
Parallel Sparse Matrix–Vector Multiplication
(PSC §4.3)

Parallel sparse matrix–vector multiplication – p.1

Option 1: represent first, distribute later

First build a global data structure to represent the sparse
matrix, then distribute it over the processors:

A parallelising compiler would do this.

Requires global collaboration between the processors.

Simple operations become complicated: in a linked list,
3 processors must work together and communicate
to insert a new nonzero.

Parallel sparse matrix–vector multiplication – p.2

Option 2: distribute first, represent later

Distribute the matrix first, and then let each processor
represent the local nonzeros:

This assigns subsets of nonzeros to processors.

The subsets form a partitioning of the nonzero set:
subsets are disjoint and together they contain all
nonzeros.

Sequential sparse data structures can be used.

Simple operations remain simple: insertion and deletion
are local operations without communication.

This is the preferred approach.

Parallel sparse matrix–vector multiplication – p.3

Most general matrix distribution

The most general scheme maps nonzeros to processors,

aij 7−→ P (φ(i, j)), for 0 ≤ i, j < n and aij 6= 0,

where 0 ≤ φ(i, j) < p.

Zeros are not assigned to processors. For convenience,
we define φ(i, j) = −1 if aij = 0.

Here, we use a 1D processor numbering.

Parallel sparse matrix–vector multiplication – p.4

Distribution of matrix and vectors

Global view Local view

4

(a)

9

1

1

3

4

6

5

8

4

6

41

22

1 2

3

1

6

5 9

4 1

3

5 88

2

5

2

(b)

3

2

1

0 0

9

0

64

9

3 4

3

2

12

2

1

3

9

5

5

3 v

A P(0)u P(1)

p = 2, n = 5, nz = 13
P (0) grey cells; P (1) black cells

Matrix distribution is non-Cartesian
Parallel sparse matrix–vector multiplication – p.5

Where to compute aij · vj?

Usually, there are many more nonzeros than vector
components, nz(A) � n, so move the vector components
vj to the nonzeros aij , not vice versa.

Add local products aijvj belonging to the same row i.
Result on P (s) is the local contribution uis to ui

Result uis is sent to the owner of ui.

Thus, we do not communicate elements of A, but only
components of v and contributions to components of u.

Parallel sparse matrix–vector multiplication – p.6

How to distribute the vectors?

In many iterative solvers, the same vector is repeatedly
multiplied by a matrix A.

Usually, a few vector operations are interspersed, such as
DAXPYs y := αx + y or inner products α := x

T
y.

All vectors should then be distributed in the same way:
distr(u) = distr(v) for the operation u := Av.

Sometimes, however, we compute AT Av. The output
vector for A is then taken as the input vector for AT .

Now, we do not need to revert immediately to the input
distribution. We allow distr(u) 6= distr(v).

We map vector components to processors by

ui 7−→ P (φu(i)), for 0 ≤ i < n.

Parallel sparse matrix–vector multiplication – p.7

Deriving a parallel algorithm

Once we have chosen the data distribution and decided
to compute the products aijvj on the processor that owns
aij, the parallel algorithm follows naturally.

The main computation for processor P (s) is multiplying
each local nonzero element aij by vj and adding the
result into a local partial sum,

uis =
∑

0≤j<n, φ(i,j)=s

aijvj .

Sparsity is exploited:
only terms with aij 6= 0 are summed
only local partial sums uis are computed for which
{j : 0 ≤ j < n ∧ φ(i, j) = s} 6= ∅

Parallel sparse matrix–vector multiplication – p.8

Row index set

4

(a)

9

1

1

3

4

6

5

8

4

6

41

22

1 2

3

1

6

5 9

4 1

3

5 88

2

5

2

(b)

3

2

1

0 0

9

0

64

9

3 4

3

2

12

2

1

3

9

5

5

3 v

A P(0)u P(1)

On P (0), row 4 is empty. On P (1), row 1 is empty.

Index set Is of rows that are locally nonempty in P (s) is

Is = {i : 0 ≤ i < n ∧ (∃j : 0 ≤ j < n ∧ φ(i, j) = s)}

I0 = {0, 1, 2, 3} and I1 = {0, 2, 3, 4}.
Parallel sparse matrix–vector multiplication – p.9

Local sparse matrix–vector multiplication

Is = {i : 0 ≤ i < n ∧ (∃j : 0 ≤ j < n ∧ φ(i, j) = s)}

(1) { Local sparse matrix–vector multiplication }
for all i ∈ Is do

uis := 0;
for all j : 0 ≤ j < n ∧ φ(i, j) = s do

uis := uis + aijvj;

Parallel sparse matrix–vector multiplication – p.10

Data structure for local sparse matrix

Compressed row storage (CRS) suits row-oriented local
matrix–vector multiplication.

CRS must be adapted to avoid overhead of many empty
rows, which typically occurs if c � p.

We number the nonempty local rows from 0 to |Is| − 1.
The corresponding indices i are the local indices.

The original global indices from the set Is are stored in
increasing order in an array rowindex of length |Is|:

i = rowindex [i].

Address of first local nonzero of row i is start [i].

