Tentamen Voorstellingen van eindige Groepen
(Exam Representations of groups)

6 juli 2007, 9.00-12.00 uur

- Write your name on every exam sheet you hand in. - Write on the first page also your studentnumber and e-mailaddress (for informing you about the result of this exam). - During this exam you may consult the book “Representations and characters of groups” by James and Liebeck. - Do not only give answers to the exam problems, but also show clearly by which arguments you arrive at these answers. - In case you can not answer some part of a problem, you may continue using the results formulated in this part of the problem in the subsequent parts of the same problem.

GOOD LUCK!

Problem 1
In this problem the group G is given by generators and relations. The generators are a and b, subject to the relations $a^7 = 1$, $b^6 = 1$ (the unit element of the group), $b^{-1}ab = a^3$. The subgroup generated by a is called H.

a. Show that H is a normal subgroup of G and that G/H is an abelian group.

b. List all conjugacy classes of G by giving one element in each conjugacy class.

c. Determine the degrees (=dimensions) of the irreducible characters of G.

d. Give the complete character table of G.

e. Let ψ be a non-trivial character of the subgroup H. Compute the induced character ψ^G_H and show that this is an irreducible character of G.

Problem 2
As usual S_4 is the group of permutations of the set $\{1, 2, 3, 4\}$. In this problem we investigate the following two representations of S_4.

For the first representation we take the 4-dimensional vector space U with basis e_1, e_2, e_3, e_4 and define the representation $\pi : S_4 \rightarrow \text{GL}(U)$ by $\pi(s)(e_i) = e_{s(i)}$ for $s \in S_4$.

For the second representation we take the 6-dimensional complex vector space V with basis consisting of vectors $E_{\{i,j\}}$ labeled with the 2-element subsets $\{i, j\}$ of $\{1, 2, 3, 4\}$ (note that the notation means that $\{i, j\}$ and $\{j, i\}$ are the same sets and also that $i \neq j$). We define the representation $\rho : S_4 \rightarrow \text{GL}(V)$ by $\rho(s)(E_{\{i,j\}}) = E_{\{s(i),s(j)\}}$ for $s \in S_4$.

a. List all conjugacy classes of S_4 by giving one element in each conjugacy class.

b. Compute the character of the representation π; call this character ψ.

c. Compute the character of the representation ρ; call this character χ.

d. How many irreducible characters are there in the decomposition of ψ into irreducibles?

e. Compute $\langle \chi, \psi \rangle$.

f. Give an argument, which does not use the character table of S_4, to show that $\chi - \psi$ is a character of S_4.

Problem 3

In this problem G is a finite group and $|G|$ denotes the order of G. We fix an irreducible character χ of G and consider the element $X = \frac{1}{|G|} \sum_{g \in G} \chi(g^{-1})g$ in the group algebra $\mathbb{C}G$.

We let U be a (left) $\mathbb{C}G$-module and denote its character by ψ. Moreover we define the \mathbb{C}-linear map $\xi : U \to U$ by $\xi(v) = Xv$ for all $v \in U$.

a. Compute the trace (=spoor) of the \mathbb{C}-linear map ξ in terms of the characters χ and ψ.

b. Prove that $h^{-1}Xh = X$ holds for every $h \in G$.

c. Prove that ξ is a $\mathbb{C}G$-homomorphism.

d. Now assume that U is an irreducible (left) $\mathbb{C}G$-module.
 (a) Prove that there is a $\lambda \in \mathbb{C}$ such that $\xi(v) = \lambda v$ for all $v \in U$.
 (b) Prove $\lambda = 0$ if $\psi \neq \chi$.
 (c) Compute λ if $\psi = \chi$.

e. Prove that $\xi(\xi(v)) = \frac{1}{\chi(1)} \xi(v)$ for every $v \in U$.

f. Prove that the relation $X^2 = \frac{1}{\chi(1)}X$ holds in the group algebra $\mathbb{C}G$.

Hint: Look at the decomposition of $\mathbb{C}G$ into irreducible $\mathbb{C}G$-modules.