Recurrent sequences coming from Shimura curves

Frits Beukers

On the occasion of Cam Stewart’s 60th birthday
Recall

\[(n + 1)^2 u_{n+1} = (11n^2 + 11n + 3)u_n + n^2 u_{n-1}\]

Let \(a_n\) be the solution with starting values \(a_0 = 0, a_1 = 5, \ldots\) and \(b_n\) the solution with \(b_0 = 1, b_1 = 3, b_2 = 19, b_3 = 147, \ldots\). Then \(a_n/b_n \to \zeta(2)\) as \(n \to \infty\) fast enough to prove irrationality.
Recurrences and ODE’s

Consider the generating function

\[u(z) = \sum_{n \geq 0} b_n z^n. \]

Then \(u(z) = 1 + 3z + 19z^2 + 147z^3 + \cdots \) satisfies

\[z(z^2 + 11z - 1)u'' + (3z^2 + 22z - 1)u' + (z + 3)u = 0. \]

This is a linear second order differential equation with a \(G \)-function solution (i.e. coefficients have denominators of at most exponential growth).
The modular connection

Basis of solutions of
\[z(z^2 + 11z - 1)u'' + (3z^2 + 22z - 1)u' + (z + 3)u = 0 \]
is
\[y_1 = u(z), \quad y_2 = u(z) \log(z) + v(z) \]
where \(v(z) = 5z + 75z^2/2 + 5565z^3/18 + \cdots \)
The map \(z \mapsto \frac{1}{2\pi i}y_2/y_1 \) maps \(\mathbb{P}^1 \) to complex upper half plane \(\mathcal{H} \).
Its inverse is the map
\[\mathcal{H} \to \mathcal{H}/\Gamma_1(5) \leftrightarrow \mathbb{P}^1 \]
where \(\Gamma_1(5) \subset SL(2, \mathbb{Z}) \) is congruence subgroup modulo 5.
The challenge

Find recurrences of the form

\[P(n)u_{n+1} = Q(n)u_n + R(n)u_{n-1} \]

where \(P, Q, R \) are polynomials of degree 2, which allow a solution \(u_n \) whose coefficients are at most exponential in \(n \).

Alternatively, one can try to find second order linear differential equations of the form

\[z(z^2 + a_1 z + a_0)y'' + (b_2 z^2 + b_1 z + b_0)y' + (c_1 z + c_0)y = 0 \]

which have a Siegel \(G \)-function solution.
An idea

Start with congruence subgroup Γ of $SL(2, \mathbb{Z})$ with four cusps and $X(\Gamma)$ genus zero. The map

$$\mathcal{H} \to \mathcal{H}/\Gamma$$

gives rise to a second order linear differential equation of the desired kind.

This gives us 5 more cases.
Chudnovsky’s idea

Start with an arithmetic quaternion group $\Gamma \subset SL(2, \mathbb{R})$ and then consider $\mathcal{H} \rightarrow \mathcal{H}/\Gamma$.

Example of Lamé equation from Chudnovsky’s *Theta functions*, 1989

$$P(z)u'' + \frac{1}{2}P'(z)u' + \left(-\frac{3}{128} - \frac{3}{64}z\right)u = 0$$

where $P(z) = z(z - 1)(z - 1/2)$.

Recurrence

$$(n+1)(n+1/2)u_{n+1} = (n^2+3/64)u_n - ((n-1)(2n-1) - 3/32)u_{n-1}.$$
Let B be a quaternion algebra over totally real number field F. More concrete, take $a, b \in F^*$ and define $B = F \oplus Fi \oplus Fj \oplus Fk$ with

$$i^2 = a, \quad j^2 = b, \quad k = ij = -ji.$$

Let \mathcal{O} be a maximal order of B and \mathcal{O}^\times its units. Any embedding $\iota : F \hookrightarrow \mathbb{R}$ induces an embedding of B into either $M_2(\mathbb{R})$ (2×2 real matrices) or \mathbb{H} (Hamilton’s quaternions). Suppose that $B \hookrightarrow M_2(\mathbb{R})$ for exactly one place $\iota : F \hookrightarrow \mathbb{R}$. Then we call \mathcal{O}^\times, embedded in $M_2(\mathbb{R})$, an arithmetic quaternion group.

