
Message Passing Interface (MPI-2)
(PSC Appendix C, §C.2.5–C.4)

MPI-2 – p.1



One-sided communications in MPI-2

bsp_hpput(pid, src, dst,dst_offsetbytes, nbytes);
MPI_Put(src, src_n, src_type,

pid, dst_offset,dst_n,dst_type, dst_win);

The standard put operation in MPI-2 is the unbuffered
put, equivalent to the high-performance put in BSPlib.

Data sizes and offsets are measured in units of the basic
data type, src_type for the source array and dst_type
for the destination array. Both could e.g. be MPI_DOUBLE.

The destination memory area is not given by a pointer to
memory space such as an array, but by a pointer to a
window object.

MPI-2 – p.2



Windows for one-sided communications

bsp_push_reg(variable, nbytes);
MPI_Win_create(variable, nbytes, unit, info,

comm, win);
bsp_pop_reg(variable);
MPI_Win_free(win);

A window is a preregistered and distributed memory area,
consisting of local memory on every processor of a
communicator.

A window is created by MPI_Win_create, equivalent to
bsp_push_reg.

win is the window of type MPI_Win corresponding to the
array variable.

The integer unit is the unit for expressing offsets;
comm is the communicator of the window.

MPI-2 – p.3



Creating a window

MPI_Win_create(variable, nbytes, unit, info,
comm,win); //syntax

MPI_Win v_win;

MPI_Win_create(v,nv*SZDBL,SZDBL,MPI_INFO_NULL,
MPI_COMM_WORLD,&v_win);

MPI_Win_fence(0, v_win);

A window can be used after a call to MPI_Win_fence,
which can be thought of as a synchronisation of the
processors that own the window.

MPI-2 – p.4



Fanout in mpimv

for(j=0; j<ncols; j++)
MPI_Get(&vloc[j], 1,MPI_DOUBLE,srcprocv[j],

srcindv[j],1,MPI_DOUBLE,v_win);
MPI_Win_fence(0, v_win);

Communications initiated before a fence are guaranteed
to have been completed after the fence.

The fence acts as a synchronisation at the end of a
superstep.

MPI-2 – p.5



Fanin using accumulate

for(i=0; i<nrows; i++){
compute psum = local partial sum of row i

MPI_Accumulate(psum,1,MPI_DOUBLE,
destprocu[i], destindu[i],
1,MPI_DOUBLE,MPI_SUM,u_win);

}
MPI_Win_fence(0, u_win);

Accumulate is a one-sided communication.

Instead of putting a value into the destination location,
accumulate adds a value into the location, or takes a
maximum, or performs another binary operation.

MPI-2 – p.6



Comparison of BSPlib and MPI for inner product

Program n p BSPlib MPI
Inner product 100 000 1 4.3 4.3

2 4.2 2.2
4 5.9 1.1
8 9.1 0.6

16 26.8 0.3

Time Tp(n) (in ms) of parallel program from BSPedupack
and MPIedupack on p processors of a Silicon Graphics
Origin 3800.

BSPlib implementation was designed for earlier machine.

The vendor’s version of MPI is clearly well-optimised,
leading to good scalability.

MPI-2 – p.7



Comparison of BSPlib and MPI for LU and FFT

Program n p BSPlib MPI
LU decomposition 1000 1 5408 6341

2 2713 2744
4 1590 1407
8 1093 863

16 1172 555
FFT 262 144 1 154 189

2 111 107
4 87 50
8 41 26

16 27 19

MPI-2 – p.8



Comparison of BSPlib and MPI for matrix–vector

Program n p BSPlib MPI
Matrix–vector 20 000 1 3.8 3.9

2 11.4 2.7
4 14.7 6.9
8 20.8 8.4

16 18.7 11.0

Test problem amorph20k too small to obtain speedup.

MPI-2 – p.9



How to use BSP in an MPI world?

The first, purist approach is to write our programs in
BSPlib and install BSPlib ourselves if needed.

Main advantages: ease of use; automatic enforcement of
the BSP style; no deadlock.

For certain architectures, an efficient implementation is
available.

Always possible to use BSPonMPI by Wijnand Suijlen,
see http://bsponmpi.sourceforge.net

BSPonMPI is a library. Linking it with your BSPlib program
turns it into an MPI program. Then use mpirun . . .

MPI-2 – p.10



Second approach: the hybrid program

The hybrid approach is to write a single program in BSP
style, but express all communication both in MPI and
BSPlib.

The resulting single-source program can then be
compiled conditionally (with or without a flag
-DMPITARGET), e.g. for the FFT:

#ifdef MPITARGET
mpiredistr(x,n,p,s,c0,c,rev,rho_p);

#else
bspredistr(x,n,p,s,c0,c,rev,rho_p);

#endif

Main advantages: single-source program; choice of BSP
or MPI, whichever is fastest; encourages programming in
BSP style also in the MPI part of programs.

Disadvantage: longer program texts.
MPI-2 – p.11



Third approach: write in BSPlib, then convert to MPI

Main advantages: saves human time when developing
the program; single-source program.

Disadvantage: some extra effort needed at the end of the
development stage.

This approach was taken for BSPedupack, which was
converted into MPIedupack within a week.

MPI-2 – p.12



Fourth approach: write in MPI-2

Use collective communications where possible, and keep
the lessons learned from the BSP model in mind.

This probably works best after having obtained some
experience with BSPlib.

MPI-2 – p.13



Differences between BSPlib and MPI

BSPlib: system optimises. MPI: user optimises.

BSPlib: small. MPI: large.

BSPlib is easier for the novice. MPI gives experts more
power.

BSPlib: paternalistic library which steers programming
efforts in the right direction. MPI allows many different
styles of programming.

MPI-2 – p.14



Summary: where BSP meets MPI

Use BSPlib when learning to program in parallel.

Use MPI later in life.

Use BSPonMPI if you prefer BSPlib but want the
portability of MPI.

MPI-2 provides one-sided communications.

Our experimental comparisons were unfair to BSPlib.
More testing is needed, also using BSPonMPI.

The third approach may be the best: write in BSPlib, but
be prepared to convert to MPI. You may never need to!

MPI-2 – p.15


	One-sided communications in MPI-2
	Windows for one-sided communications
	Creating a window
	Fanout in 	exttt {mpimv}
	Fanin using accumulate
	Comparison of BSPlib and MPI for inner product
	Comparison of BSPlib and MPI for LU and FFT
	Comparison of BSPlib and MPI for matrix--vector
	How to use BSP in an MPI world?
	Second approach: the hybrid program
	Third approach: write in BSPlib, then convert to MPI
	Fourth approach: write in MPI-2
	Differences between BSPlib and MPI
	Summary: where BSP meets MPI

