Seqguential Nonrecursive

Fast Fourier Transform
(PSC 83.3)
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Pros and cons of recursive computations

Pros:

= display a natural splitting into subproblems, thus pointing
to possible parallelism

= provide a concise formulation of the algorithm
= reduce the amount of bookkeeping

cons:

= the corresponding computational tree is traversed
sequentially, thus making parallelisation more difficult

= the corresponding tree may obscure potential shortcuts to
parallelisation
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Matrix decompositions

= |f we decompose the matrix F,, into F,, = A,_;--- A1 Ay,

where each factor A, IS an n x n matrix, we can obtain
F,,x by repeatedly multiplying a matrix A, and a vector:

FnX = A'r—l s AlAOX.

= Different decompositions represent different algorithms.
= Can the FFT be formulated as a matrix decomposition?

= Yes! Van Loan (Computational Frameworks for the FFT,
SIAM, 1992) has formulated many variants of the FFT in
terms of matrix decompositions.
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Matrix and vector language for the FFT

= Define the n x n diagonal matrix

I K 2 n—1
(), = diag(1, wop, Wy, , - ., we ),

so that

Qo = diag(1l, wy, w2, ... w271,

€1, /2 Is the diagonal matrix that contains exactly the
powers of w,, needed in the FFT.

= The recursive algorithm can now neatly be expressed by
Lo Qe || Fupx(0:2:n —1)
F,x =
i [n/g —Qn/g 1L Fn/gaj(I:Q:n — 1)

B [ L2 €2 /2 11 Fh o 0 r(0:2:n — 1)
N [n/g —Qn/g 1L 0 Fn/g :1:(1:2:n— 1) .
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Even-odd sort matrix

The even-odd sort matrix S,, Is the n x n permutation matrix

containing rows 0,2, ...,n — 2 of I,, followed by rows
1,3,...,n—1,
1 0 0 0 0 0 0]
0 0 1 0 0 0 0
o _ o000 -- 0120
0100 0 0
0 0 1 0 0 0
0 0 0 O 0 0 1]
r(0:2:n — 1)
Thus, S,x = :
US, SnX [:::(1: 2:im — 1) ]



Kronecker matrix product

= Let A be ag x r matrix and B an m x n matrix.
The Kronecker product (or tensor product,
or direct product) of A and B is the gm x rn matrix

ago B T aO,fr—lB
AR B = ,
i a'q—l,OB T a'q—l,r—lB i
0 1 1 0 2
Let A = B = .
= et [2 4]and [O . O] Then
0 0 01 0 2]
0 B 0 00 0 1 0
A®B_[23 4B]_ 2 0 4 4 0 8
0 2 0 0 4 O
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Useful properties

= Lemma 3.3 (Associativity) Let A, B, C' be matrices. Then
(A B) @ C=A® (B® ().

= Llemma 3.4 Let A, B, C, D be matrices such that AC and
BD are defined. Then

(A® B)(C® D) = (AC) ® (BD).
= Lemma 3.5 Let m,n € N. Then

[m 024 [n — ]mn-
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Commutativity?

= Lemma (Commutativity) Let A, B be matrices. Then

A® B=B® A.
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Commutativity?

= Lemma (Commutativity) Let A, B be matrices. Then
A® B=B® A.

This lemma is not very useful, because it is false.

I 0

"letA=|2 4]andB:[O .

].Then

2 040

A®B = | 2B 43}_[0204],
A 0 2 400

Boa = [0 4|=l50 sl

Thus,

A ® B # B ® A. Sequential nonrecursive FFT — p.8



Use of Kronecker product for FFT

= Matrix notation and Kronecker products are powerful tools
In modern Fourier transform research.

= Here, we use these tools to derive a nonrecursive variant
of the FFT.

