
Weights for the FFT
(PSC §3.5)
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Sequential computation of weights

The weights of the FFT are the powers of ωn that are
needed in the FFT computation: 1, ωn, ω2

n, . . . , ω
n/2−1
n .

We can compute these powers by

ωj
n = e−2πij/n = cos

2πj

n
− i sin

2πj

n
.

Computing the weights by successive multiplication
ωj+1

n = ωn · ωj
n is less accurate and not recommended.

Typically, computing a sine or cosine costs 10 flops in
double precision accuracy. If we compute a weight each
time we need it, we perform 20 flops extra for every 10
flops (complex ∗,+,−) in the inner loop of the FFT. This
would triple the total cost.

Alternative: compute weights once, store them in a table.
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Using symmetry to compute weights faster

We can save half the computations by using

ωn/2−j
n = e−2πi(n/2−j)/n = e−πie2πij/n = −(ωj

n).

Thus, we only need to compute 1, ωn, ω2
n, . . . , ω

n/4
n .

Taking negatives and complex conjugates is extremely
cheap.

Similarly, we can halve the work again by using

ωn/4−j
n = −i(ωj

n).

Now, we only need to compute 1, ωn, ω2
n, . . . , ω

n/8
n .

The total cost of the weight initialisations is thus about
20 · n/8 = 2.5n flops.
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Weights for parallel computation

A brute-force approach: store the complete table of
weights on every processor.

This approach is nonscalable in memory: in the
sequential case, we store n vector components and n/2
weights. In the parallel case, n/p vector components and
n/2 weights per processor.

Furthermore, for small n or large p, the 2.5n flops of the
weight initialisation may be much more than the
(5n log2 n)/p local flops of the FFT.

Some replication of weights is inevitable: stages
k = 2, 4, . . . , n/p are the same on all processors and
hence need the same weights.

Our goal is to find a memory-scalable approach that adds
only a few flops to the overall count.
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Generalised Discrete Fourier Transform

The Generalised Discrete Fourier Transform (GDFT) is
defined by

yk =

n−1
∑

j=0

xjω
j(k+α)
n , for 0 ≤ k < n,

where α is a fixed real parameter.

GDFT = DFT for α = 0.

We can derive a GFFT, similar to the FFT.

We can also generalise our matrix notation and obtain a
generalised Cooley-Tukey decomposition for the matrix
F α

n defined by

(F α
n )jk = ωj(k+α)

n .
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Generalised results—without words

Ωα
n = diag(ωα

2n, ω
1+α
2n , ω2+α

2n , . . . , ωn−1+α
2n )

Bα
n =

[

In/2 Ωα
n/2

In/2 −Ωα
n/2

]

Fα
n = Bα

n (I2 ⊗ Fα
n/2)Sn

F α
n = (I1⊗Bα

n )(I2⊗Bα
n/2)(I4⊗Bα

n/4) · · · (In/2⊗Bα
2
)Rn
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Aim: reformulating the parallel FFT

We try to express the parallel FFT in sequential GFFTs with

suitable α. The α-values may be different on different proces-

sors.
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Inner loop in GDFT lingo

for j := j0 to k
2
− 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

This loop takes a local subvector
x(rk + k/2 + j0: c: (r + 1)k − 1) of length k

2c
,

multiplies it by the diagonal matrix

diag(ωj0
k , ωc+j0

k , ω2c+j0
k , . . . , ω

k/2−c+j0
k )

= diag(ω
j0/c
k/c , ω

1+j0/c
k/c , ω

2+j0/c
k/c , . . . , ω

k/(2c)−1+j0/c
k/c )

= Ω
j0/c
k/(2c),

adds it to x(rk + j0: c: rk + k/2 − 1), and subtracts it.
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In matrix notation

for r := j2 · nblocks to (j2 + 1) · nblocks − 1 do
for j := j0 to k

2
− 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

In the inner loop, the local subvector
x(rk + j0: c: (r + 1)k − 1) is multiplied by B

j0/c
k/c .

In the outer loop, the same generalised butterfly is
performed for all nblocks = nc

kp
local subvectors,

thus computing

(Inc
kp

⊗ B
j0/c
k/c ) · x(j2

nc

p
+ j0: c: (j2 + 1)

nc

p
− 1).
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Real butterflies
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Butterflies form an unordered GFFT

A complete sequence of butterfly stages is a sequence of
maximal length, k = 2c, 4c, . . . , n

p
c.

If we multiply the corresponding matrices I nc
kp

⊗ B
j0/c
k/c from

right to left, we obtain

(I1 ⊗ B
j0/c
n/p )(I2 ⊗ B

j0/c
n/(2p)) · · · (I n

2p
⊗ B

j0/c
2 ) = F

j0/c
n/p Rn/p,

which is an unordered GFFT with parameter
α = j0/c = (s mod c)/c.

