Mondriaan Sparse Matrix Distribution
(PSC 84.5)




Sparse matrix—vector multiplication

Parallel sparse matrix—vector multiplication u := Av
A sparse m x n matrix, u dense m-vector, v dense n-vector

n—1

Sequential computation w; := » ;_q a;v;

con .}

6<—
9
22 b

41| =
64

u

.4 supersteps: communicate, compute, communicate, com-

N
b,

Mondriaan distribution — p.2



Cartesian matrix partitioning

= Block distribution of 59 x 59 matrix i npcol _b from
Harwell-Boeing collection with 312 nonzeros, for p = 4

= #nonzeros per processor: 126, , 128, 30

= Each separate split has optimal balance (for blocks)

Mondriaan distribution — p.3



Non-Cartesian matrix partitioning

= Block distribution of 59 x 59 matrix i npcol _b from
Harwell-Boeing collection with 312 nonzeros, for p = 4

= #nonzeros per processor: /6, , 80, 80

= Each separate split has optimal balance (for blocks)
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Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921
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Matrix pri ne60
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= Non-Cartesian block distribution of 60 x 60 matrix
pri ne60 with 462 nonzeros, for p = 4

= q;; # 0 <= i|j or jli (1 <14,5 <60)
Exceptional numbering, starting at 1!
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p-way matrix partitioning

m Define
Ay ={(i,5) 1 0<i,j<n A ¢(i,j) = s}

as the set of index pairs corresponding to the nonzeros of
processor P(s), for 0 < s < p.

= For the purpose of partitioning, we identify:
= nonzero = index pair;
= sparse matrix = set of index pairs.

= Ay, ..., A, forms a p-way partitioning of
A:{(Z,Q)OSZ,]<7Z N\ az]#()}

= We use the notation V(Ay,...,A4,1) = V.
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Communication volume for partitioned matrix

V(A07 Ala ) A3) — V(A()a Ala U A3) T V( ) AB)
= V(Ag, Ay, , Az)is the total matrix—vector communication
volume corresponding to the partitioning Ay, A;, , As.

= VV( ,Aj3)is the volume corresponding to the partitioning
, As of the matrix U As.
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Motivation of the Mondriaan splitting

Theorem. Given A. m x n sparse maitrix,
Ap, ..., A mutually disjoint subsets of A (k > 1). Then

V(Ao ..., Ax) =V (Ao, ..., Ag—o, A1 U Ap) + V(Ar_1, Ar).

Meaning: k parts = k + 1 parts can be done locally,
iIndependently, by looking at just one split. This greedily

minimises the total communication volume.
™

L]
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Proof of theorem

= For a given partitioning Ay, ..., A;_1, let the number of
processors that need a vector component v; be

q; = q;j(Ao, ..., Ar_1). This equals the number of sets A;
that have a nonzero in matrix column j.

= Let the number that contribute to a vector component u;
be p; = pi(Ao, ..., Ar_1).
= Let p; = max(p; — 1,0) and ¢; = max(q; — 1,0).

= Instead of proving
V(AO, “ .. 7Ak) — V(AO, “ .. ,Ak_g, Ak—l U Ak) —|— V(Ak—ly Ak);
it iIs sufficient to prove for all 7 that

pi(Ag, ... Ax) = pi(Ao, .., Ao, Ap 1 U Ag) + pi(Ax_1, Ar).

The result then follows by summing. Similar for q;. e ssssen-p:0



Proof of theorem (cont’d)

= p;, = # sets A, that have a nonzero in matrix row <.

= If row ¢ has a nonzero in A, | U A, then p, = p, — 1 in all
three terms. Thus,

pfli(A()) I 7Ak—27 Ak—l U Ak) + pfli(Ak—la Ak)

= pi(Ag, ..., Ap_o, Ak 1 UAr) — 1+ pi(Ag_1, Ar) — 1
= pi(Ao,. .., Ag—2) + 1 —14+pi(Ap_1,Ar) — 1

= pi(Ao,..., Ap—2) + pi(Ar—1, Ax) — 1

= pi(Ao,..., Ax) — 1 =1p.(Ag,..., Ap).

