
Two-Phase Broadcasting
(PSC §2.4)

Lecture 2.4 Two-phase broadcasting – p.1

Optimising a parallel algorithm

Computation: well-balanced, little redundancy.
Hence no room for improvement.

Communication: every bit of communication is one bit too
much. We can always try harder.

Lecture 2.4 Two-phase broadcasting – p.2

Communication volume and balance

The communication volume of an h-relation is the total
number of data words communicated,

V =

p−1
∑

s=0

hs(s) =

p−1
∑

s=0

hr(s).

hs(s) is the number of data words sent by processor P (s)
and hr(s) is the number received.

Note that

V ≤
p−1
∑

s=0

h = ph.

An h-relation is balanced if

h =
V

p
.

Lecture 2.4 Two-phase broadcasting – p.3

Communicational load imbalance

The communicational load imbalance of an h-relation is

h − V

p
.

If an h-relation is balanced, so that

V =

p−1
∑

s=0

hs(s) = ph,

then hs(s) = h for all s. (Because hs(s) ≤ h.)
Similarly, hr(s) = h for all s.

The reverse is also true: if hs(s) = h for all s, then V = ph.

Therefore, a balanced h-relation and a full h-relation are
the same.

Lecture 2.4 Two-phase broadcasting – p.4

hs 6= hr implies communication imbalance

If an h-relation is balanced, we have hs = hr, where
hs = maxs hs(s) and hr = maxs hr(s).

The reverse is not true: sending and receiving can have
an equally overloaded processor, so that hs = hr, while
the h-relation is still unbalanced, with h � V/p.

hs 6= hr implies that the communication is unbalanced.

Lecture 2.4 Two-phase broadcasting – p.5

Communication imbalance in LU decomposition

Send cost in superstep (10), the row/column broadcast,
assuming M = N =

√
p:

hs = Rk+1(N − 1) + Ck+1(M − 1) = 2Rk+1(
√

p − 1).

Receive cost in superstep (10):

hr = Rk+1 + Ck+1 = 2Rk+1.

Large discrepancy: hs � hr. Balance for senders must be
improved to reduce the communication cost.

Lecture 2.4 Two-phase broadcasting – p.6

Cause of the communication imbalance

(10a) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P (s, ∗);

The sending part of the broadcast of column k is
unbalanced: only the

√
p processors in P (∗, φ1(k)) send.

The senders send Rk+1(
√

p − 1) ≈ n − k − 1 elements.

The receiving part is balanced: all processors receive
Rk+1 ≈ (n − k − 1)/

√
p elements, except the senders.

Total contribution of (10) to LU cost is about

n−1
∑

k=0

2(n − k − 1)g = 2g
n−1
∑

k=0

k = 2g(n − 1)n/2 ≈ n2g.

This is bottleneck vs. computation cost 2n3/3p.
Lecture 2.4 Two-phase broadcasting – p.7

One-phase broadcast of a vector

input: x : vector of length n, repl(x) = P (0).
output: x : vector of length n, repl(x) = P (∗).
call: broadcast(x, P (0), P (∗)).

{ Broadcast the vector. }
(0) if s = 0 then for t := 0 to p − 1 do

for i := 0 to n − 1 do
put xi in P (t);

Note: repl(x) = P (∗) means that x is replicated such that each

processor has a copy.

Lecture 2.4 Two-phase broadcasting – p.8

Two-phase broadcast in blocks

0 0 0

3

222

1 1 1

P(0)

P(1)

P(2)

3 3

0 0 0 0 0 0 0 0 0

P(3)

0 0 0

1 1 1

2 2 2

3 3 3

P(0)

P(1)

P(2)

P(3) 3

0

Phase 0

Phase 1

Lecture 2.4 Two-phase broadcasting – p.9

The two-phase idea

First spread the data, then broadcast them.
This lets every processor participate.

Don’t tell the spammers!

Idea is similar to two-phase randomised routing (Valiant
1982): first send data to a randomly chosen intermediate
location, then route them to their final destination.
This avoids congestion.

We don’t need randomness here: in our regular problem,
we can choose the intermediate location optimally and
deterministically.

Lecture 2.4 Two-phase broadcasting – p.10

Two-phase broadcast of a vector

input: x : vector of length n, repl(x) = P (0).
output: x : vector of length n, repl(x) = P (∗).
call: broadcast(x, P (0), P (∗)).

b := dn/pe;
{ Spread the vector. }
(0) if s = 0 then for t := 0 to p − 1 do

for i := tb to min{(t + 1)b, n} − 1 do
put xi in P (t);

{ Broadcast the subvectors. }
(1) for i := sb to min{(s + 1)b, n} − 1 do

put xi in P (∗);

Lecture 2.4 Two-phase broadcasting – p.11

Cost analysis of two-phase broadcast

0 0 0

3

222

1 1 1

P(0)

P(1)

P(2)

3 3

0 0 0 0 0 0 0 0 0

P(3)

0 0 0

1 1 1

2 2 2

3 3 3

P(0)

P(1)

P(2)

P(3) 3

0

Phase 0

Phase 1

Phase 0 costs (n − b)g, where b = dn/pe is the block size.

Phase 1 costs (p − 1)bg.

Total cost of two-phase broadcast of a vector of length n
to p processors is

Tbroadcast =

(

n + (p − 2)

⌈

n

p

⌉)

g + 2l ≈ 2ng + 2l.

Much less than the cost (p − 1)ng + l of a one-phase
broadcast, except for large l.