Note the dependence on the processor number s.
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An incomplete sequence is OK at the start

For c = 1, we have j0 = s mod c = 0, so that all factors
have the form Inc

kp
⊗ B

j0/c
k/c = I n

kp
⊗ Bk.

Now we do not need a complete sequence to obtain a
simple formula: if we multiply the matrices for
k = 2, 4, . . . , k1 from right to left we get

(I n
k1p

⊗ Bk1
) · · · (I n

4p
⊗ B4)(I n

2p
⊗ B2)

= I n
k1p

⊗ ((I1 ⊗ Bk1
) · · · (I k1

4

⊗ B4)(I k1

2

⊗ B2))

= I n
k1p

⊗ (Fk1
Rk1

).

We restructure our algorithm, modifying the c-loop so that
we start with one incomplete sequence, and then execute
the remainder with complete sequences.
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Number of iterations at the start

We have t + 1 iterations, where

c = 1, k1, k1
n

p
, . . . , k1

(

n

p

)t−1

= p.

Thus, k1 is given by

k1 =
n

(n/p)t
.
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Restructured parallel FFT

{ distr(x) = cyclic }
(0) bitrev(x(s: p:n − 1), n/p);

{ distr(x) = block with bit-reversed processor number }

t := d log2 p
log2(n/p)

e; k1 := n
(n/p)t ; rev := true;

for r := s · n
k1p

to (s + 1) · n
k1p

− 1 do
UFFT(x(rk1: (r + 1)k1 − 1), k1);
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Restructured parallel FFT

{ distr(x) = cyclic }
(0) bitrev(x(s: p:n − 1), n/p);

{ distr(x) = block with bit-reversed processor number }

t := d log2 p
log2(n/p)

e; k1 := n
(n/p)t ; rev := true;

for r := s · n
k1p

to (s + 1) · n
k1p

− 1 do
UFFT(x(rk1: (r + 1)k1 − 1), k1);

c0 := 1; c := k1;
while c ≤ p do

(1) redistr(x, n, p, c0, c, rev );
{ distr(x) = group-cyclic with cycle c }

(2) j0 := s mod c; j2 := s div c; rev := false;
UGFFT(x(j2

nc
p

+ j0: c: (j2 + 1)nc
p
− 1), n/p, j0/c);

c0 := c; c := n
p
c;

{ distr(x) = cyclic }
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A different way of computing the GDFT

We can rewrite the ordered GDFT as

yk =
n−1
∑

j=0

(xjω
jα
n )ωjk

n .

Thus, we can multiply the components of the input vector
first by scalar factors and then perform a DFT.

In matrix language, define the twiddle matrix

T α
n = diag(1, ωα

n , ω2α
n , . . . , ω(n−1)α

n ),

giving F α
n = FnT

α
n .

For an unordered GDFT, we twiddle with RnT α
n Rn.

Twiddling costs n/p extra complex multiplications, or 6n/p
flops, in every computation superstep except the first.
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Memory needed by the parallel FFT

The total amount of memory space per processor in reals
used by the parallel FFT is

MFFT =

(

2 ·

⌈

log2 p

log2(n/p)

⌉

+ 3

)

·
n

p
.

This is for:
n/p complex vector components;
n/(2p) complex weights of an FFT of length n/p;

n/p complex twiddle factors for each of the d log2 p
log

2
(n/p)

e

GFFTs performed locally.
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Memory scalability

We call the memory requirements of a BSP algorithm
scalable if

M(n, p) = O

(

Mseq(n)

p
+ p

)

.

Motivation of the O(p) term: BSP algorithms are based
on all-to-all communication supersteps, where each
processor deals with p − 1 others, and needs already
O(p) buffer memory for storing communication meta-data.
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The parallel FFT is memory-scalable

For p ≤ n/p, only one twiddle array has to be stored, so
that the total memory requirement is M(n, p) = 5n/p,
which is of the right order.

For p > n/p, we need t − 1 additional iterations, each
requiring a twiddle array. Fortunately, the total extra
twiddle memory is at most

2(t − 1)n

p
= 2

(

n

p
+

n

p
+ · · · +

n

p

)

≤ 2
n

p
·
n

p
· · ·

n

p

= 2

(

n

p

)t−1

=
2p

k1

≤ p.
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Summary

We have introduced the Generalised Discrete Fourier
Transform defined by

yk =

n−1
∑

j=0

xjω
j(k+α)
n .

We have restructured our parallel algorithm, expressing
the local computations as sequential GFFTs.

The sequential GFFTs can be performed at little extra
cost by multiplying the local vector first by a diagonal
twiddle matrix, and then performing an unordered FFT.

The restructured algorithm is memory-scalable, with

M(n, p) = O

(

Mseq(n)

p
+ p

)

.
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