
Sparse Matrices and Their Data Structures
(PSC §4.2)

Sparse matrix data structures – p.1



Basic sparse technique: adding two vectors

Problem: add a sparse vector y of length n to a sparse
vector x of length n, overwriting x, i.e.,

x := x + y.

x is a sparse vector means that xi = 0 for most i.

The number of nonzeros of x is cx and that of y is cy.

Sparse matrix data structures – p.2



Example: storage as compressed vector

Vectors x, y have length n = 8.

Their number of nonzeros is cx = 3 and cy = 4.

A compressed vector data structure for x and y is:
x[j].a = 2 5 1
x[j].i = 5 3 7

y[j].a = 1 4 1 4
y[j].i = 6 3 5 2

Here, the jth nonzero in the array of x has
numerical value xi = x[j].a and index i = x[j].i.

How to compute x + y?

Sparse matrix data structures – p.3



Addition is easy for dense storage

The dense vector data structure for x, y, and x + y is:
0 0 0 5 0 2 0 1

0 0 4 4 0 1 1 0

0 0 4 9 0 3 1 1

A compressed vector data structure for z = x + y is:
z[j].a = 3 9 1 1 4
z[j].i = 5 3 7 6 2

Conclusion: use an auxiliary dense vector!

Sparse matrix data structures – p.4



Location array

The array loc stores the location j = loc[i] where a nonzero
vector component yi is stored in the compressed array.

y[j].a = 1 4 1 4
y[j].i = 6 3 5 2

j = 0 1 2 3

yi = 0 0 4 4 0 1 1 0
loc[i] = −1 −1 3 1 −1 2 0 −1

i = 0 1 2 3 4 5 6 7

Sparse matrix data structures – p.5



Algorithm for sparse vector addition: pass 1

input: x : sparse vector with cx nonzeros, x = x0,
y : sparse vector with cy nonzeros,
loc : dense vector of length n,
loc[i] = −1, for 0 ≤ i < n.

output: x = x0 + y,
loc[i] = −1, for 0 ≤ i < n.

{ Register location of nonzeros of y}
for j := 0 to cy − 1 do

loc[y[j].i] := j;

Sparse matrix data structures – p.6



Algorithm for sparse vector addition: passes 2, 3

{ Add matching nonzeros of x and y into x}
for j := 0 to cx − 1 do

i := x[j].i;
if loc[i] 6= −1 then

x[j].a := x[j].a + y[loc[i]].a;
loc[i] := −1;

Sparse matrix data structures – p.7



Algorithm for sparse vector addition: passes 2, 3

{ Add matching nonzeros of x and y into x}
for j := 0 to cx − 1 do

i := x[j].i;
if loc[i] 6= −1 then

x[j].a := x[j].a + y[loc[i]].a;
loc[i] := −1;

{ Append remaining nonzeros of y to x }
for j := 0 to cy − 1 do

i := y[j].i;
if loc[i] 6= −1 then

x[cx].i := i;
x[cx].a := y[j].a;
cx := cx + 1;
loc[i] := −1;

Sparse matrix data structures – p.7



Analysis of sparse vector addition

The total number of operations is O(cx + cy), since there
are cx + 2cy loop iterations, each with a small constant
number of operations.

The number of flops equals the number of nonzeros in
the intersection of the sparsity patterns of x and y.
0 flops can happen!

Initialisation of array loc costs n operations, which will
dominate the total cost if only one vector addition has to
be performed.

loc can be reused in subsequent vector additions,
because each modified array element is reset to −1.

If we add two n × n matrices row by row, we can amortise
the O(n) initialisation cost over n vector additions.

Sparse matrix data structures – p.8



Accidental zero

An accidental zero is a matrix element that is numerically
zero but still occurs as a nonzero pair (i, 0) in the data
structure.

Accidental zeros are created when a nonzero yi = −xi is
added to a nonzero xi and the resulting zero is retained in
the data structure.

Testing all operations in a sparse matrix algorithm for zero
results is more expensive than computing with a few
additional nonzeros.

Therefore, accidental zeros are usually kept.

Sparse matrix data structures – p.9



No abuse of numerics for symbolic purposes!

Instead of using the symbolic location array, initialised at
−1, we could have used an auxiliary array storing
numerical values, initialised at 0.0.

We could then add y into the numerical array, update x

accordingly, and reset the array.

Unfortunately, this would make the resulting sparsity
pattern of x + y dependent on the numerical values of x

and y: an accidental zero in y would never lead to a new
entry in the data structure of x + y.

This dependence may prevent reuse of the sparsity
pattern in case the same program is executed repeatedly
for a matrix with different numerical values
but the same sparsity pattern.

Reuse often speeds up subsequent program runs.

Sparse matrix data structures – p.10



Sparse matrix data structure: coordinate scheme

In the coordinate scheme or triple scheme, every nonzero
element aij is represented by a triple (i, j, aij), where i is
the row index, j the column index, and aij the numerical
value.

The triples are stored in arbitrary order in an array.

This data structure is easiest to understand and is often
used for input/output.

It is suitable for input to a parallel computer, since all
information about a nonzero is contained in its triple. The
triples can be sent directly and independently to the
responsible processors.