More generally, any subgroup $\Gamma \subset B$ commensurable with \mathcal{O}^\times is called an arithmetic quaternion group.

Commensurable means that $\Gamma \cap \mathcal{O}^\times$ has finite index in both Γ and \mathcal{O}^\times.
A discrete subgroup $\Gamma \subset SL(2, \mathbb{R})$ is said to be of type $(1; e)$ if $E_\Gamma := \mathcal{H}/\Gamma$ has genus one and the projection $\mathcal{H} \to \mathcal{H}/\Gamma$ ramifies above exactly one point of order e.

Such groups are generated by two elements A, B with the single relation $[A, B]^e = -\text{Id}$. The group is determined by the traces of A, B and AB.

Theorem (Takeuchi, 1983)

There exist, up to conjugation, precisely 71 arithmetic quaternion groups of type $(1; e)$.
The problem

Let Γ be an arithmetic group of type $(1; e)$. The problem is twofold,

1. Determine a Weierstrass equation for \mathcal{H}/Γ of the form $y^2 = P(x)$, (P cubic and monic).

2. Determine the constant C (accessory parameter) so that the covering $\mathcal{H} \to \mathcal{H}/\Gamma/\text{inv}$ is determined by

$$P(z)y'' + \frac{1}{2}P'(z)y' + (C - n(n + 1)z/4)y = 0$$

with $n = (-1 + 1/e)/2$.
Sijsling’s thesis

In the recent PhD-thesis of Jeroen Sijsling he tackled the first problem and found almost all j-invariants in Takeuchi’s list.

Techniques used:

1. If Γ is commensurable with a triangle group there exists Belyi map E_Γ to \mathbb{P}^1.
2. According to Shimura-Deligne theory there exists a canonical model of E_Γ, defined over the narrow classfield of F, with good reduction outside a known set of primes.
3. Using explicit calculation of Hecke operators T_p on $H_1(E_\Gamma, \mathbb{Z})$ and the Eichler-Shimura theorem one determines the zeta-function of E_Γ at p for a large set of primes p.
4. To select a j-invariant in an isogeny class one determines the reduction mod p of E_Γ at the primes p of multiplicative reduction using a refinement of Cerednik-Drin’feld by Boutot-Zink.
5. Prove correctness for the candidate j-invariants.
A sample j-invariant

There are three arithmetic quaternion groups of type $(1; 7)$ not commensurable with a triangle group. The j-invariants of the Shimura curve $E(\Gamma)$ are the conjugates of

\[-1448892\alpha^2 - 1930931\alpha + 1318350\]
\[7 \cdot 13^2\]

where α is a zero of $x^3 - x^2 - 2x + 1$.

The corresponding quaternion algebra is defined over the field $\mathbb{Q}(\alpha)$ and the discriminant is $\varphi_7 \varphi_{13} \infty_1 \infty_2$. Discriminant of $\mathbb{Q}(\alpha)$ is 49.
Recall, we must determine $P(z)$ and C in

$$P(z)y'' + \frac{1}{2}P'(z)y' + (C - n(n + 1)z/4)y = 0$$

with $n = (-1 + 1/e)/2$. We know $P(z)$ from the j-invariant computation. As yet there is no systematic method to compute C. Numerically, given $P(z)$ and n and C, one can compute generators of the monodromy group and their traces. By interpolation determine C as precise as possible to obtain the desired traces given by the quaternion group. Then guess an algebraic value of C.

We take the two \((1; 4)\)-groups \(\Gamma\) from Takeuchi’s list corresponding to the quaternion algebra over \(\mathbb{Q}(\sqrt{2})\) of discriminant \(\wp_7\infty\). The curves \(\mathcal{H}/\Gamma\) correspond to the conjugates of

\[
y^2 = P(x) = x(x - 1)(x - (3 - 2\sqrt{2})/4).
\]

Numerical approximation (50 decimal places) indicates that \(C = (2 - \sqrt{2})/2^4\) in

\[
P(z)y'' + \frac{1}{2}P'(z)y' + (C + 15z/256)y = 0
\]