
Message Passing Interface (MPI-1)
(PSC Appendix C, §C.1–C.2.4)

Message Passing Interface – p.1

History of MPI

1994: Message Passing Interface (MPI) became available
as a standard interface for parallel programming in C and
Fortran 77.

Designed by a committee called the MPI Forum
consisting of computer vendors, users, computer
scientists.

Based on sending and receiving messages by a pair of
processors. One processor sends; the other receives.
Both are active in the communication.

Underlying model: communicating sequential processes
(CSP) proposed by Hoare in 1978.

MPI itself is not a model. BSP is a model.

MPI is an interface for a communication library, like
BSPlib.

Message Passing Interface – p.2

Recent history of MPI

1997: MPI-2 standard defined. Added functionality:
one-sided communications (put, get, sum)
dynamic process management
parallel input/output
languages C++ and Fortran 90

2003: first full implementations of MPI arrive, namely
MPICH (Argonne National Labs) and LAM/MPI (Indiana
University).

2004–: Open MPI. Open-source project, merges 3 MPI
implementations: LAM/MPI, FT-MPI (University of
Tennessee), LA-MPI (Los Alamos National Laboratory).

Many users still use MPI-1, particularly its latest version
MPI-1.2.

Message Passing Interface – p.3

Why use MPI?

It is available on almost every parallel computer, often in
an optimised version provided by the vendor. Thus MPI is
the most portable communication library.

Many libraries are available written in MPI, such as the
numerical linear algebra library ScaLAPACK.

You can program in many different ways using MPI, since
it is highly flexible.

Message Passing Interface – p.4

Why not?

It is huge: the full standard has about 300 primitives. The
user has to make many choices.

It is not so easy to learn. Usually one starts with a small
subset of MPI. Full knowledge of the standard is hard to
attain.

MPI-2 has not widely been accepted (yet), nor has it been
fully implemented in every MPI library. If you like
one-sided communications you may want to consider
BSPlib as an alternative.

Message Passing Interface – p.5

Ping pong benchmark

The cost of communicating a message of length n is

T (n) = tstartup + ntword.

Here, tstartup is a fixed startup cost and tword is the
additional cost per data word communicated.

Communication of a message (in its blocking form)
synchronises the sender and receiver. This is pairwise
synchronisation, not global.

Parameters tstartup and tword are usually measured by
sending a message from one processor to another and
back: ping pong.

The message length is varied in the ping pong
benchmark.

There is only one ping pong ball on the table.
Message Passing Interface – p.6

Send and receive primitives

if (s==2)
MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD);

if (s==3)
MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,

&status);

Processor P (2) sends 5 doubles to P (3).

P (2) reads the data from its array x. After transmission,
P (3) writes these data into its array y.

The integer ‘0’ is a tag for distinguishing between different
messages from the same source processor to the same
destination processor.

MPI_Send and MPI_Recv are of fundamental importance
in MPI.

Message Passing Interface – p.7

Communicator: the whole processor world

if (s==2)
MPI_Send(x,5,MPI_DOUBLE,3,0,MPI_COMM_WORLD);

if (s==3)
MPI_Recv(y,5,MPI_DOUBLE,2,0,MPI_COMM_WORLD,

&status);

A communicator is a subset of processors forming a
communication environment with its own processor
numbering.

MPI_COMM_WORLD is the communicator consisting of all
the processors.

Message Passing Interface – p.8

Send/Receive considered harmful

1968: Edsger Dijkstra, guru of structured programming,
considered the Go To statement harmful in sequential
programming.

Go To was widely used in Fortran programming in those
days. It caused spaghetti code: if you pull something
here, something unexpected moves there.

No one dares to use Go To statements any more.

Send/Receive in parallel programming has the same
dangers, and even more, since several diners eat from
the same plate.

Pull here, pull there, nothing moves: deadlock.

Deadlock may occur if P (0) wants to send a message to
P (1), and P (1) to P (0), and both processors want to send
before they receive.

Message Passing Interface – p.9

Inner product program mpiinprod

int main(int argc, char **argv){

int p, s, n;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&p);
MPI_Comm_rank(MPI_COMM_WORLD,&s);

if (s==0){
printf("Please enter n:\n");
scanf("%d",&n);
if(n<0)

MPI_Abort(MPI_COMM_WORLD,-1);
}

MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);
...

Message Passing Interface – p.10

Collective communication: broadcast

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

MPI_Bcast(buf,count,datatype,root,communicator);

Broadcast count data items of a certain datatype from
processor root to all others in the communicator,
reading from location buf and also writing it there.