= |[f row ¢ has no nonzeroin A,_,; U A, then both A,_; and
A, are empty, so that

Pi(Ag, - Ap—2, Ag 1 U Ag) + pi(Ag—1, Ax)
— p;(AOa s 7A/€—2) + 0= p;(A()) s 7Ak)
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Computational load balance

= Paint all nonzeros black:

No communication, but no parallelism. No pain, no gain!
= A load balance criterion must therefore be satisfied:

max nz(A) < (1462,

0<s<p D

= ¢ IS specified allowable imbalance;
¢’ is imbalance achieved by partitioning.
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BSP cost determines ¢

= Best choice of ¢ iIs machine-dependent and can be found
by using the BSP model.

= Communication cost Is % assuming communication is
balanced by subsequent vector partitioning.

= Total BSP cost is
nz(A) Vg
p p

2(1+¢') + 41.

= To get a good trade-off between computation imbalance
and communication, we require

nZ(A) - Vg | e 6/ o~ vg

26/ ~ .
p p 2nz(A)

= |f necessary, we adjust ¢ and run the partitioner agaif.. s o1



Bipartitioning: splitting into 2 parts

0300 1
4100 0
A=10 59 2 0
6 005 3
005 8 9

= The number of possible 2-way partitionings is
orz(4)-1 — 912 — 4096. (Symmetry saved a factor of 2.)

= Finding the best solution by enumeration, trying all
possibilities and choosing the best, works only for small
problems. Thus, we need heuristic methods.

= Splitting by columns restricts the search space to
2n—1 — 2% — 16 possibilities. An optimal column split for
€ = 01 |S {O, ].7 2} | {3, 4}, Wlth V — 4 Mondriaan distribution — p.14




Repeated splits

= The partitioning starts with a complete matrix, splits it into
2 submatrices, splits each submatrix, giving 4

submatrices, and so on. The method can be formulated
recursively. For simplicity, we assume that p = 29,

= Rows and columns in the submatrix need not be
consecutive.

= The recursion level of a submatrix is the number of times
the original submatrix must be split to reach the

submatrix. The level of the original matrix is O.

= The final result for processor P(s) is a submatrix defined
by an index set I, x J,. The sets are mutually disjoint.

= Removing empty rows and columns from I, x J, gives
I, x J,. Thus

A, Cc I, x J, C I, x J,.
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Global view of matrix pri me60

= Distribution of 60 x 60 matrix pri ne60 with 462 nonzeros,
for p = 4, obtained by Mondriaan partitioning with ¢ = 3%.

= Maximum number of nonzeros per processor is 117;
average is 462/4=115.5. Achieved imbalance is ¢’ ~ 1.3%.

= Communication volume is: fanout 51: fanin 47; V = 98.
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Local view of matrix pri ne60

= The local submatrix I, x J, of processor P(s) has size:
= 29 x 26 for P(0); 29 x 34 for P(1)
= 31 x 31 for ; 31 x 29 for P(3)

= Note that I; x .J; has 6 empty rows and 9 empty columns,
giving a size of 23 x 25 for I; x Jj.
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Growth of load imbalance by splitting

= |f the growth factor at each recursion level is 1 + 9, the
overall growth factor is (1 4+ 9)? ~ 1 + ¢d. Here, p = 24.
This motivates starting with g6 = ¢, i.e., § = €/q.

= After the first split, one part has at least half the nonzeros,
and the other part at most half. We recompute the ¢
values for both halves based on the new situation.

= The less-loaded processor can increase the allowed load
Imbalance to reduce communication.
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Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, €)
Input: p = 24, ¢ = allowed load imbalance, ¢ > 0.

output: p-way partitioning of A with imbalance < e.

