Sparse Matrices and Their Data Structures
(PSC 8§4.2)

Sparse matrix data structures — p.1

Basic sparse technigque: adding two vectors

= Problem: add a sparse vector y of length n to a sparse
vector x of length n, overwriting x, I.e.,

X:=X+Y.

= X IS a sparse vector means that z; = 0 for most .
= The number of nonzeros of x Is ¢, and that of y Is c,,.

Sparse matrix data structures — p.2

Example: storage as compressed vector

= Vectors x, y have length n = &.
= Their number of nonzeros is ¢, = 3 and ¢, = 4.

= A compressed vector data structure for x and y Is:
zr[jla= 2|51
x[jli=||53 |7
yljla=1{ 14|14
yljli=1163|5]|2

= Here, the jth nonzero in the array of x has
numerical value z; = z|j].a and index ¢ = z|j].i.

= How to compute x + y?

Sparse matrix data structures — p.3

Addition Is easy for dense storage

= The dense vector data structure for x, y, and x + y IS:
0/0|0|5]/012(0]1

0 0[{4/4/0/12/1|0
0 0[{4/9/0/ 311

= A compressed vector data structure for z = x + y ISs:
zljla=1319]1|1|4
zljli=15]3|7 6|2

= Conclusion: use an auxiliary dense vector!

Sparse matrix data structures — p.4

Location array

The array [oc stores the location ;7 = [oc|i:] where a nonzero
vector component y; is stored in the compressed array.

ylila=1]4]1]4
' 3 2
j=/0l1]2]3

N

=
~
|
(@)
o1

Sparse matrix data structures — p.5

Algorithm for sparse vector addition: pass 1

Input: X : Sparse vector with ¢, honzeros, x = xq,
y : sparse vector with ¢, nonzeros,
loc : dense vector of length n,

locli] = —1, for 0 < i < n.
output: X =X +Y,
locli| = —1, for 0 < i < n.

{ Register location of nonzeros of y}
for j:=0toc, —1do
loclylj].i] := J;

Sparse matrix data structures — p.6

Algorithm for sparse vector addition: passes 2, 3

{ Add matching nonzeros of x and y into x}
forj:=0toc, —1do
i= x|j].4;
iIf locli| # —1 then
z|7].a := x|j].a + yllocli]].q;
locli| == —1;

Sparse matrix data structures — p.7

Algorithm for sparse vector addition: passes 2, 3

{ Add matching nonzeros of x and y into x}
forj:=0toc, —1do
1= xljl.;
iIf loc|t] # —1 then
z|7].a := x|j].a + yllocli]].q;
locli| == —1;

{ Append remaining nonzeros of y to x }
for j _Ot0cy—1do
i = ylj].;
iIf locli| # —1 then
r|cy|.i = 1;
zle].a == ylj].a;
Cp .= Cp + 1;
locli| == —1;

Sparse matrix data structures — p.7

Analysis of sparse vector addition

= The total number of operations is O(c, + ¢,), since there
are c, + 2c, loop iterations, each with a small constant
number of operations.

= The number of flops equals the number of nonzeros in
the intersection of the sparsity patterns of x and y.
O flops can happen!

= |nitialisation of array loc costs n operations, which will
dominate the total cost if only one vector addition has to
be performed.

= [oc can be reused in subseguent vector additions,
because each modified array element is reset to —1.

= |f we add two n x n matrices row by row, we can amortise
the O(n) initialisation cost over n vector additions.

Sparse matrix data structures — p.8

Acclidental zero

= An accidental zero is a matrix element that is numerically
zero but still occurs as a nonzero pair (¢,0) in the data
structure.

= Accidental zeros are created when a nonzero y; = —x; IS
added to a nonzero x; and the resulting zero is retained Iin
the data structure.

= Testing all operations in a sparse matrix algorithm for zero
results Is more expensive than computing with a few
additional nonzeros.

= Therefore, accidental zeros are usually kept.

Sparse matrix data structures — p.9

No abuse of numerics for symbolic purposes!

= Instead of using the symbolic location array, initialised at
—1, we could have used an auxiliary array storing
numerical values, initialised at 0.0.

= We could then add y into the numerical array, update x
accordingly, and reset the array.

= Unfortunately, this would make the resulting sparsity
pattern of x + y dependent on the numerical values of x
and y:. an accidental zero in y would never lead to a new
entry in the data structure of x + y.

= This dependence may prevent reuse of the sparsity
pattern in case the same program is executed repeatedly
for a matrix with different numerical values
but the same sparsity pattern.

= Reuse often speeds up subsequent program runs.

Sparse matrix data structures — p.10

Sparse matrix data structure: coordinate scheme

= |In the coordinate scheme or triple scheme, every nonzero
element a;; is represented by a triple (i, 7, a;;), where i is
the row index, j the column index, and a,; the numerical
value.

= The triples are stored in arbitrary order in an array.

= This data structure Is easiest to understand and is often
used for input/output.

= |t is suitable for input to a parallel computer, since all
iInformation about a nonzero is contained In its triple. The
triples can be sent directly and independently to the
responsible processors.

