
Random Sparse Matrices
(PSC §4.7)
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Random sparse matrix random100

n = 100, nz = 1000, c = 10, d = 0.1.
Interactively generated at the Matrix Market Deli
(Boisvert et al. 1997),

http://math.nist.gov/MatrixMarket/deli/Random/
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Random sparse matrix

A random sparse matrix A can be obtained by
determining, randomly and independently, for each
element aij whether it is 0 or not.

If the probability of creating a nonzero is d, the matrix has:
an expected density d(A) = d;

an expected number of nonzeros nz(A) = dn2.

Random sparse matrices have a very special property:
every subset of the matrix elements, chosen
independently from the sparsity pattern,
has an expected fraction d of nonzeros.

This property provides a powerful tool for analysing
algorithms involving random sparse matrices.
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Not a random sparse matrix

Matrix cage6 from DNA electrophoresis studies.

Some structure immediately visible.

Don’t use the term ‘random sparse matrix’ for such a
matrix or a sparse matrix without any visible structure.
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Parallel sparse matrix–vector multiplication

Construct a random sparse matrix A by drawing for each
index pair (i, j) a random number rij ∈ [0, 1], doing this
independently and uniformly (with each outcome equally
likely), creating a nonzero aij if rij < d.

Distribute A over p processors in a manner that is
independent of the sparsity pattern by assigning an equal
number of elements (whether 0 or not) to each processor.

Examples are the square block distribution, square cyclic
distribution, and the cyclic row distribution.
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Computational load balance

The load balance can be estimated by using probability
theory.

The problem is to determine the expected maximum,
taken over all processors, of the local number of
nonzeros.

We cannot solve this problem exactly, but we can obtain a
useful bound on the probability of the maximum
exceeding a certain value.

Bound is obtained by applying a theorem of Chernoff,
often used in the analysis of randomised algorithms.
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Theorem 4.11 (Chernoff 1952)

Let 0 < d < 1.

Let X0, X1, . . . , Xm−1 be independent Bernoulli trials with
outcome 0 or 1, such that Pr[Xk = 1] = d, for 0 ≤ k < m.

Let X =
∑m−1

k=0 Xk and µ = md.

Then for every ε > 0,

Pr[X > (1 + ε)µ] <

(

eε

(1 + ε)1+ε

)µ

.
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Application of Chernoff Theorem

Pr[X > (1 + ε)µ] <

(

eε

(1 + ε)1+ε

)µ

.

If we flip a biased coin which produces heads with
probability d, the bound tells us how small the probability
is of getting εµ more heads than the expected average µ.

Bound for ε = 1 tells us that the probability of getting
more than twice the expected number of heads
is less than (e/4)µ ≈ (0.68)md.
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Application to random sparse matrix

Every processor has m = n2

p
elements, each being

nonzero with probability d.

Expected number of nonzeros per processor is µ = dn2

p
.

Let Es be the event that processor P (s) has more than
(1 + ε)µ nonzeros. Let E = ∪p−1

s=0Es.

We have

Pr[E] ≤
p−1
∑

s=0

Pr[Es] = pPr[E0],

so that the cost of superstep (1) satisfies

Pr

[

T(1) >
2(1 + ε)dn2

p

]

< p

(

eε

(1 + ε)1+ε

)
dn2

p

.

Random sparse matrices – p.9



Probability of exceeding normalised cost
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Chernoff probability F (ε) of exceeding normalised cost 1 + ε
for random sparse matrix of size n = 1000 and density d
distributed over p = 100 processors.
Average normalised cost obtained by simulation:

1.076 for d = 0.1; 1.258 for d = 0.01; 1.876 for d = 0.001.
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Probability distribution

0

0.05

0.1

0.15

0.2

1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

Pr
ob

ab
ili

ty

Normalized computation cost

Measured
Scaled derivative

Probability distribution obtained by simulation for random
sparse matrix of size n = 1000 and density d = 0.01
distributed over p = 100 processors.

Local nonzero count 124 (cost = 1.24) occurs most.

Derivative is (1 − F (ε))′, probability density function
corresponding to the Chernoff bound. Pessimistic!
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Communication cost for random sparse matrix

The communication volume for a dense matrix is an
upper bound on the volume for a sparse matrix distributed
by the same fixed, pattern-independent scheme.

For a random sparse matrix with a high density, the
communication obligations will be the same as for a
dense matrix.

Therefore, we try to find a good fixed distribution scheme
for random sparse matrices by applying methods from the
dense case.
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Square Cartesian distribution for dense matrix
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n = 8, p = 4, M = N = 2.
Square Cartesian distribution based on a
cyclic distribution of the matrix diagonal.
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Superstep (0): fanout

Vector component vj is needed only in P (∗, φ1(j)).

P (s, φ1(j)) does not need vj if all n√
p

elements in the local

part of matrix column j are zero; this has probability
(1 − d)n/

√
p.

Probability that P (s, φ1(j)) needs vj is 1 − (1 − d)n/
√

p.

Since
√

p − 1 processors each have to receive vj with this
probability, the expected number of receives for
component vj is (

√
p − 1)(1 − (1 − d)n/

√
p).

Expected volume is n(
√

p − 1)(1 − (1 − d)n/
√

p).

Ignoring communication imbalance, we divide by p, giving

T(0) =

(

1
√

p
−

1

p

)

(1 − (1 − d)n/
√

p)ng.
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Total communication cost

Cost of fanin is same as for fanout.

For n = 1000 and p = 100, the matrix with highest density
d = 0.1 has an expected communication cost of 179.995g,
close to the cost of 180g for a dense matrix.

The corresponding expected normalised communication
cost is

T(0) + T(2)

2dn2/p
≈ 0.09g.

We need a parallel computer with g ≤ 11 to run our
algorithm with more than 50% efficiency

For n = 1000 and p = 100, the matrix with lowest density
d = 0.001 has an expected normalised communication
cost of 0.86g.
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Tailor the distribution to the matrix

Local view of random100 (with n = 100, nz = 1000, d = 0.1),
distributed by the Mondriaan program over p = 16 processors.
Shown is the submatrix Is × Js for 0 ≤ s < 16.

Allowed imbalance ε = 20%; ε′ = 18.4% achieved.
Max nonzeros per proc 74. Avg 62.5. Min 25. V = 367.
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Comparing Cartesian and Mondriaan distribution

p ε (in %) V (Cartesian) V (Mondriaan)
2 0.8 993 814
4 2.1 1987 1565
8 4.0 3750 2585

16 7.1 5514 3482
32 11.8 7764 4388

Random sparse matrix of size n = 1000 and density d = 0.01
distributed over p processors, by:

pattern-independent Cartesian distribution;

pattern-dependent distribution produced by the
Mondriaan package with ε = expected value
for the Cartesian distribution.

45% less communication volume for Mondriaan (p = 32).
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Summary

Distributing a random sparse matrix independently of its
sparsity pattern spreads the computation well.

We can quantify this by using the Chernoff bound

Pr[X > (1 + ε)µ] <

(

eε

(1 + ε)1+ε

)µ

.

For the communication, we can use a
pattern-independent square Cartesian distribution which
distributes the matrix diagonal and the vectors cyclically
over the processors.

The distribution can be improved by tailoring it to the
sparsity pattern e.g. by using Mondriaan.

Parallel multiplication of a random sparse matrix and a
vector remains a difficult problem.
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