
Parallel Fast Fourier Transform
(PSC §3.4)

Parallel FFT – p.1



Data distributions for butterflies of FFT

block

cyclic

1

8

4

2

butterfly distance

p = 4, n = 16

n, p must be powers of two with p < n.

In stage k, component pair (xj, xj+k/2) at distance k/2 is
combined.

Block distribution works for k = 2, 4, . . . , n/p.

Cyclic distribution works for k = 2p, 4p, . . . , n.

Parallel FFT – p.2



Block distribution works for small butterflies

Let n = 8, p = 2. In stage k = 2, the vector x is multiplied by

I4 ⊗ B2 =



























1 1 · · · · · ·
1 −1 · · · · · ·
· · 1 1 · · · ·
· · 1 −1 · · · ·
· · · · 1 1 · ·
· · · · 1 −1 · ·
· · · · · · 1 1

· · · · · · 1 −1



























.

The first two butterfly blocks x(0: 1), x(2: 3) are contained
in processor block x(0: 3).

The last two butterfly blocks x(4: 5), x(6: 7) are contained
in processor block x(4: 7).

Parallel FFT – p.3



Cyclic distribution works for large butterflies

In stage k = 8, the vector x is multiplied by

I1 ⊗ B8 = B8 =



























1 · · · 1 · · ·
· 1 · · · ω · ·
· · 1 · · · ω2 ·
· · · 1 · · · ω3

1 · · · −1 · · ·
· 1 · · · −ω · ·
· · 1 · · · −ω2 ·
· · · 1 · · · −ω3



























,

where ω = ω8 = e−πi/4 = 1
2

√
2 − 1

2

√
2i.

The pairs (x0, x4) and (x2, x6) are combined on P (0).

The pairs (x1, x5) and (x3, x7) are combined on P (1).
Parallel FFT – p.4



Parallelisation strategy: use different distributions

At the start, for k ≤ n/p, we use the block distribution.

Near the end, for k ≥ 2p, the cyclic distribution.

This suffices if p ≤ n/p, i.e. p ≤
√

n.
For example: p ≤ 32 for n = 1024.

If p >
√

n, we need an intermediate distribution, a
generalisation of the block and cyclic distribution.

Split the vector into blocks. Each block is owned by a
group of processors and is distributed by the cyclic
distribution over the processors of that group.

Parallel FFT – p.5



Group-cyclic distribution

Let c be fixed such that 1 ≤ c ≤ p and p mod c = 0. The
group-cyclic distribution with cycle c is defined by

xj 7−→ P ((j div

⌈

cn

p

⌉

)c + (j mod

⌈

cn

p

⌉

) mod c).

c is the number of processors in a group and
⌈

cn
p

⌉

=
⌈

n
p/c

⌉

is the size of a block owned by a group.

If n mod p = 0, as happens in the FFT, this reduces to

xj 7−→ P ((j div
cn

p
)c + j mod c).

For c = 1, we get the block distribution.
For c = p, we get the cyclic distribution.

Parallel FFT – p.6



From block to cyclic distribution

0

0

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(a)

(c)

(cyclic)

(block)

(b)

0 01 12 23 3
0 1 2 3 4 5 6 7

0 1 1 2 2 3 3

1 1 2 2 330c = 2

c = 1

c = 4

n = 8, p = 4, so that p >
√

n.

In (b), we have p/c = 2 groups of c = 2 processors.

Parallel FFT – p.7



Global and local indices

n, p and hence c are powers of two. We have 1 ≤ c < cn
p

.

Thus, we can write the global index j as

j = j2
cn

p
+ j1c + j0,

where 0 ≤ j0 < c and 0 ≤ j1 < n/p.

The processor that owns component xj is

P ((j div
cn

p
)c + j mod c) = P (j2c + j0).

Processors in the same processor group have the same
j2, but different j0.

We obtain the local index j by ordering the local
components by increasing global index j, so that j = j1.

Parallel FFT – p.8



Which operations are local?

Butterfly operation on (xj, xj+k/2) is local if

xj, xj+k/2 are in the same group, i.e. k ≤ cn
p

;

distance k/2 is a multiple of c, i.e. k ≥ 2c.

We can use the group-cyclic distribution with cycle c for

2c ≤ k ≤
n

p
c.

