BSP Benchmarking
(PSC 81.5-1.7)

Benchmarking: art, science, magic?

“There are three kinds of lies: lies, damned lies, and
statistics” (Benjamin Disraeli, 1804—-1881)

= Benchmarking is the activity of comparing performance.

= Computer benchmarking involves running computer
programs to see how certain computer systems perform.
This checks both the hardware and the system software.

= Often, the benchmark result is obtained by ruthless
reduction of a large quantity of data to one statistical
figure, the flop rate.

Lecture 1.5-1.7 BSP Benchmarking — p.2

Seqguential benchmarking

= Already for sequential computers, benchmarking is
difficult, for instance because different programs can run
at very different speeds on the same machine.

= Reaching only 10% of the peak rate of a computer is
guite common. No one is embarrassed. Hush!

= Highest rates are obtained by algorithms that use
matrix—matrix multiplication, such as implemented in the
BLAS level 3 operation DGEMM.
(BLAS = Basic Linear Algebra Subprograms).

= Lowest rates are obtained for scalar operations, which
Involve single numbers, not vectors or matrices.

= A reasonable intermediate rate is obtained for
vector—vector operations, such as the BLAS level 1

operation DAXPY, defined by y := ax + y. We use this
operation for sequential benchmarking.

Lecture 1.5-1.7 BSP Benchmarking — p.3

BSP benchmarking

= \We must be ruthless, but a single number will not work.
Thus we measure: r for computation,
g for communication, and [for synchronisation.

= The aim is to obtain useful values of r, g, [that help us in
predicting performance of algorithms without actually
running an implementation.

= Most of our troubles in this endeavour come from the
difficulty of sequential benchmarking.

= A cache is a small memory close to the CPU that stores
recently accessed data. There may be a tiny primary
cache, a larger secondary cache farther away, etc.
Computations in primary cache are much faster than
others. We may have to distinguish rates r;, r,, etc. (but
we won't).

Lecture 1.5-1.7 BSP Benchmarking — p.4

Communication pattern for BSP benchmark program

P(0) sends data to P(1), P(2), P(3), P(1), P(2), P(3).

The other processors also send data in this cyclic fashion.

Lecture 1.5-1.7 BSP Benchmarking — p.5

Full h-relation

= \We measure a full h-relation, where every processor
sends and receives exactly i data.

= Our intentions are the worst: we try to measure the
slowest possible communication. We put single data
words into other processors in a cyclic fashion.

= This reveals whether the system software indeed

combines data for the same destination and whether it
can handle all-to-all communication efficiently.

This is after all the basis of BSP!

= ‘Underpromise and overdeliver’ is the motto: actual
communication performance can only be better. We call
the resulting ¢ obtained by our benchmarking program
bspbench pessimistic.

= The Oxford BSP toolset has another benchmarking
program, bsppr obe, which measures optimistic g-values.

u 5-1.7 BSP Benchmarking — p.6

Time of an h-relation on two connected PCs

800000

Measured data -+
Least-squares fit -------- N
700000 | e
600000 | W

g -
500000 | T

400000 + %jg o

Time (in flop units)

300000 |- W o
200000 | .

100000

0

0 50 100 150 200 250 300 350 400 450 500
h

Two 400 MHz Pentium Il PCs, both running Linux, connected
by Fast Ethernet (100 Mbit/s) and a Cisco Catalyst switch.

R0 = 122 Mflop/s, g = 1180, and [= 138324.

Lecture 1.5-1.7 BSP Benchmarking — p.7

Least-squares fit

= Two measurements would suffice for obtaining a straight
line, but we want to use all data available in an interval
ho, hq].

= \We minimise the error

h1

ELSQ(Q, l) = Z (Teomm (k) — (hg + l))2-

h=hg

= The best choice for ¢ and [is obtained by setting
0F _ O _
og Ol

and solving the resulting 2 x 2 linear system.

