
hard core repulsions, which have a typical range of the order of the hard core
diameter d. If these contributions dominate the electrical contributions the condi-
tion for the validity of the Debye—Hiickel approximation may still be satisfied. To
obtain a criterion for this we may compare the contributions to d g/0n from the two
parts of the short-range direct correlation function. The electrical part contributes
on the order of kTk3/50n%, whereas the hard core part contributes on the order
kTd®. Hence we obtain the condition

50nd>nk 3 »1. (8.7)
Of course we have to require, in addition,
kd <1. (8.8)

In laboratory plasmas the densities are usually far too small (typically n=
10'% cm ™~ 3) to satisfy (8.7). Perhaps the plasmas generated by pellet implosion are
an exception, but these certainly are quite far removed from equilibrium. In the
interior of stars we can easily find densities in the order of n~10%! cm™3, such
as needed to obtain appreciable contributions to du/dn from the hard-core parts of
¢ (assuming szA). In that case (8.7) is fulfilled if we require x 1 >50 A. The
latter requirement leads to temperatures >5 x 10® K, as follows from (6.5). Such
temperatures do occur in the interior of stars, but then light elements like hydrogen
and helium are completely ionized and the remaining nuclei have an effective hard
core diameter <1 A. So we havé to require in addition the presence in fair amounts
of relatively heavy elements to satisfy (8.7) at these temperatures.

In aqueous electrolyte solutions the large value of ¢, which is about 88, helps
to increase ¥ !, but the comparatively low terhperature makes it imposstible to
satisfy (8.8) at densities where the short-range interactions contribute appreciably
to Ou/on. Yet there is one interesting case where a non-trivial reduction toa Debye—
Hiickel system may, at least in principle, be possible. This is the case where there
exists a strong tendency to form dimers between ions of opposite charge. We could
imagine oppositely charged ions to have a coulomb energy > &7 if they are close
enough together (this was suggested by Mayer [13] already in 1950). In that case
the main contributions to the direct correlation function of these particles may
come from the coulomb interaction in configurations where the particles are within
a distance much smaller than the Debye length from each other.
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We estimate this effect by assuming that for short distances the short-range
direct correlation function, due to coulomb interactions is given approximately by

o/n 2N _ZaZﬂez 1 8.9
Cap (r) = exp ( ; > 1=-exp ( BT . (8.9)

For Z,Z,= —4 and Z,Z ;= —6 and for some values of » between 4 and 6 A the
magnitude of C? is given in the table. The contributions to du,/0n, from this can
be estimated as follows: Bdu,/0ns~10° A% for Z,Z;= —4 and ~10° A3 for
Z,Zy= —6. For this to amount to at least 10 per cent of the ideal gas contribution,
one must have n,, n;>10"° A73for Z,Zy=—4andn, ng> 1077 A3 for ZZy=
~6. For the Debye length this leads to k= <40 A for ZZy=—4and kK 1<90 A
for Z,Zy= —6. This would imply that for 2-2 and 2-3 electrolytes it would indeed
be possible to have appreciable corrections to Debye—Hiickel theory with a good
separation between the range of the short-range correlation functions and the
Debye length.

Cap °(r) for Z,Zy= —4 and Z,Zy= —6.

r/A ZZy=—4 ZZy=—6
40 550 12900
42 407 8220
44 310 5450
48 192 2660
52 128 1451
56 90 863

However we have to be very cautious for a number of reasons. First we see
from the table that the value of ¢°(r) changes dramatically in the range about
r~4 A. In model calculations values of about 4 A are commonly used for the
effective hard core diameter, but it is clear that the results sketched here are
extremely sensitive to this value. A somewhat larger diameter could completely
destroy the influence of the dimerization effect, whereas a slightly smaller diameter
would enhance it drastically.

Secondly, if the potential energy of an ion pair is € —&T this pair is very likely
in a bound state. So we must wonder if we should not regard the pair as a molecule
under these circumstances and if we should not use quantum mechanics instead of
classical mechanics. However, if we calculate the radial quantum number for a
state of energy —10kT, treating the ion-pair as a pair of point charges with
coulomb interaction Z Z ﬁez [er, we find an estimate of #~ 100—500. For such large
quantum numbers the classical approximation should be very good. In addition
we find that the energy difference between neighbouring quantum states is only a
fraction of kT so that indeed the ions can move rather freely with respect to each
other. It looks as though the concept of molecule formation is not needed to
describe the ion pairs, as long as they stay so far apart from each other that their
interaction is purely coulombic.

Finally we must ask the question if, for interactions which are so short ranged,
the influence of the solvent on the coulomb interactions can be described simply
by means of a dielectric constant. In any case we ought to take into account the

M.P. 4H
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molecular structure of the solvent in the case of small separations between the ions.

In spite of these objections it does not seem impossible that certain electrolyte
solutions with high ion charges could be described by a generalized Debye—Hiickel
model and it might be worthwhile to investigate this point in more detail.