Parallel sparse matrix–vector multiplication – p.11

Column index set

4

(a)

9

1

1

3

4

6

5

8

4

6

41

22

1 2

3

1

6

5 9

4 1

3

5 88

2

5

2

(b)

3

2

1

0 0

9

0

64

9

3 4

3

2

12

2

1

3

9

5

5

3 v

A P(0)u P(1)

Index set Js of columns that are locally nonempty in P (s)
is

Js = {j : 0 ≤ j < n ∧ (∃i : 0 ≤ i < n ∧ φ(i, j) = s)}

J0 = {0, 1, 2} and J1 = {2, 3, 4}.
Parallel sparse matrix–vector multiplication – p.12

Fanout

Js = {j : 0 ≤ j < n ∧ (∃i : 0 ≤ i < n ∧ φ(i, j) = s)}

(0) { Fanout }
for all j ∈ Js do

get vj from P (φv(j));

The receiver knows (from its index set Js) that it needs
the vector component vj. The sender is unaware of this.
Therefore, the receiver initiates the communication by
using a ‘get’.

In dense algorithms, communication patterns are
predictable and thus known to every processor,
so that we only need ‘put’ primitives.

In sparse algorithms, we also have to use ‘get’ primitives.
Parallel sparse matrix–vector multiplication – p.13

Fanin and final summation

(2) { Fanin }
for all i ∈ Is do

put uis in P (φu(i));

(3) { Summation of nonzero partial sums }
for all i : 0 ≤ i < n ∧ φu(i) = s do

ui := 0;
for all t : 0 ≤ t < p ∧ uit 6= 0 do

ui := ui + uit;

Parallel sparse matrix–vector multiplication – p.14

Communication

1

22

2 3

5

5

9

1

3

4

6

5

8

4

6

41 3

1

9 2

64

9

1

u

v

A

Vertical arrows: communication of components vj.

v0 is sent from P (1) to P (0), because of the nonzeros
a10 = 4 and a30 = 6 owned by P (0).

v1, v3, v4 need not be sent.

Horizontal arrows: communication of partial sums uis.
Parallel sparse matrix–vector multiplication – p.15

Cost analysis

Wat kost het?
(Dutch for: How much does it cost?)

Answer depends on matrix A and distributions φ, φv, φu.

We can obtain an upper bound on the BSP cost,
assuming that:

the matrix nonzeros are evenly spread over the
processors, each processor having cn

p
nonzeros;

the vector components are also evenly spread,
each processor having n

p
components.

Bound may be far too pessimistic for particular
distributions that are well-tailored to the matrix.

Parallel sparse matrix–vector multiplication – p.16

Cost of separate supersteps

(0): P (s) must receive at most all n components vj,
but not the n

p
local components, so that hr = n − n

p
.

hs = n
p
(p − 1), because the n

p
local vector components

must be sent to all the other p − 1 processors.

T(0) = (1 −
1

p
)ng + l.

(1): 2 flops are needed for each local nonzero.

T(1) =
2cn

p
+ l.

Parallel sparse matrix–vector multiplication – p.17

Cost of separate supersteps (cont’d)

(2): Similar to (0).

T(2) = (1 −
1

p
)ng + l.

(3): Each of the n
p

local vector components is computed by
adding at most p partial sums.

T(3) = n + l.

Total BSP cost is bounded by

TMV ≤
2cn

p
+ n + 2(1 −

1

p
)ng + 4l.

Parallel sparse matrix–vector multiplication – p.18

Efficient computation

TMV ≤
2cn

p
+ n + 2(1 −

1

p
)ng + 4l.

Computation is efficient if 2cn
p

> 2ng, i.e., c > pg.
But this happens rarely: only for very dense matrices.

The number of nonzeros per row c, and not the density d,
determines the efficiency directly.

To make the computation efficient for smaller c, we can:
use a Cartesian distribution and exploit its 2D nature;
refine the general distribution using an automatic
procedure to detect the underlying matrix structure;
exploit properties of specific matrix classes, such as
random sparse matrices and Laplacian matrices.

Parallel sparse matrix–vector multiplication – p.19

Communication volume

Communication volume V of an algorithm is the total
number of data words sent. It depends on φ, φu, φv.

For a given φ, obtain a lower bound Vφ on V by counting:
the number of processors pi that has a nonzero aij in
matrix row i; at least pi − 1 processors must send a
contribution uis.
the number of processors qj that has a nonzero aij in
matrix column j.

Vφ =
∑

0≤i<n, pi≥1

(pi − 1) +
∑

0≤j<n, qj≥1

(qj − 1).

An upper bound is Vφ + 2n, because in the worst case
all n components ui are owned by processors without a
nonzero in row i, and similar for the components vj.

Parallel sparse matrix–vector multiplication – p.20

Summary

Distribute first, represent later.

Most general mapping of nonzeros and vector
components to processors:

aij 7−→ P (φ(i, j)), for 0 ≤ i, j < n and aij 6= 0,

ui 7−→ P (φu(i)), for 0 ≤ i < n.

We have derived a parallel algorithm with 4 supersteps:
fanout, local matrix–vector multiplication, fanin,
summation of partial sums.

The row index set Is and column index set Js are used for
exploiting the sparsity in the algorithm.

We encountered the first absolutely necessary use of a
‘get’ primitive.

Parallel sparse matrix–vector multiplication – p.21

	Option 1: represent first, distribute later
	Option 2: distribute first, represent later
	Most general matrix distribution
	Distribution of matrix and vectors
	Where to compute $a_{ij} cdot v_j$?
	How to distribute the vectors?
	Deriving a parallel algorithm
	Row index set
	Local sparse matrix--vector multiplication
	Data structure for local sparse matrix
	Column index set
	Fanout
	Fanin and final summation
	Communication
	Cost analysis
	Cost of separate supersteps
	Cost of separate supersteps (cont'd)
	Efficient computation
	Communication volume
	Summary