Row-wise or column-wise operations on this data
structure require a lot of searching.

Sparse matrix data structures – p.11



Compressed Row Storage

In the Compressed Row Storage (CRS) data structure,
each matrix row i is stored as a compressed sparse
vector consisting of pairs (j, aij) representing nonzeros.

In the data structure, a[k] denotes the numerical value of
the kth nonzero, and j[k] its column index.

Rows are stored consecutively, in order of increasing i.

start [i] is the address of the first nonzero of row i.

The number of nonzeros of row i is start [i + 1] − start [i],
where by convention start [n] = nz(A).

Sparse matrix data structures – p.12



Example of CRS

A =















0 3 0 0 1

4 1 0 0 0

0 5 9 2 0

6 0 0 5 3

0 0 5 8 9















, n = 5, nz(A) = 13.

The CRS data structure for A is:
a[k] = 3 1 4 1 5 9 2 6 5 3 5 8 9
j[k] = 1 4 0 1 1 2 3 0 3 4 2 3 4

k = 0 1 2 3 4 5 6 7 8 9 10 11 12

start [i] = 0 2 4 7 10 13
i = 0 1 2 3 4 5

Sparse matrix data structures – p.13



Sparse matrix–vector multiplication using CRS

input: A: sparse n × n matrix,
v : dense vector of length n.

output: u : dense vector of length n, u = Av.

for i := 0 to n − 1 do
u[i] := 0;
for k := start [i] to start [i + 1] − 1 do

u[i] := u[i] + a[k] · v[j[k]];

Sparse matrix data structures – p.14



Incremental Compressed Row Storage

Incremental Compressed Row Storage (ICRS) is a
variant of CRS.

In ICRS, the location (i, j) of a nonzero aij is encoded as
a 1D index i · n + j.

Instead of the 1D index itself, the difference with the 1D
index of the previous nonzero is stored, as an increment
in the array inc.

The nonzeros within a row are ordered by increasing j, so
that the 1D indices form a monotonically increasing
sequence and the increments are positive.

An extra dummy element (n, 0) is added at the end.

Sparse matrix data structures – p.15



Example of ICRS

A =















0 3 0 0 1

4 1 0 0 0

0 5 9 2 0

6 0 0 5 3

0 0 5 8 9















, n = 5, nz(A) = 13.

The ICRS data structure for A is:
a[k] = 3 1 4 1 5 9 2 . . . 0
j[k] = 1 4 0 1 1 2 3 . . . 0

i[k] · n + j[k] = 1 4 5 6 11 12 13 . . . 25
inc[k] = 1 3 1 1 5 1 1 . . . 1

k = 0 1 2 3 4 5 6 . . . 13

Sparse matrix data structures – p.16



Sparse matrix–vector multiplication using ICRS

input: A: sparse n × n matrix,
v : dense vector of length n.

output: u : dense vector of length n, u = Av.

j := inc[0];
k := 0;
for i := 0 to n − 1 do

u[i] := 0;
while j < n do

u[i] := u[i] + a[k] · v[j];
k := k + 1;
j := j + inc[k];

j := j − n;
Slightly faster: increments translate well into pointer arithmetic

of programming language C; no indirect addressing v[j[k]].

Sparse matrix data structures – p.17



A few other data structures

Compressed column storage (CCS), similar to CRS

Gustavson’s data structure: both CRS and CCS, but
storing numerical values only once. Offers row-wise and
column-wise access to the sparse matrix.

The two-dimensional doubly linked list: each nonzero is
represented by i, j, aij , and links to a next and a previous
nonzero in the same row and column.
Offers maximum flexibility: row-wise and column-wise
access are easy and elements can be inserted and
deleted in O(1) operations.

Matrix-free storage: sometimes it may be too costly to
store the matrix explicitly. Instead, each matrix element is
recomputed when needed. Enables solution of huge
problems.

Sparse matrix data structures – p.18



Summary

Sparse matrix algorithms are more complicated than their
dense equivalents, as we saw for sparse vector addition.

Sparse matrix computations have a larger integer
overhead associated with each floating-point operation.

Still, using sparsity can save large amounts of CPU time
and also memory space.

We learned an efficient way of adding two sparse vectors
using a dense initialised auxiliary array. You will be
surprised to see how often you can use this trick.

Compressed row storage (CRS) and its variants are
useful data structures for sparse matrices.

CRS stores the nonzeros of each row together, but does
not sort the nonzeros within a row. Sorting is a mixed
blessing: it may help, but it also takes time.

Sparse matrix data structures – p.19


	Basic sparse technique: adding two vectors
	Example: storage as compressed vector
	Addition is easy for dense storage
	Location array
	Algorithm for sparse vector addition: pass 1
	Algorithm for sparse vector addition: passes 2, 3
	Analysis of sparse vector addition
	Accidental zero
	No abuse of numerics for symbolic purposes!
	Sparse matrix data structure: coordinate scheme
	Compressed Row Storage
	Example of CRS
	Sparse matrix--vector multiplication using CRS
	Incremental Compressed Row Storage
	Example of ICRS
	Sparse matrix--vector multiplication using ICRS
	A few other data structures
	Summary