If p > 1then
maznz = (1 + €) m](?A);
(B, BI°V) := split( A, row, 2);
(BS°!, BSOY) = split(A, col, <)
if V(Bv, Biov) < V(B B then
(BOv Bl) = (B(gowv B{OW);
else (By, By) := (B, BSOY);

Mondriaan distribution — p.19



Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, €)
Input: p = 24, ¢ = allowed load imbalance, ¢ > 0.
output: p-way partitioning of A with imbalance < e.

If p > 1then
maznz = (1 + €) m](?A);
(B, BI°V) := split( A, row, 2);
(BS°!, BSOY) = split(A, col, <)
if V(Bv, Biov) < V(B B then
(BOv Bl) = (Bgowv B{OW);
else (By, By) := (B, BSOY);

. Mmarnz P __ - . marnz P __ -
€0 -= nz(Bp) 2 1 e nz(B1) 2 1

(Ao, - - - 7Ap/2—1) .= MatrixPartition( By, gj €0);
(Ap/% ..., Ap—1) = MatrixPartition(B;, g, €1);
else Ay := A;
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Hypergraph
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Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors
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The magic split function

vertices

0123456

Oah~rwWNE O

>
@
n

Magic column bipartitioning of m x n matrix
= Hypergraph H = (V, N') = exact communication volume.

= Columns = Vertices: 0,1,2,3,4,5,6.
Rows = Hyperedges (nets, subsets of V).
Netnz:{]O§j<n/\aw7éO}

= {1,4,6}, ni={0,3,6}, n,={4,5,6},
={0,2,3}, na={2,3,5}, ns={1,4,6}
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Minimising communication volume

vertices
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= Broken nets: n{, ny, cause one horizontal communication.

= Use Kernighan-Lin algorithm for hypergraph
bipartitioning: try to improve initial random partitioning
by moving vertices (columns) to the other part.

= The vertex with the largest gain (communication

reduction) is moved. If the best possible move increases
the communication, it is still accepted.

= Several passes are carried out. Vertices are never moved
twice in a pass. Best solution encountered is kept.
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Multilevel scheme

1. Merge similar columns in pairs to reduce the problem
size, and repeat this until the problem is small:

L] : ] 1 ]
T - - -1 - 1 - 1 1 1
1 1 1 1 1 1
111 - - merge | 1
11 7
1 1
.. .11 oo
i 11 - - 11 1 ]

2. Bipartition the smaller problem using Kernighan—Lin with
iImproved implementation by Fiduccia and Mattheyses.

3. Refine the bipartitioning using a simplified KLFM scheme.

Mondriaan distribution — p.23



Communication volume and time: 1D vs. 2D

(Source: Vastenhouw and Bisseling, SIAM Review 47 (2005)
pPp.67-95.)

D Volume (in data words) Time (in ms)
1D row 1D col 2D 1Drow 1Dcol 2D

1 0 0 0 6755 67.61 74.15

2 15764 24463 15764 36.65 32.26 32.16

4 42652 54262 30444 14.06 12.22 12.14

8 90919 96038 49120 6.49 6.35 6.62
16 177347 155604 75884 5.22 4.22 4.20
32 297658 227368 106563 4.32 4.08 3.23

Term-by-document matrix t bdl i nux:
112,757 rows; 20,167 columns; 2,157,675 nonzeros.

..__Timings obtained on an SGI Origin 3800.
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Summary

= \WWe have derived a recursive partitioning algorithm for a
sparse matrix. It is greedy (minimises splits separately
without looking ahead) and adapts the allowed load
Imbalance to the current partitioning.

= The result Is a p-way matrix partitioning Ay, ..., A,_1 with
A, Cc I, x J,C I, xJ,.

= A hypergraph H = (V,N) is a generalisation of a graph.
It consists of a set of vertices V and a set of hyperedges,
or nets, N/, which are subsets of V.

= Multilevel methods for hypergraph partitioning find good
splits of a sparse matrix in reasonable time.
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