9. CHARGE FLUCTUATIONS

Compressibility theorems of the form (5.4) are intimately connected with ex-
pressions for the fluctuations ((AN,)*) in the total number of particles of species
o in a volume element larger than the range of the correlation function. By the
usual argument we find that ((AN)?) is proportional to the size of the volume
element. If, however, we calculate the fluctuations of the total charge {(AQ)*> in
this way, we find from (5.4) that a cancellation occurs so that the charge fluctua-
tions vanish. This shows that charge neutrality is maintained to a strict degree.
We demonstrate here that ((AQ)?) is proportional to the surface area of the
volume element under consideration.

We calculate in particular the charge fluctuations in a sphere of volume V'ina
spatially uniform neutral solution. We use local thermodynamics, as described in
the last section, and assume that the short-range pair cluster function F° can be
replaced by a delta function. Then it follows from (4.8), (4.11), (4.17) and (5.2) that

(AQYY = ffe-F(r—r)-edrdr, 9.1 a)
eK? eK?
with
SV=Il/ {§ g5(r—r") dr avr’. (9.2)
14

The integral Sy can be calculated from (4.13) where again we replace F° by a delta
function. In order to find the integral ngE(r —r’) dr’ it then suffices to solve
the equation

Vi —K*¢ = —(4n/e)p, 9.3)

for a charge density p() which is uniform inside the sphere and vanishes outside.
Integrating the result

4rp sinh Kr
== |1— KR —KR) ———— .
é(r) K2 l} (1+KR) exp ( ) % ] (r<R) (9.4)
once more over the sphere, we find
47 1+ KR )
Sy =Kz |:1 -3 RS &P (— KR)(KR cosh KR —sinh KR)], 9.5)

where R is the radius of the sphere. Hence

{(AQ)*> =§%Z (1 +KR) exp { — KR)(KR cosh KR —sinh KR), (9.6)
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which shows that for R> K~ 1!

{(AQ)*> ~4ekTKR?*, (R>K™Y). 9.7)
For R<K™!
{(AQY*) ~3ckTK*R*=Ve - 2—:‘ e (R<K™Y (9.8)

so that in this limit screening has no effect and the size of the charge fluctuations
is determined by the local thermodynamics.

If we do not make the assumption that F can be replaced by a delta-function,
but still require that F(r) decays exponentially for large » with a decay length A,
our results remain qualitatively the same. From (9.1 a), which is always valid, 1t
follows that also in that case only a surface layer with a width proportional to A
contributes to the charge fluctuations. Hence for a volume with a radius > A the
charge fluctuations are proportional to the surface area again. On the other hand
for a volume with a radius <A it is still true that shielding is not effective and the
result (9.8) will be approximately valid.

10. CoNCLUSIONS

As we have shown, in ionic solution theory it is possible and useful to introduce
local thermodynamic functions, e.g. the chemical potentials, which depend on the
local number densities of all components. The latter need not satisfy the charge
neutrality condition. The functions are defined with the aid of the statistical
mechanics of non-uniform systems, but only for the neutral case do they coincide
with the thermodynamic functions obtained from the grand canonical partition
function in the thermodynamic limit, We have shown that they occur naturally in
compressibility theorems for the various correlation functions, as well as in a
fourth moment condition on the pair distribution function, and a generalized
screening parameter. If there is a separation of length scales between short-range
correlations and the range given by the generalized Debye shielding length, then
it is possible to develop a theory for non-uniform systems combining local thermo-
dynamics and coulomb interactions.

APPENDIX

In this appendix we prove by thermodynamic arguments that the right hand
sides of (5.8) and (5.9) are identical. We recall from (3.14) that on the neutral hyper-
surface S, in g-space the pressure p(g) is identical to po(u*) when the variables p
and g are identified. In addition the densities n=0p/0u and n, =0p,/0y* are
identical on Sy, so that the derivatives of the densities with respect to the chemical
potentials along S, must also be equal. The latter property will be exploited in our
proof. Consider the following set of infinitesimal variations of the chemical
potentials

Spr=du,  Opp=—(epdi/NDSH  (BFA), (A1)
with

d,=e-(@njor), N,;=Y ed
YFA

(A2)

e

4u2
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We can easily check that this is a variation on S, : the variation in charge density is
given by

on on ¢gd
Sp=e-— dpu=d,ou— e — 25
on =Gk p; Oug N,
=dou[l—{ Z egdg)/N,]=0. (A 3)

B7 4

The resulting variations in the number densities can be calculated as

-l R v
e e ya e
= le e-d —dadl} Z—’z, (A 4)

where we have used the symmetry of dn/du. If we apply the same variation to the
n, =0p,/0p the same density variations have to result. All the calculations per-
formed in (A 4) go through as before with the exception that in the last line we have
to replace d, by zero since

Y (Ong, Ougleg= Y, (Ongy/Opty)es =0.
B B

Hence
on o
Sy, =—2 e d—. A5
Roa a'uiz e ]\])N ( )
Identification of (A 4) and (A 5) yields
6"0& ana dadl (A 6)

ou,” ou, e-d

which is the desired relation.
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