All processors of the communicator participate.

Extensive set of collective communications available in
MPI. Using these reduces the size of program texts.

Message Passing Interface – p.11

Inner product program mpiinprod (cont’d)

...
nl= nloc(p,s,n);
x= vecallocd(nl);
for (i=0; i<nl; i++){

iglob= i*p+s;
x[i]= iglob+1;

}
/* global sync for timing */
MPI_Barrier(MPI_COMM_WORLD);
time0=MPI_Wtime(); /* wall clock time */

alpha= mpiip(p,s,n,x,x);
MPI_Barrier(MPI_COMM_WORLD);
time1=MPI_Wtime();
...
MPI_Finalize();
exit(0);

Message Passing Interface – p.12

Inner product function mpiip

double mpiip(int p,int s,int n,
double *x,double *y){

double inprod, alpha;
int i;

inprod= 0.0;
for (i=0; i<nloc(p,s,n); i++)

inprod += x[i]*y[i];
MPI_Allreduce(&inprod,&alpha,1,MPI_DOUBLE,

MPI_SUM,MPI_COMM_WORLD);

return alpha;
}

Message Passing Interface – p.13

Collective communication: reduce

MPI_Allreduce(&inprod, &alpha, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

MPI_Allreduce(sendbuf, recvbuf, count, datatype,
operation, communicator);

The reduction operation by MPI_Allreduce sums the
double-precision local inner products inprod, leaving the
result alpha on all processors.

One can also do this for an array instead of a scalar, by
changing the parameter 1 to the array size count, or
perform other operations, such as taking the maximum,
by changing MPI_SUM to MPI_MAX.

Message Passing Interface – p.14

Benchmark: which primitive to measure?

Benchmarking all communication primitives in MPI is a lot
of work. This does not appeal to us.

A typical MPI user would look first if there is a suitable
collective-communication primitive that would do the job.

This would lead to shorter program texts, and is good
practice from the BSP point of view as well.

Therefore, we choose a collective communication as the
operation to be benchmarked.

The BSP superstep, where every processor can
communicate in principle with all others, is reflected best
by the all-to-all primitives from MPI.

Using an all-to-all primitive gives the MPI system the best
opportunities for optimisation, similar to supersteps in
BSPlib programs.

Message Passing Interface – p.15

Measure time of MPI_Alltoallv

MPI_Barrier(MPI_COMM_WORLD);
time0= MPI_Wtime();

for (iter=0; iter<NITERS; iter++){
MPI_Alltoallv(src,Nsend,Offset_send,MPI_DOUBLE,

dest,Nrecv,Offset_recv,MPI_DOUBLE,
MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);
}

time1= MPI_Wtime();
time= time1-time0;

Message Passing Interface – p.16

Syntax of MPI_Alltoallv

MPI_Alltoallv(src, Nsend, Offset_send,
datatype_send,
dest, Nrecv, Offset_recv,
datatype_recv, communicator);

So-called vector variant allows a varying number of data
to be sent (or even no data).

The sender reads Nsend[t] data from array src starting
at Offset_send[t] for each processor P (t), 0 ≤ t < p,
and sends these data.

The receiver receives data from all processors, and
stores them in array dest, with Nrecv[t] data arriving
from processor P (t) at offset Offset_recv[t].

All offsets are measured in units of the data type involved,
e.g. MPI_DOUBLE. (Not in raw bytes, like in BSPlib).

Message Passing Interface – p.17

Initialise h-relation

for (i=0; i<h; i++)
src[i]= (double)i;

if (p==1){
Nsend[0]= Nrecv[0]= h;

} else {
for (s1=0; s1<p; s1++)

Nsend[s1]= h/(p-1);
for (i=0; i < h%(p-1); i++)

Nsend[(s+1+i)%p]++; /* one extra */
Nsend[s]= 0; /* no talking to yourself */

for (s1=0; s1<p; s1++)
Nrecv[s1]= h/(p-1);

for (i=0; i < h%(p-1); i++)
Nrecv[(s-1-i+p)%p]++;

Nrecv[s]= 0;
}

Message Passing Interface – p.18

Determine offsets

Offset_send[0]= 0;
Offset_recv[0]= 0;

for(s1=1; s1<p; s1++){
Offset_send[s1]=Offset_send[s1-1]+Nsend[s1-1];
Offset_recv[s1]=Offset_recv[s1-1]+Nrecv[s1-1];

}

Messages are stored in order of destination processor. Thus,

offsets can be computed by a prefix operation.