= Row-wise or column-wise operations on this data
structure require a lot of searching.

Sparse matrix data structures — p.11

Compressed Row Storage

= In the Compressed Row Storage (CRS) data structure,
each matrix row ¢ Is stored as a compressed sparse
vector consisting of pairs (j, a;;) representing nonzeros.

= In the data structure, a|k] denotes the numerical value of
the kth nonzero, and j|k] its column index.

= Rows are stored consecutively, in order of increasing .
= start|i] is the address of the first nonzero of row .

= The number of nonzeros of row i is start|i + 1| — start]i],
where by convention start|n| = nz(A).

Sparse matrix data structures — p.12

Example of CRS

0 3 001
4 1 0 0 O
A=105 9 2 0|,n=5 nz(A) =13
6 0 0 5 3
0 05 89
The CRS data structure for A Is:
alkl]=13(1]|4|11/5|9/2|6|5|3| 5| 8| 9
jlkl=121214]01211|2(3|03(4| 2| 3| 4
k=110/1,2|3|4|5|6|7|8]9(10|11 |12
02,4710 |13
=11011/2|3| 4| 5

Sparse matrix data structures

-p.13

Sparse matrix—vector multiplication using CRS

iInput: A: sparse n x n matrix,
v : dense vector of length n.
output: u : dense vector of length n, u = Av.

for::=0ton—1do
ulz] = 0;
fcgr] k := start|t] to start]i + 1] — 1 do
ul] := ul] + alk] - vlj[k]};

Sparse matrix data structures — p.14

Incremental Compressed Row Storage

= Incremental Compressed Row Storage (ICRS) is a
variant of CRS.

= In ICRS, the location (i, j) of a nonzero a;; is encoded as
alDindex:-n+ ;.

= [nstead of the 1D index itself, the difference with the 1D
iIndex of the previous nonzero is stored, as an increment

In the array inc.

= The nonzeros within a row are ordered by increasing 7, so
that the 1D indices form a monotonically increasing
sequence and the increments are positive.

= An extra dummy element (n, 0) is added at the end.

Sparse matrix data structures — p.15

Example of ICRS

0 3 001

4 1 0 0 O
A=105 9 2 0|,n=5 nz(A) =13

6 0 0 5 3

0 05 89

The ICRS data structure for A is:

alkl]=1311|4|1] 5| 9| 2 0
jlkl=1214|02| 1| 2| 3 0
ilkl] - n+glkl=1114|5]6|11 |12 |13 25
inclkl=1113112]1] 5] 1| 1 1
Ek=1011|12|3| 4| 5| 6 13

Sparse matrix data structures —

Sparse matrix—vector multiplication using ICRS

iInput: A: sparse n x n matrix,
v : dense vector of length n.
output: u : dense vector of length n, u = Av.

7 = incl0];
k:=0;
fori:=0ton—1do
uli] := 0;
while j <n do
ult] := ult] + alk] - v[j];
k:=k+1;
j =7+ inclkl;
] i=9—n,
Slightly faster: increments translate well into pointer arithmetic

+=0f programming language C; no indirect addressing v|j[k]].

Sparse matrix data structures — p.17

A few other data structures

= Compressed column storage (CCS), similar to CRS

= Gustavson’s data structure: both CRS and CCS, but
storing numerical values only once. Offers row-wise and
column-wise access to the sparse matrix.

= The two-dimensional doubly linked list: each nonzero is
represented by i, j, a;;, and links to a next and a previous
nonzero in the same row and column.
Offers maximum flexibility: row-wise and column-wise
access are easy and elements can be inserted and
deleted in O(1) operations.

= Matrix-free storage: sometimes it may be too costly to
store the matrix explicitly. Instead, each matrix element is
recomputed when needed. Enables solution of huge
problems.

Sparse matrix data structures — p.18

Summary

= Sparse matrix algorithms are more complicated than their
dense equivalents, as we saw for sparse vector addition.

= Sparse matrix computations have a larger integer
overhead associated with each floating-point operation.

= Still, using sparsity can save large amounts of CPU time
and also memory space.

= \We learned an efficient way of adding two sparse vectors
using a dense Initialised auxiliary array. You will be
surprised to see how often you can use this trick.

= Compressed row storage (CRS) and its variants are
useful data structures for sparse matrices.

= CRS stores the nonzeros of each row together, but does
not sort the nonzeros within a row. Sorting is a mixed
blessing: it may help, but it also takes time.

Sparse matrix data structures — p.19

	Basic sparse technique: adding two vectors
	Example: storage as compressed vector
	Addition is easy for dense storage
	Location array
	Algorithm for sparse vector addition: pass 1
	Algorithm for sparse vector addition: passes 2, 3
	Analysis of sparse vector addition
	Accidental zero
	No abuse of numerics for symbolic purposes!
	Sparse matrix data structure: coordinate scheme
	Compressed Row Storage
	Example of CRS
	Sparse matrix--vector multiplication using CRS
	Incremental Compressed Row Storage
	Example of ICRS
	Sparse matrix--vector multiplication using ICRS
	A few other data structures
	Summary

