
Sequential Nonrecursive
Fast Fourier Transform

(PSC §3.3)

Sequential nonrecursive FFT – p.1



Pros and cons of recursive computations

Pros:

display a natural splitting into subproblems, thus pointing
to possible parallelism

provide a concise formulation of the algorithm

reduce the amount of bookkeeping

Cons:

the corresponding computational tree is traversed
sequentially, thus making parallelisation more difficult

the corresponding tree may obscure potential shortcuts to
parallelisation

Sequential nonrecursive FFT – p.2



Matrix decompositions

If we decompose the matrix Fn into Fn = Ar−1 · · ·A1A0,
where each factor Ak is an n × n matrix, we can obtain
Fnx by repeatedly multiplying a matrix Ak and a vector:

Fnx = Ar−1 · · ·A1A0x.

Different decompositions represent different algorithms.

Can the FFT be formulated as a matrix decomposition?

Yes! Van Loan (Computational Frameworks for the FFT,
SIAM, 1992) has formulated many variants of the FFT in
terms of matrix decompositions.

Sequential nonrecursive FFT – p.3



Matrix and vector language for the FFT

Define the n × n diagonal matrix

Ωn = diag(1, ω2n, ω2
2n, . . . , ωn−1

2n ),

so that
Ωn/2 = diag(1, ωn, ω2

n, . . . , ωn/2−1
n ).

Ωn/2 is the diagonal matrix that contains exactly the
powers of ωn needed in the FFT.

The recursive algorithm can now neatly be expressed by

Fnx =

[

In/2 Ωn/2

In/2 −Ωn/2

] [

Fn/2x(0: 2:n − 1)

Fn/2x(1: 2:n − 1)

]

=

[

In/2 Ωn/2

In/2 −Ωn/2

] [

Fn/2 0

0 Fn/2

] [

x(0: 2:n − 1)

x(1: 2:n − 1)

]

.

Sequential nonrecursive FFT – p.4



Even-odd sort matrix

The even-odd sort matrix Sn is the n × n permutation matrix
containing rows 0, 2, . . . , n − 2 of In followed by rows
1, 3, . . . , n − 1,

Sn =





























1 0 0 0 · · · 0 0 0

0 0 1 0 · · · 0 0 0
...

...
0 0 0 0 · · · 0 1 0

0 1 0 0 · · · 0 0 0

0 0 0 1 · · · 0 0 0
...

...
0 0 0 0 · · · 0 0 1





























.

Thus, Snx =

[

x(0: 2:n − 1)

x(1: 2:n − 1)

]

.
Sequential nonrecursive FFT – p.5



Kronecker matrix product

Let A be a q × r matrix and B an m × n matrix.
The Kronecker product (or tensor product,
or direct product) of A and B is the qm × rn matrix

A ⊗ B =







a00B · · · a0,r−1B
...

...
aq−1,0B · · · aq−1,r−1B






.

Let A =

[

0 1

2 4

]

and B =

[

1 0 2

0 1 0

]

. Then

A ⊗ B =

[

0 B

2B 4B

]

=









0 0 0 1 0 2

0 0 0 0 1 0

2 0 4 4 0 8

0 2 0 0 4 0









.

Sequential nonrecursive FFT – p.6



Useful properties

Lemma 3.3 (Associativity) Let A,B,C be matrices. Then

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

Lemma 3.4 Let A,B,C,D be matrices such that AC and
BD are defined. Then

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

Lemma 3.5 Let m,n ∈ N. Then

Im ⊗ In = Imn.

Sequential nonrecursive FFT – p.7



Commutativity?

Lemma (Commutativity) Let A,B be matrices. Then

A ⊗ B = B ⊗ A.

Sequential nonrecursive FFT – p.8



Commutativity?

Lemma (Commutativity) Let A,B be matrices. Then

A ⊗ B = B ⊗ A.

This lemma is not very useful, because it is false.

Let A =
[

2 4
]

and B =

[

1 0

0 1

]

. Then

A ⊗ B =
[

2B 4B
]

=

[

2 0 4 0

0 2 0 4

]

,

B ⊗ A =

[

A 0

0 A

]

=

[

2 4 0 0

0 0 2 4

]

.

Thus,

A ⊗ B 6= B ⊗ A. Sequential nonrecursive FFT – p.8



Use of Kronecker product for FFT

Matrix notation and Kronecker products are powerful tools
in modern Fourier transform research.

Here, we use these tools to derive a nonrecursive variant
of the FFT.

Concise notation:

I2 ⊗ Fn/2 =

[

Fn/2 0

0 Fn/2

]

.

Sequential nonrecursive FFT – p.9



Butterfly operation

x x

x9x9

j

j

j+n/2

j+n/2

c©Sarai Bisseling, 2002

x′

j := xj + ωj
nxj+n/2;

x′

j+n/2 := xj − ωj
nxj+n/2;

Sequential nonrecursive FFT – p.10



Butterfly matrix

The n × n butterfly matrix is

Bn =

[

In/2 Ωn/2

In/2 −Ωn/2

]

.

B4 involves Ω2, which contains powers of
ω4 = e−2πi/4 = −i:

B4 =









1 0 1 0

0 1 0 −i

1 0 −1 0

0 1 0 i









.

The butterfly matrix is sparse since it has only 2n
nonzeros out of n2 elements.

Sequential nonrecursive FFT – p.11



T-shirt formula

Using the new notation gives

Fnx = Bn(I2 ⊗ Fn/2)Snx.