Lecture 1.5-1.7 BSP Benchmarking — p.8

Time of an A-relation on an 8-processor SGI Origin

200000
Measured data +
Least-squares fit -------
150000 [
£
=
o
= +
&= 100000 [
g -
e
g +
= 4+
50000 |
N
0 | | | | |
0 50 100 150 200 250

Silicon Graphics Origin 2000
r = 326 Mflop/s, g = 297, and [= 95 686.
f==Compiler plays tricks: measured value of » may be too high.
1 \Choose hg and h, judiciously. Here, hy = p.

Time of an h-relation on a 64-processor Cray T3E

25000 T .
Measured data +
Least-squares fit --------
T
20000 it -
+
. w@ﬁ
S
) wff*’/
S 15000 - P
& il
= i
c +ﬁ§£§5 "
= ﬁ;ﬁ o
Q
£ 10000 r
= o
5000 r
O | | | | |
0 50 100 150 200 250
h

r = 35 Mflop/s, g = 78, and [= 1825

Sending more data takes less time (cf. h =~ 130). Weird!
. EXplanation: switching to a different data packing mechanism
(from short messages to long messages).

Lecture 1.5-1.7 BSP Benchmarking — p.10

bspbench: initialising the communication pattern

for (1=0; i<h; 1++){

src[i]= (double)i;

I (p==1){
dest proc| i] =0;
desti ndex[i] =i,

} else {
/* destination processor IS one

of the p-1 others */

destproc[i]= (s+1 + 1 %p-1)) Yp;

[* destination index 1s In
my own part of dest */
destindex[i]=s + (1/(p-1))*p;

Lecture 1.5-1.7 BSP Benchmarking — p.11

bspbench: measuring the communication time

bsp _sync();
time0= bsp tine();

for (iter=0; iter<NITERS; iter++){
for (1=0; i1<h; i++)
bsp put (destproc[i], &src[i], dest,
desti ndex|[1]*SZDBL, SZDBL);
bsp _sync();

}
tinmel= bsp tine();

Adjust NI TERS to obtain an accurate measurement,

without waiting forever.

Lecture 1.5-1.7 BSP Benchmarking — p.12

Comparing BSP parameters (p = 8)

(flop) (1)
Computer r (Mflop/s) qg [q [
Cray T3E 35 31 1193 0.88 34
IBM RS/6000 SP 212 187 148 212 0.88 698
SGI Origin 2000 326 297 95 686 0.91 294

= Machines become obsolete quickly. All of the above
machines have in the mean time been replaced by faster
successors.

= Newer machines will be benchmarked in the laboratory
class of this course.

Lecture 1.5-1.7 BSP Benchmarking — p.13

Advice from the trenches

= Always plot the benchmark results. This gives insight in
your machine and reveals the accuracy of your
measurement.

= Be suspicious of artefacts. Negative g values may occur if
g is small and [is huge. In that case, the least-squares fit
does not give an accurate g.

= Run the benchmark at least three times. If the best two
runs agree, you can be reasonably confident.

= Parallel computers are like the weather: they change all
the time. Always run a benchmark program before
running an application program, just to see what machine
you have today. (Think of. a new compiler, faster
communication switches, Challenge Projects that gobble
up network resources, and so on.)

Lecture 1.5-1.7 BSP Benchmarking — p.14

Summary

= Benchmarking is difficult.

= Machines have quirks, surprises are plenty, and
measurements are often inaccurate.

= With all these caveats, it is still useful to have a table with
r, g, | values for many different machines.

= This table should be kept up to date to reflect new
architectures appearing. You can do it! (Similar to the

LINPACK benchmark used to determine the
Supercomputer Top 500.)

= BSP benchmarking can be done using BSPlib
(bspbench, bsppr obe), but also MPI-1 (npi bench).

Lecture 1.5-1.7 BSP Benchmarking — p.15

	Benchmarking: art, science, magic?
	Sequential benchmarking
	BSP benchmarking
	Communication pattern for BSP benchmark program
	Full h-relation
	Time of an h-relation on two connected PCs
	Least-squares fit
	Time of an h-relation on an 8-processor SGI Origin
	Time of an h-relation on a 64-processor Cray T3E
		exttt {bspbench}: initialising the communication pattern
		exttt {bspbench}: measuring the communication time
	Comparing BSP parameters ($p=8$)
	Advice from the trenches
	Summary

