
BSPlib, the BSP library
(PSC §1.4)

Lecture 1.4 BSP Library – p.1

BSPlib program: sequential, parallel, sequential

P(0) P(1) P(2) P(3) P(4)

Sync

Sync

Begin

End

Init

Exit

Sequential

Parallel (SPMD)

Sequential

Lecture 1.4 BSP Library – p.2

Sequential I, parallel computation, sequential O

A BSPlib programs starts with a sequential part,
mainly intended for input. Motivation:

Desired number of processors of the parallel part may
depend on the input.
Input of data describing a problem is often sequential.

A BSPlib programs ends with a sequential part,
mainly intended for output. Motivation: reporting the
output of a computation is often sequential.

Sequential I/O in a parallel program may be inherited
from a sequential program.

The sequential parts may also be empty.

Lecture 1.4 BSP Library – p.3

Main function of BSPlib program

int P;
int main(int argc, char **argv){

bsp_init(bspinprod, argc, argv);

/* sequential part */
printf("How many processors?\n");
scanf("%d",&P);
if (P > bsp_nprocs()){

printf("Sorry, not enough available.\n");
exit(1);

}

/* parallel part */
bspinprod();
/* sequential part */
exit(0);

}
Lecture 1.4 BSP Library – p.4

Primitive bsp_init

bsp_init (spmd, argc, argv) ;

The BSPlib primitive bsp_init initialises the program.
It must be the first executable statement in the program.

spmd is the name of the function that comprises the
parallel part (written in SPMD style: Single Program,
Multiple Data). In our example, the name is bspinprod.

The primitive bsp_init is needed to circumvent
restrictions of certain machines.

It is ugly and often misunderstood.
(But then, what happened to Quasimodo in the end?)

int argc is the number of command-line arguments
and char **argv is the array of arguments. These
arguments can be used in the sequential input part, but
they cannot be transferred to the parallel part.

Lecture 1.4 BSP Library – p.5

Structure of SPMD part

void bspinprod(){
int p, s, n;

bsp_begin(P);
p= bsp_nprocs(); /* p = number of procs */
s= bsp_pid(); /* s = processor number */
if (s==0){

printf("Please enter n:\n");
scanf("%d",&n);
if(n<0)

bsp_abort("Error in input: n < 0");
}
...
bsp_end();

}

Lecture 1.4 BSP Library – p.6

Primitives bsp_begin, bsp_end

bsp_begin (reqprocs) ;
bsp_end () ;

The BSPlib primitive bsp_begin starts the parallel part
of the program with reqprocs processors. It must be the
first executable statement in the SPMD function.

The BSPlib primitive bsp_end ends the parallel part of
the program. It must be the last executable statement in
the SPMD function.

If the sequential parts of the program are empty,
main can become the parallel part and bsp_init can be
removed.

P (0) inherits the values of the variables from the
sequential part and can use these in the parallel part.
Other processors do not inherit and must obtain needed
values by explicit communication. Lecture 1.4 BSP Library – p.7

Primitives bsp_nprocs, bsp_pid

bsp_nprocs () ;
bsp_pid () ;

The BSPlib primitive bsp_nprocs gives the number of
processors. In the parallel part, this is the actual number
p of processors involved in the parallel computation. In
the sequential parts, it is the maximum number available.

Thus, we can ask how many processors are available and
then decide not to use them all. (Sometimes, using fewer
processors gives faster results!)

The BSPlib primitive bsp_pid gives the processor
identity s, where 0 ≤ s < p.

Both primitives can be used from anywhere in the parallel
program, so you can always get an answer to burning
questions such as: How many are we? Who am I?

Lecture 1.4 BSP Library – p.8

Primitive bsp_abort

bsp_abort (error_message) ;

If one processor detects that something is wrong, it can
bring all processors down in a graceful manner and print
an error message by using bsp_abort.

The message is in the standard format of the C-function
printf.

Lecture 1.4 BSP Library – p.9

Putting data into another processor

Put

nbytesOffset

Dest

nbytes

Source

bsp_pid

pid

Lecture 1.4 BSP Library – p.10

Primitive bsp_put

bsp_put(pid, source, dest, offset, nbytes);

The bsp_put operation copies nbytes of data from the
local processor bsp_pid into the specified destination
processor pid.

The pointer source points to the start of the data to be
copied.

The pointer dest specifies the start of the memory area
where the data is written.

The data is written at offset bytes from the start.

This is the most important one-sided communication
operation.

Lecture 1.4 BSP Library – p.11

Inner product function

double bspip(int p, int s, int n,
double *x, double *y){

double inprod, *Inprod;
int i, t;

Inprod= vecallocd(p);
bsp_push_reg(Inprod,p*SZDBL);
bsp_sync();

inprod= 0.0;
for (i=0; i<nloc(p,s,n); i++)

inprod += x[i]*y[i];
for (t=0; t<p; t++)

bsp_put(t,&inprod,Inprod,s*SZDBL,SZDBL);
bsp_sync();
...

