
Sequential sparse matrix–vector multiplication
(PSC §4.1)
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Sparse and dense matrices

Sparse matrices are sparsely populated by nonzero
elements.

Dense matrices have mostly nonzeros.

Sparse matrix computations save time:
operations with zeros can be skipped or simplified;
only the nonzeros must be handled.

Sparse matrix computations also save memory:
only the nonzero elements need to be stored
(together with their location).
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Sparse matrix cage6

n = 93, number of nonzeros nz = 785

c = 8.4 nonzeros per row, density d = 9.1%
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Matrix statistics

Number of nonzeros is

nz = nz(A) = |{aij : 0 ≤ i, j < n ∧ aij 6= 0}|.

Average number of nonzeros per row or column is

c = c(A) =
nz(A)

n
.

Density is

d = d(A) =
nz(A)

n2
.

Matrix is sparse if nz(A) � n2, or c(A) � n, or d(A) � 1.
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Application: cage model for DNA electrophoresis

(A. van Heukelum, G. T. Barkema, R. H. Bisseling,
Journal of Computational Physics 180 (2002) pp. 313–326.)
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3D cubic lattice models a gel

DNA polymer reptates (moves like a snake):
kinks and end points move

DNA sequencing machines: electric field E.
Aim: study drift velocity v(E).
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Transition matrix for cage model

Matrix element aij is the probability that a polymer in state
j moves to a state i. Hence, 0 ≤ aij ≤ 1.

Polymer has 6 monomers for cage6. We can move only
one monomer at a time. Hence, each state has only a few
connected states and the matrix is sparse.
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Sparsity structure of cage6

Each move can be reversed, hence aij 6= 0 ⇐⇒ aji 6= 0,
i.e., matrix is structurally symmetric.

Move against the electric field has different probability
than move with the field. Hence aij 6= aji, so that the
matrix is unsymmetric.
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Power method

Let x be the vector of state frequencies: component xi

represents the relative frequency of state i, with
0 ≤ xi ≤ 1 and

∑
i xi = 1.

The power method computes Ax, A2
x, A3

x, . . ., until
convergence.

Final component xi represents the frequency of state i in
the steady-state situation, where Ax = x.

Main operation: multiplication of sparse matrix A and
dense vector x.
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Sparse matrix–vector multiplication

Let A be a sparse n× n matrix and v a dense input vector
of length n.

We consider the problem of computing the dense output
vector u,

u := Av.

The components of u are

ui =

n−1∑

j=0

aijvj, for 0 ≤ i < n.
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Sparse matrix–vector multiplication algorithm

input: A: sparse n × n matrix,
v : dense vector of length n.

output: u : dense vector of length n, u = Av.

for i := 0 to n − 1 do
ui := 0;

for all (i, j) : 0 ≤ i, j < n ∧ aij 6= 0 do
ui := ui + aijvj;

The sparsity of A is expressed by the test aij 6= 0. Such a

test is never executed in practice, and instead a sparse data

structure is used.
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Iterative solution methods

Sparse matrix–vector multiplication is the main
computation step in iterative solution methods for linear
systems or eigensystems.

Iterative methods start with an initial guess x
0 and then

successively improve the solution by finding better
approximations x

k, k = 1, 2, . . ., until the error is tolerable.

Examples:
Linear systems Ax = b, solved by the conjugate
gradient (CG) method or MINRES, GMRES, QMR,
BiCG, Bi-CGSTAB, SOR, FOM, ...
Eigensystems Ax=λx solved by the Lanczos method,
Jacobi–Davidson, ...
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Insight into other applications
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(a) A 2D molecular dynamics domain of size 1.0× 1.0 with
10 particles.

The cut-off radius for the interaction between particles is
rc = 0.2. The circles shown have radius rc/2 = 0.1.

(b) The corresponding sparse 10 × 10 force matrix F . If
the circles of radius rc/2 of particles i and j overlap, then
i and j interact, so that nonzeros forces fij and fji appear
in F .
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Summary

Sparse matrices are the rule, rather than the exception.
In many applications, variables are connected to only a
few others, leading to sparse matrices.

Sparse matrices occur in various application areas:
transition matrices in Markov models;
finite-element matrices in engineering;
linear programming matrices in optimisation.

We often express computation costs in the matrix size n
and the average number of nonzeros per row c.

Sparse matrix–vector multiplication is important for
iterative solvers. In a way, it also captures
other applications such as molecular dynamics.

The sequential computation is simple, but its
parallelisation is a big challenge.
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