Outline of algorithm:

start with c = 1, perform stages k = 2, 4, . . . , n/p;

increase c to c = n/p, perform stages
k = 2n/p, 4n/p, . . . , (n/p)2;

...

finish with c = p, instead of c = (n/p)t ≥ p. Parallel FFT – p.9



Warning: difficult slides ahead

Parallel FFT – p.10



Parallel unordered FFT

{ distr(x) = block } k := 2; c := 1;
while k ≤ n do

(0) j0 := s mod c; j2 := s div c;
while k ≤ n

p
c do

nblocks := nc
kp

;
for r := j2 · nblocks to (j2 + 1) · nblocks − 1 do

{ Compute part of x(rk: (r + 1)k − 1) }
for j := j0 to k

2
− 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

k := 2k;

Parallel FFT – p.11



Parallel unordered FFT

{ distr(x) = block } k := 2; c := 1;
while k ≤ n do

(0) j0 := s mod c; j2 := s div c;
while k ≤ n

p
c do

nblocks := nc
kp

;
for r := j2 · nblocks to (j2 + 1) · nblocks − 1 do

{ Compute part of x(rk: (r + 1)k − 1) }
for j := j0 to k

2
− 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

k := 2k;
if c < p then

c0 := c; c := min(n
p
c, p);

(1) redistr(x, n, p, c0, c);
{ distr(x) = cyclic }

Parallel FFT – p.11



Parallel bit reversal

p = 8, n = 256

1 0 0 01

1100 0

110 0 0

1 1 0

1 1 0

1

1 1

1 0

0 0 0 01 1

cyclic distribution
local index = 20 procnr= 6

procnr=3 local index = 5

j=166=

(j)=101=ρ block distribution

block distribution with
bit−reversed processor numbering

Start in cyclic distribution with local bit reversal.
Then swap the data between processors P (s) and P (ρp(s)).

We end up in the block distribution.

Parallel FFT – p.12



Postponing the processor swaps

The distribution just before the swaps is the block
distribution with bit-reversed processor numbering.

All processors perform the same operations in stages
k = 2, 4, . . . , n/p of the FFT, multiplying local blocks of x

by Bk.

I’ll scratch your back if you scratch mine: processors
perform the work of their partner.

The data swap can be postponed until the first
redistribution, immediately after stage k = n/p.

Buy 2, Pay 1: two permutations can be done at the cost
of one by combining them. Hence no extra
communication is incurred by the data swaps.

Parallel FFT – p.13



Redistribution with possible proc-number reversal

input : x : vector of length n = 2m,
distr(x) = group-cyclic with cycle c0 over p = 2q procs.
If rev is true, processor numbering is bit-reversed.

output : distr(x) = group-cyclic with cycle c1.
call : redistr(x, n, p, c0, c1, rev );

(1) if rev then
j0 := ρp(s) mod c0;
j2 := ρp(s) div c0;

else
j0 := s mod c0;
j2 := s div c0;

for j := j2
c0n
p

+ j0 to (j2 + 1) c0n
p

− 1 step c0 do
dest := (j div c1n

p
)c1 + j mod c1;

put xj in P (dest);
Parallel FFT – p.14



Last iteration of main loop

The last iteration is determined by the smallest integer t
such that (n/p)t ≥ p.

The cycles of the iterations are
c = (n/p)0, (n/p)1, . . . , (n/p)t−1, p.

The total number of iterations is therefore t + 1.

Since

(n/p)t ≥ p ⇐⇒ nt ≥ pt+1 ⇐⇒ 2mt ≥ 2q(t+1)

⇐⇒ mt ≥ q(t + 1) ⇐⇒ mt − qt ≥ q

⇐⇒ t ≥
q

m − q
,

it follows that

t =

⌈

q

m − q

⌉

.
Parallel FFT – p.15



BSP cost

Every iteration has a computation superstep and a
communication superstep, except the last, which has no
data redistribution. Therefore,

Tsync = (2t + 1)l =

(

2

⌈

q

m − q

⌉

+ 1

)

l.

Every redistribution moves at most all the local data in
and out, i.e., n/p complex numbers, or 2n/p real data
words. Therefore,

Tcomm = t ·
2n

p
g =

⌈

q

m − q

⌉

·
2n

p
g.

Look mama, without counting!

Tcomp = (5n log2 n)/p.
Parallel FFT – p.16



Summary

We have used different distributions in different parts of
the algorithm, trying to make our operations local.

The algorithm starts and finishes in the cyclic distribution.

If we split a vector into p/c blocks and distribute each
block over c processors by the cyclic distribution, then we
obtain the group-cyclic distribution with cycle c.

The total BSP cost of the parallel FFT algorithm is

TFFT =
5n log2 n

p
+2·

⌈

log2 p

log2(n/p)

⌉

·
n

p
g+

(

2

⌈

log2 p

log2(n/p)

⌉

+ 1

)

l.

For practical p, we need only one data redistribution:

TFFT, 1<p≤
√

n =
5n log2 n

p
+ 2

n

p
g + 3l.

Parallel FFT – p.17


	Data distributions for butterflies of FFT
	Block distribution works for small butterflies
	Cyclic distribution works for large butterflies
	Parallelisation strategy: use different distributions
	Group-cyclic distribution
	From block to cyclic distribution
	Global and local indices
	Which operations are local?
	Warning: difficult slides ahead
	Parallel unordered FFT
	Parallel bit reversal
	Postponing the processor swaps
	Redistribution with possible proc-number reversal
	Last iteration of main loop
	BSP cost
	Summary