= Concise notation:

Fn/2 O]

[2®Fn/2:[ 0 F,
n/2
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Butterfly operation

X] xj+n/2
/ /
X] xj+n/2
(©Sarai Bisseling, 2002
I J :
ZUj = Ty +wnxj+n/2,
$;+n/2 = &Ly — W£$j+n/2;
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Butterfly matrix

= The n x n butterfly matrix is

B — [ [n/2 Qn/2 ]
" In/2 _Qn/Q '

= B, Involves (2, which contains powers of

wy = e 2Tt = g
1 0 1 0]
0 1 —1
B, —
! 10 —1 0
01 0 |

= The butterfly matrix is sparse since it has only 2n
nonzeros out of n? elements.
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T-shirt formula

Using the new notation gives
Fox = B,(I, ® F,2)S,x.

Since this holds for all vectors x, we obtain a formula of
T-shirt importance:

Fy = Bu(l® F,, 15)Sn
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Size reduction of the Fourier matrix

We try to reduce the size of the remaining Fourier matrix 7, ;.
Thus we manipulate the factor /I, ® £}, /2, or more in general,
I @ Foi.

I @ Foe = [Iniy]) @ | Boji(Ia @ Fryj(or)) Snyk]

N TN N
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Burn at both ends

Repeatedly applying the factorisation of I, ® I,/
I @ Fyie = (I @ Bpyi) (Lor @ Fy o)) (I @ Spyk) =

Uk@Bn/k)([% & Bn/(Zk))(LLk X Fn/(4k))(]2k X Sn/(gk))([k®5n/k) — ..
Thisendswhen I, ® F,,), = I, ® F, = I, ® I = I, is reached.

Starting with F,, = I; ® F,, gives the Cooley-Tukey theorem
(1965):

where

Ry, = (I ®952) - Iy ®Sp4) (L2 @ Spy2) (11 @ Sy).
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Binary digits

= \We can write an index 7, 0 < 5 < n, as

m—1

j=> b2",

k=0

where b, € {0, 1} is the kth bit and n = 2™.
= }, IS the least significant bit; b,,_; the most significant bit.
= We use the notation

3
L

(bm—l s blbo)g — kak
0

i

= Example: (10100101), = 27 4 25 + 22 4+ 29 = 165.
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Bit-reversal permutation

Let n = 2™, with m > 1. The bit-reversal permutation
pn:40,....,n—1} = {0,...,n — 1} is defined by

ﬁ%z((bﬂv—l" '50)2) — (bO" 'bﬂw—1)2-

For n = &:
(bgblbg)g (b0b1b2)2 pS(J)
000 000
001 100

0

A4
010 010 2
011 110 6
100 001 1
101 101 5
110 011 3
111 111 4

~NOoO OB WDN EFP O
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Bit-reversal algorithm

Input: x : vector of lengthn = 2™, m > 1, x = x,.
output: x : vector of length n, such that x = R, x,.
call: bitrev(x, n).

forj:=0ton—1do
{ Compute == p, (j) }

q:=17,

r = 0;

for k:=0to log,n —1do
br := g mod 2;
q = q div 2;
/ — 27“—|—bk,

if 7 <rthen swap(z;,z,);

- Based on Theorem 3.10: R, = F,,.
For a proof, see pp. 110-111.
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Unordered FFT

Input: x : vector of lengthn = 2™, m > 1, x = x,.
output: x : vector of length n, such that x = F,, R, Xo.
call: UFFT(x,n).

k= 2;

while £k < n do
{ Compute x := ([, ® By)x }
forr:=0to # —1do
{ Compute x(rk:rk +k —1) := Brx(rk:rk+k—1) }
for j:=0to £ —1do
{ Compute z,4y; £ Wi Trkrjrr/2}
T = w‘;iUrkJerrk/z;
Trk+j+k/2 = Trk+j — T,
Trktj = Trk+j T T,
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Summary

= \We have derived a nonrecursive fast Fourier transform
(FFT) by using matrix notation and the Kronecker matrix

product.

= The result is the Cooley-Tukey Decimation In Time (DIT)
formula

= 1R, Is the permutation matrix that corresponds to the
bit-reversal permutation p,,.

= Each of the log, n matrix factors I, ® B, /; has 2n nonzero

elements, and each corresponding matrix—vector
multiplication requires 5n flops. Total number of flops:
bn log, n. Same as for the recursive FFT.

= The nonrecursive variant is a good basis for
parallelisation. Sequental norecursie FFT — p.19
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