Home work problems for WISB324

The material up to chapter 14 are relevant for a number of these problems and the statement from Ch 15 that the number of non-equivalent irreducible representations equals the number of conjugacy classes of the group.

1. Let, as usual, CG be the group algebra of a finite group G.

 (a) Show that for every CG-homomorphism $\phi : CG \rightarrow CG$ there exists $w \in CG$ such that $\phi(r) = rw$ (hint: take $w = \phi(e)$).

 (b) Let $W \subset CG$ be an irreducible CG-submodule of CG. Let $w \in W$ be a non-zero element. Show that $W = \{rw | r \in CG\}$.

2. Define the group $G = \langle a, b | a^5 = b^4 = e, b^{-1}ab = a^{-1} \rangle$.

 (a) Show that b^2 commutes with all elements of G.

 (b) Determine all conjugacy classes of G.

 (c) Determine all one-dimensional representations of G.

 (d) Determine the dimensions of all irreducible representations

 (e) Determine all higher dimensional (i.e. dim > 1) representations of G. Give the matrix images (up to conjugation) of a, b for these representations.

3. Define the vector space

 $V = \left\{ \sum_{1 \leq i < j \leq 4} a_{ij}x_ix_j \bigg| a_{ij} \in \mathbb{C} \right\} \subset \mathbb{C}[x_1, \ldots, x_4]$.

 Define the representation ρ of S_4 on V by $\sigma : x_ix_j \mapsto x_{\sigma(i)}x_{\sigma(j)}$ for all i, j.

 (a) Determine the characters of ρ.

 (b) Determine the irreducible representations that compose ρ (hint: use the character table of S_4, to be completed on Monday May 27, or consult p351 of the book).

 (c) Determine a basis for each of the irreducible subrepresentations of ρ.

4. Consider the representation ρ of S_5 on \mathbb{C}^5 given by

 $\sigma e_i \mapsto e_{\sigma(i)}$

 for all i, where e_1, \ldots, e_5 is the standard basis of \mathbb{C}^5. Show that ρ is a direct sum of the trivial representation and an irreducible one.