Message Passing Interface – p.19

LU decomposition function mpilu

void mpilu(int M, int N, int s, int t, int n,
int *pi, double **a){

MPI_Comm row_comm_s, col_comm_t;

/* Create a new communicator for
my processor row and column */

MPI_Comm_split(MPI_COMM_WORLD,s,t,&row_comm_s);
MPI_Comm_split(MPI_COMM_WORLD,t,s,&col_comm_t);
...

2D numbering directly available in MPI: create a
communicator for every processor row and column by
splitting the world communicator.

Message Passing Interface – p.20

Splitting a communicator

MPI_Comm_split(MPI_COMM_WORLD,s,t,&row_comm_s);

Processors that call MPI_Comm_split with the same
value of s end up in the same communicator, which we
call row_comm_s.

Thus, we obtain M communicators, each corresponding
to a processor row P (s, ∗).

Every processor obtains a processor number within its
communicator. This number is by increasing value of the
third parameter of the primitive, i.e., t.

Broadcast of pivot value within processor column, i.e.,
within communicator col_comm_t now becomes:

if (k%N==t)
MPI_Bcast(&pivot,1,MPI_DOUBLE,smax,col_comm_t);

Message Passing Interface – p.21

Swapping the permutation in P (∗, 0)

/* piece of code for k%M != r%M */
if (k%M==s){
MPI_Send(&pi[k/M],1,MPI_INT,r%M,0,

MPI_COMM_WORLD);
MPI_Recv(&pi[k/M],1,MPI_INT,r%M,0,

MPI_COMM_WORLD,&status);
}
if (r%M==s){
MPI_Recv(&tmp,1,MPI_INT,k%M,0,

MPI_COMM_WORLD,&status);
MPI_Send(&pi[r/M],1,MPI_INT,k%M,0,

MPI_COMM_WORLD);
pi[r/M]= tmp;

}

Don’t change the order of the sends and receives!
(Punishment: deadlock on certain machines.)

Message Passing Interface – p.22

Sender info must be initialised for FFT

offset= 0;
j0= s%c0; j2= s/c0;
for(j=0; j<npackets; j++){

jglob= j2*c0*np + j*c0 + j0;
destproc= (jglob/(c1*np))*c1 + jglob%c1;
Nsend[destproc]= 2*size;
Offset_send[destproc]= offset;
for(r=0; r<size; r++){

tmp[offset + 2*r]= x[2*(j+r*ratio)];
tmp[offset + 2*r+1]= x[2*(j+r*ratio)+1];

}
offset += 2*size;

}
...

mpifft is identical to bspfft, except for redistribution.
Packets are the same.

Message Passing Interface – p.23

Receiver info must also be initialised

...
/* Initialise receiver info */
offset= 0;
j0= s%c1; j2= s/c1;
for(r=0; r<npackets; r++){

j= r*size;
jglob= j2*c1*np + j*c1 + j0;
srcproc= (jglob/(c0*np))*c0 + jglob%c0;
Nrecv[srcproc]= 2*size;
Offset_recv[srcproc]= offset;
offset += 2*size;

}
MPI_Barrier(MPI_COMM_WORLD); /* for safety */
MPI_Alltoallv(tmp,Nsend,Offset_send,MPI_DOUBLE,

x, Nrecv,Offset_recv,MPI_DOUBLE,
MPI_COMM_WORLD);

Message Passing Interface – p.24

Summary

The Message Passing Interface (MPI) is a highly portable
communication library supported by most vendors of
parallel computers.

In MPI, you should try to use collective communications
as much as possible. They reduce the size of program
texts, and they also create supersteps, thus structuring
the program in BSP style.

MPI rule:
collective communications may synchronise the
processors, but you cannot rely on this.

So feel free to add global synchronisations where
needed.

Message Passing Interface – p.25

	History of MPI
	Recent history of MPI
	Why use MPI?
	Why not?
	Ping pong benchmark
	Send and receive primitives
	Communicator: the whole processor world
	Send/Receive considered harmful
	Inner product program 	exttt {mpiinprod}
	Collective communication: broadcast
	Inner product program 	exttt {mpiinprod} (cont'd)
	Inner product function 	exttt {mpiip}
	Collective communication: reduce
	Benchmark: which primitive to measure?
	Measure time of 	exttt {MPI_Alltoallv}
	Syntax of 	exttt {MPI_Alltoallv}
	Initialise h-relation
	Determine offsets
	LU decomposition function 	exttt {mpilu}
	Splitting a communicator
	Swapping the permutation in $P(ast ,0)$
	Sender info must be initialised for FFT
	Receiver info must also be initialised
	Summary