Lecture 2.4 Two-phase broadcasting – p.12

Two-phase broadcast in LU decomposition

broadcast((aik : k < i < n ∧ i mod M = s),
P (s, k mod N), P (s, ∗));

broadcast((akj : k < j < n ∧ j mod N = t),
P (k mod M, t), P (∗, t));

Phase 0 of the row broadcast and Phase 0 of the column
broadcast are done together in superstep (6).

Phases 1 are done together in (7).

Less modular, but more efficient.

Lecture 2.4 Two-phase broadcasting – p.13

Optimisation: pivot value is already known

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P (∗, t);

Delete old superstep (8), because

akk (after swap) = ark (before swap).

Pivot value ark is already known locally.

Divide immediately by ark in new superstep (2)
of Algorithm 2.8:

(2) if k mod N = t then
smax := argmax(|arq,k| : 0 ≤ q < M);
r := rsmax

;
for all i : k ≤ i < n ∧ i mod M = s ∧ i 6= r do

aik := aik/ark;
Lecture 2.4 Two-phase broadcasting – p.14

Optimisation: combine index and row swaps

(4) if k mod M = s then
if t = 0 then put πk as π̂k in P (r mod M, 0);
for all j : 0 ≤ j < n ∧ j mod N = t do

put akj as âkj in P (r mod M, t);
if r mod M = s then

if t = 0 then put πr as π̂r in P (k mod M, 0);
for all j : 0 ≤ j < n ∧ j mod N = t do

put arj as ârj in P (k mod M, t);

Combining communication supersteps saves

synchronisations.

Lecture 2.4 Two-phase broadcasting – p.15

Optimisation: combine first and last superstep

for k := 0 to n − 1 do

(0) if k mod N = t then
rs := argmax(|aik| : k ≤ i < n ∧ i mod M = s);

. . .

(0′) for all i : k < i < n ∧ i mod M = s do
for all j : k < j < n ∧ j mod N = t do

aij := aij − aikakj ;

Combining the first and last superstep of the loop saves a
synchronisation.

In an implementation: no unnecessary bsp_sync at the
end of the main loop.

Lecture 2.4 Two-phase broadcasting – p.16

Optimal aspect ratio M/N

Two-phase broadcast reduces cost. Is M = N still
optimal?

The cost of (6)/(7) is about 2(Rk+1 + Ck+1)g. A bound is

Rk+1 + Ck+1 <

(

n − k − 1

M
+ 1

)

+

(

n − k − 1

N
+ 1

)

= (n − k − 1)
M + N

p
+ 2,

which is indeed minimal for M = N =
√

p.

The row and index swap in superstep (4) costs (C0 + 1)g,
where C0 = dn/Ne, so that larger values N are preferred.
Swap cost for M = N is of same order as broadcast cost.

Overall: M = N close to optimal, but slight preference for
M < N . Lecture 2.4 Two-phase broadcasting – p.17

Exact cost analysis

We need to compute sums of the form

n−1
∑

k=0

Rk =
n−1
∑

k=0

⌈

n − k√
p

⌉

=
n

∑

k=1

⌈

k√
p

⌉

.

Lemma 2.9. Let n, q ≥ 1 be integers with n mod q = 0. Then

n
∑

k=0

⌈

k

q

⌉

=
n(n + q)

2q
,

n
∑

k=0

⌈

k

q

⌉2

=
n(n + q)(2n + q)

6q2
.

Lecture 2.4 Two-phase broadcasting – p.18

Proof Lemma 2.9 (first part)

n
∑

k=0

⌈

k

q

⌉

=

⌈

0

q

⌉

+

(⌈

1

q

⌉

+ · · · +
⌈

q

q

⌉)

+ · · ·

+

(⌈

n − q + 1

q

⌉

+ · · · +
⌈

n

q

⌉)

= q · 1 + q · 2 + · · · + q · n

q

= q

n/q
∑

k=1

k

= q
n

2q

(

n

q
+ 1

)

=
n(n + q)

2q
.

Lecture 2.4 Two-phase broadcasting – p.19

Total cost of LU decomposition

TLU =
2n3

3p
+

(

3

2
√

p
− 2

p

)

n2 +
5n

6

+

((

3√
p
− 2

p

)

n2 +

(

4
√

p − 4√
p

+
4

p
− 3

)

n

)

g

+ 8nl

≈ 2n3

3p
+

3n2

2
√

p
+

3n2g√
p

+ 8nl.

Lecture 2.4 Two-phase broadcasting – p.20

Summary

We have optimised our basic parallel LU decomposition
algorithm by

performing two-phase broadcasting to spread the
communication load evenly;
exploiting local information on the pivot value to avoid
unnecessary communication;
reorganising the algorithm to combine supersteps,
thus saving synchronisations.

Cost analysis gives a diagnosis, such as hs � hr.

The resulting LU decomposition is efficient if

2n3

3p
≥ 3n2g√

p
and

2n3

3p
≥ 8nl.

Equivalent to n ≥ max{4.5g, 2
√

3l} · √p.
Lecture 2.4 Two-phase broadcasting – p.21

	Optimising a parallel algorithm
	Communication volume and balance
	Communicational load imbalance
	 $hs
eq hr $ implies communication imbalance
	Communication imbalance in LU decomposition
	Cause of the communication imbalance
	One-phase broadcast of a vector
	Two-phase broadcast in blocks
	The two-phase idea
	Two-phase broadcast of a vector
	Cost analysis of two-phase broadcast
	Two-phase broadcast in LU decomposition
	Optimisation: pivot value is already known
	Optimisation: combine index and row swaps
	Optimisation: combine first and last superstep
	Optimal aspect ratio M/N
	Exact cost analysis
	Proof Lemma 2.9 (first part)
	Total cost of LU decomposition
	Summary

