
Experiments with bsplu
(PSC §2.5–2.6)
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Broadcast function

void bsp_broadcast(double *x, int n, int src,
int s0, int stride, int p0,
int s, int phase){

/* Broadcast the vector x of length n
from processor src to processors s0+t*stride,
0 <= t < p0. x has already been registered.

s = local processor identity.
phase= phase of two-phase broadcast (0 or 1)
Only one phase is performed, without sync. */

Standard 1D–2D identification P (s, t) ≡ P (s + tM).

stride = 1, p0 = M : broadcast within processor column.
stride = M , p0 = N : broadcast within processor row.

No sync inside function to allow combining supersteps.
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Phase 0: source processor spreads the data

b= (n%p0==0 ? n/p0 : n/p0+1); /* block size */

if (phase==0 && s==src){
for (t=0; t<p0; t++){

dest= s0+t*stride;
nbytes= MIN(b,n-t*b)*SZDBL;
if (nbytes>0)

bsp_put(dest,&x[t*b],x,
t*b*SZDBL,nbytes);

}
}

Data is put in the same location t ·b of array x in the destination

processor as in the source processor.
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Phase 1: participating processors perform broadcast

if (phase==1 && s%stride==s0%stride){
t=(s-s0)/stride; /* s = s0+t*stride */
if (0<=t && t<p0){

nbytes= MIN(b,n-t*b)*SZDBL;
if (nbytes>0){

for (t1=0; t1<p0; t1++){
dest= s0+t1*stride;
if (dest!=src)

bsp_put(dest,&x[t*b],x,
t*b*SZDBL,nbytes);

}
}

}
}

Data is not sent back to source. No influence on BSP cost, but

it reduces the communication volume. This cannot be bad.
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Local and global indices for cyclic distribution
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Global index: i
Local index on P (s): i
Relation: i = i · p + s

/* Initialise permutation vector pi */
nlr= nloc(M,s,n); /* number of local rows */
if (t==0)

for(i=0; i<nlr; i++)
pi[i]= i*M+s; /* global row index */
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Putting data directly into a 2D array

a = matallocd(nlr, nlc); /* in bsplu_test.c */
void bsplu( ..., int *pi, double **a){

double *pa= NULL;
if (nlr>0)

pa= a[0];
bsp_push_reg(pa,nlr*nlc*SZDBL);
bsp_push_reg(pi,nlr*SZINT);
...
if (k%M==s){

/* Store pi(k) in pi(r) on P(r%M,0) */
if (t==0)

bsp_put(r%M,&pi[k/M],pi,
(r/M)*SZINT,SZINT);

/* Store row k of A in row r on P(r%M,t) */
bsp_put(r%M+t*M,a[k/M],pa,

(r/M)*nlc*SZDBL,nlc*SZDBL);
} ...
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Two-phase broadcast of column k

double *lk;
nlr= nloc(M,s,n); /* number of local rows */
kr= nloc(M,s,k); /* first local row

with global index >= k */
kc= nloc(N,t,k);
kr1= nloc(M,s,k+1);
lk= vecallocd(nlr); bsp_push_reg(lk,nlr*SZDBL);
...
if (k%N==t) /* Store new column k in lk */

for(i=kr1; i<nlr; i++)
lk[i-kr1]= a[i][kc];

bsp_broadcast(lk,nlr-kr1,s+(k%N)*M,
s,M,N,s+t*M,0);

bsp_sync();
bsp_broadcast(lk,nlr-kr1,s+(k%N)*M,

s,M,N,s+t*M,1);
bsp_sync();
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Time (in s) of LU decomposition

n one-phase two-phase
1 000 1.21 1.33
2 000 7.04 7.25
3 000 21.18 21.46
4 000 47.49 47.51
5 000 89.90 89.71
6 000 153.23 152.79
7 000 239.21 238.25
8 000 355.84 354.29
9 000 501.92 499.74

10 000 689.91 689.56

Cray T3E with p = 64, r = 38.0 Mflop/s, g = 87, l = 2718

(measured by bspbench). 8 × 8 cyclic distribution.
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Total broadcast time of LU decomposition
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Any actual savings by two-phase broadcast?

Not much difference in total time between one-phase and
two-phase approach.

For n < 4000, with local broadcast length < 500,
one-phase is better.

For n > 4000, two-phase is better. But savings are
insignificant compared to computation time. Total
broadcast time is < 5% of overall time.

BSP analysis gives insight and explains results, even if
they are surprising/disappointing/...

On a different machine with slower communication, such
as a PC cluster, the savings will be significant. Try it!
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Total measured and predicted time
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Optimistic prediction is right

BSP model predicts: row swaps, phase 0 of the
broadcast, and phase 1 all take the same time.
Measurements validate this.

Very different communication patterns: row swaps and
phase 0 are very unbalanced, phase 1 is well-balanced.

Pessimists are usually wrong. The pessimistic g-value
(for puts of single data words) is far off.

You need to plug the right g-value into the BSP cost
formula to obtain meaningful predictions. bsplu puts
elements from row and column k as large data packets.
Therefore, we should use the optimistic g-value.
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Profile of stages k = 0, 1, 2 of an LU decomposition

Oxford BSP Toolset [flags -O3 -prof -flibrary-level 2 -fcombi...]Oxford BSP Toolset [flags -O3 -prof -flibrary-level 2 -fcombi...]0.232 seconds elapsed on a Cray T3E Fri Jun 15 11:57:32 2001
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Game: recognise the supersteps

M = 8, N = 1: row distribution of the matrix.

Column broadcast is for free.

Row swap involves two processors; each time a different
pair. This must be superstep 12.

Phase 0 of row broadcast has 1 sender, 7 receivers. This
must be superstep 13.

Phase 1 has 7 senders, 7 receivers, and takes about the
same time (bar width) as superstep 13. So this must be
superstep 14.

The wide gap between supersteps 14 and 10 is a big
computation superstep. This must be the matrix update.

Superstep 10 must be the exchange of local winners in
the pivot search. Relatively costly, because the problem
size is only n = 100.

Lecture 2.5–2.6 Experiments with bsplu – p.14



Summary

We use global indices in the description of an algorithm,
but local indices in an actual program.

We understand the behaviour of our program, though we
may not always like it.

Very different communication patterns with the same BSP
cost take about the same time on an actual parallel
computer, the Cray T3E.

Profiling is a way of getting intimate knowledge of your
program. The superstep concept makes this very easy.
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