Since this holds for all vectors x, we obtain a formula of
T-shirt importance:

Fn = Bn(I2 ⊗ Fn/2)Sn

Sequential nonrecursive FFT – p.12



Size reduction of the Fourier matrix

We try to reduce the size of the remaining Fourier matrix Fn/2.
Thus we manipulate the factor I2 ⊗ Fn/2, or more in general,
Ik ⊗ Fn/k.

Ik ⊗ Fn/k = [IkIkIk] ⊗
[

Bn/k(I2 ⊗ Fn/(2k))Sn/k

]

= (Ik ⊗ Bn/k)([IkIk] ⊗
[

(I2 ⊗ Fn/(2k))Sn/k

]

)

= (Ik ⊗ Bn/k)(Ik ⊗ I2 ⊗ Fn/(2k))(Ik ⊗ Sn/k)

= (Ik ⊗ Bn/k)(I2k ⊗ Fn/(2k))(Ik ⊗ Sn/k).

Sequential nonrecursive FFT – p.13



Burn at both ends

Repeatedly applying the factorisation of Ik ⊗ Fn/k:

Ik ⊗ Fn/k = (Ik ⊗ Bn/k)(I2k ⊗ Fn/(2k))(Ik ⊗ Sn/k) =

(Ik⊗Bn/k)(I2k ⊗ Bn/(2k))(I4k ⊗ Fn/(4k))(I2k ⊗ Sn/(2k))(Ik⊗Sn/k) = · · ·

This ends when In ⊗ Fn/n = In ⊗ F1 = In ⊗ I1 = In is reached.

Starting with Fn = I1 ⊗ Fn gives the Cooley-Tukey theorem
(1965):

Fn = (I1 ⊗ Bn)(I2 ⊗ Bn/2)(I4 ⊗ Bn/4) · · · (In/2 ⊗ B2)Rn,

where

Rn = (In/2 ⊗ S2) · · · (I4 ⊗ Sn/4)(I2 ⊗ Sn/2)(I1 ⊗ Sn).
Sequential nonrecursive FFT – p.14



Binary digits

We can write an index j, 0 ≤ j < n, as

j =
m−1
∑

k=0

bk2
k,

where bk ∈ {0, 1} is the kth bit and n = 2m.

b0 is the least significant bit; bm−1 the most significant bit.

We use the notation

(bm−1 · · · b1b0)2 =
m−1
∑

k=0

bk2
k.

Example: (10100101)2 = 27 + 25 + 22 + 20 = 165.

Sequential nonrecursive FFT – p.15



Bit-reversal permutation

Let n = 2m, with m ≥ 1. The bit-reversal permutation
ρn : {0, . . . , n − 1} → {0, . . . , n − 1} is defined by

ρn((bm−1 · · · b0)2) = (b0 · · · bm−1)2.

For n = 8:
j (b2b1b0)2 (b0b1b2)2 ρ8(j)

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Sequential nonrecursive FFT – p.16



Bit-reversal algorithm

input: x : vector of length n = 2m, m ≥ 1, x = x0.
output: x : vector of length n, such that x = Rnx0.
call: bitrev(x, n).

for j := 0 to n − 1 do
{ Compute r := ρn(j) }
q := j;
r := 0;
for k := 0 to log2 n − 1 do

bk := q mod 2;
q := q div 2;
r := 2r + bk;

if j < r then swap(xj , xr);

Based on Theorem 3.10: Rn = Pρn
.

For a proof, see pp. 110–111.
Sequential nonrecursive FFT – p.17



Unordered FFT

input: x : vector of length n = 2m, m ≥ 1, x = x0.
output: x : vector of length n, such that x = FnRnx0.
call: UFFT(x, n).

k := 2;
while k ≤ n do

{ Compute x := (In/k ⊗ Bk)x }
for r := 0 to n

k
− 1 do

{ Compute x(rk: rk + k − 1) := Bkx(rk: rk + k − 1) }
for j := 0 to k

2
− 1 do

{ Compute xrk+j ± ωj
kxrk+j+k/2}

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

k := 2k;

Sequential nonrecursive FFT – p.18



Summary

We have derived a nonrecursive fast Fourier transform
(FFT) by using matrix notation and the Kronecker matrix
product.

The result is the Cooley-Tukey Decimation In Time (DIT)
formula

Fn = (I1 ⊗ Bn)(I2 ⊗ Bn/2)(I4 ⊗ Bn/4) · · · (In/2 ⊗ B2)Rn.

Rn is the permutation matrix that corresponds to the
bit-reversal permutation ρn.

Each of the log2 n matrix factors Ik ⊗ Bn/k has 2n nonzero
elements, and each corresponding matrix–vector
multiplication requires 5n flops. Total number of flops:
5n log2 n. Same as for the recursive FFT.

The nonrecursive variant is a good basis for
parallelisation. Sequential nonrecursive FFT – p.19


	Pros and cons of recursive computations
	Matrix decompositions
	Matrix and vector language for the FFT
	Even-odd sort matrix
	Kronecker matrix product
	Useful properties
	Commutativity?
	Use of Kronecker product for FFT
	Butterfly operation
	Butterfly matrix
	T-shirt formula
	Size reduction of the Fourier matrix
	Burn at both ends
	Binary digits
	Bit-reversal permutation
	Bit-reversal algorithm
	Unordered FFT
	Summary