} Lecture 1.4 BSP Library – p.12

Local and global indices for cyclic distribution

12

12

–1

–1

3

3

0

0

2

2

–2

–2

4

4

15

15

7

7

11

11

P(2) P(3)P(1)P(0)

0 1 2

0 1 2 0 1 2 0 1 0 1

3 4 5 6 7 8 9

Global

Local

Global index: i
Local index on P (s): i
Relation: i = i · p + s

Use local indices in programs:

for (i=0; i<nloc(p,s,n); i++)
inprod += x[i]*y[i];

Lecture 1.4 BSP Library – p.13

Primitive bsp_get

bsp_get(pid, source, offset, dest, nbytes);

The bsp_get operation copies nbytes of data from the
specified remote source processor pid into the local
processor bsp_pid.

The pointer source points to the start of the data in the
remote processor to be copied.

The pointer dest specifies the start of the local memory
area where the data is written.

The data is read starting at offset bytes from the start
of source.

Remember for both puts and gets: the source parameter
comes first and the offset is in the remote processor.

Lecture 1.4 BSP Library – p.14

Getting n from P (0)

void bspinprod(){

int p, s, n;
...
if (s==0){

printf("Please enter n:\n");
scanf("%d",&n);

}
bsp_push_reg(&n,SZINT);
bsp_sync();

bsp_get(0,&n,0,&n,SZINT);
bsp_sync();
...

}

Lecture 1.4 BSP Library – p.15

Primitive bsp_sync

bsp_sync();

The bsp_sync operation terminates the current
superstep. It causes all communications initiated by puts
and gets to be actually carried out. It synchronises all the
processors.

After the bsp_sync, the communicated data can be
used.

Lecture 1.4 BSP Library – p.16

Safety first: no interference

The regular bsp_put and bsp_get operations are
doubly buffered, at the source and at the destination.
This provides safety.

A data word that is put is first copied into a local send
buffer. The space occupied by the original data word can
be reused immediately.

All received data are first stored in a receive buffer.

All communication is postponed until the moment all
computations of the current superstep are finished.
The value obtained by a get is the value at the moment
computations are finished.

If you like living on the edge: the bsp_hpput primitive is
unbuffered, more efficient than bsp_put, uses less
memory, but is considered dangerous.

Lecture 1.4 BSP Library – p.17

Your x is my x

bsp_push_reg (variable, nbytes);
bsp_pop_reg (variable);

A variable called x may have the same name on different
processors, but this does not guarantee that it has the
same actual address in memory.

To guarantee this, the names must be registered first.

All processors participate in the registration procedure by
pushing their variable and its memory size onto a stack.
The unwilling ones can register NULL.

The SPMD style suggests registering the same variable
name on all processors, but this is not strictly necessary.

Registration takes effect only in the next superstep.

Deregistration is done by all processors together popping
the variable from the stack.

Lecture 1.4 BSP Library – p.18

Registration is expensive

To register, all processors have to talk to each other,
which takes some time.

Try to register sparingly. Register once, put many times.

Lecture 1.4 BSP Library – p.19

BSP timer measures elapsed time

...
bsp_sync();
time0=bsp_time();

alpha= bspip(p,s,n,x,x);
bsp_sync();
time1=bsp_time();

if (s==0)
printf("This took only %.6lf seconds.\n",

time1-time0);
...

Lecture 1.4 BSP Library – p.20

Summary

SMALL IS BEAUTIFUL
BSPlib is a small library of 20 primitives for writing parallel
programs in bulk synchronous parallel style.

We have learned 12 primitives and are ready to start
programming in parallel.

The put and get primitives provide RDMA
(Remote Direct Memory Access, also called DRMA).

Registration allows direct access to dynamically allocated
memory.

The complete program bspinprod should now be clear.
Try to compile it using bspcc and run it on 4 processors
using bsprun -npes 4.

Lecture 1.4 BSP Library – p.21

	BSPlib program: sequential, parallel, sequential
	Sequential I, parallel computation, sequential O
	Main function of BSPlib program
	Primitive 	exttt {bsp_init}
	Structure of SPMD part
	Primitives 	exttt {bsp_begin}, 	exttt {bsp_end}
	Primitives 	exttt {bsp_nprocs}, 	exttt {bsp_pid}
	Primitive 	exttt {bsp_abort}
	Putting data into another processor
	Primitive 	exttt {bsp_put}
	Inner product function
	Local and global indices for cyclic distribution
	Primitive 	exttt {bsp_get}
	Getting n from $P(0)$
	Primitive 	exttt {bsp_sync}
	Safety first: no interference
	Your 	exttt {x} is my 	exttt {x}
	Registration is expensive
	BSP timer measures elapsed time
	Summary

