
Weights for the FFT
(PSC §3.5)

Weights – p.1



Sequential computation of weights

The weights of the FFT are the powers of ωn that are
needed in the FFT computation: 1, ωn, ω2

n, . . . , ω
n/2−1
n .

We can compute these powers by

ωj
n = e−2πij/n = cos

2πj

n
− i sin

2πj

n
.

Computing the weights by successive multiplication
ωj+1

n = ωn · ωj
n is less accurate and not recommended.

Typically, computing a sine or cosine costs 10 flops in
double precision accuracy. If we compute a weight each
time we need it, we perform 20 flops extra for every 10
flops (complex ∗,+,−) in the inner loop of the FFT. This
would triple the total cost.

Alternative: compute weights once, store them in a table.
Weights – p.2



Using symmetry to compute weights faster

We can save half the computations by using

ωn/2−j
n = e−2πi(n/2−j)/n = e−πie2πij/n = −(ωj

n).

Thus, we only need to compute 1, ωn, ω2
n, . . . , ω

n/4
n .

Taking negatives and complex conjugates is extremely
cheap.

Similarly, we can halve the work again by using

ωn/4−j
n = −i(ωj

n).

Now, we only need to compute 1, ωn, ω2
n, . . . , ω

n/8
n .

The total cost of the weight initialisations is thus about
20 · n/8 = 2.5n flops.

Weights – p.3



Weights for parallel computation

A brute-force approach: store the complete table of
weights on every processor.

This approach is nonscalable in memory: in the
sequential case, we store n vector components and n/2
weights. In the parallel case, n/p vector components and
n/2 weights per processor.

Furthermore, for small n or large p, the 2.5n flops of the
weight initialisation may be much more than the
(5n log2 n)/p local flops of the FFT.

Some replication of weights is inevitable: stages
k = 2, 4, . . . , n/p are the same on all processors and
hence need the same weights.

Our goal is to find a memory-scalable approach that adds
only a few flops to the overall count.

Weights – p.4



Generalised Discrete Fourier Transform

The Generalised Discrete Fourier Transform (GDFT) is
defined by

yk =

n−1
∑

j=0

xjω
j(k+α)
n , for 0 ≤ k < n,

where α is a fixed real parameter.

GDFT = DFT for α = 0.

We can derive a GFFT, similar to the FFT.

We can also generalise our matrix notation and obtain a
generalised Cooley-Tukey decomposition for the matrix
F α

n defined by

(F α
n )jk = ωj(k+α)

n .

Weights – p.5



Generalised results—without words

Ωα
n = diag(ωα

2n, ω
1+α
2n , ω2+α

2n , . . . , ωn−1+α
2n )

Bα
n =

[

In/2 Ωα
n/2

In/2 −Ωα
n/2

]

Fα
n = Bα

n (I2 ⊗ Fα
n/2)Sn

F α
n = (I1⊗Bα

n )(I2⊗Bα
n/2)(I4⊗Bα

n/4) · · · (In/2⊗Bα
2
)Rn

Weights – p.6



Aim: reformulating the parallel FFT

We try to express the parallel FFT in sequential GFFTs with

suitable α. The α-values may be different on different proces-

sors.

Weights – p.7



Inner loop in GDFT lingo

for j := j0 to k
2
− 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

This loop takes a local subvector
x(rk + k/2 + j0: c: (r + 1)k − 1) of length k

2c
,

multiplies it by the diagonal matrix

diag(ωj0
k , ωc+j0

k , ω2c+j0
k , . . . , ω

k/2−c+j0
k )

= diag(ω
j0/c
k/c , ω

1+j0/c
k/c , ω

2+j0/c
k/c , . . . , ω

k/(2c)−1+j0/c
k/c )

= Ω
j0/c
k/(2c),

adds it to x(rk + j0: c: rk + k/2 − 1), and subtracts it.
Weights – p.8



In matrix notation

for r := j2 · nblocks to (j2 + 1) · nblocks − 1 do
for j := j0 to k

2
− 1 step c do

τ := ωj
kxrk+j+k/2;

xrk+j+k/2 := xrk+j − τ ;
xrk+j := xrk+j + τ ;

In the inner loop, the local subvector
x(rk + j0: c: (r + 1)k − 1) is multiplied by B

j0/c
k/c .

In the outer loop, the same generalised butterfly is
performed for all nblocks = nc

kp
local subvectors,

thus computing

(Inc
kp

⊗ B
j0/c
k/c ) · x(j2

nc

p
+ j0: c: (j2 + 1)

nc

p
− 1).

This is a local computation. Weights – p.9



Real butterflies

Weights – p.10



Butterflies form an unordered GFFT

A complete sequence of butterfly stages is a sequence of
maximal length, k = 2c, 4c, . . . , n

p
c.

If we multiply the corresponding matrices I nc
kp

⊗ B
j0/c
k/c from

right to left, we obtain

(I1 ⊗ B
j0/c
n/p )(I2 ⊗ B

j0/c
n/(2p)) · · · (I n

2p
⊗ B

j0/c
2 ) = F

j0/c
n/p Rn/p,

which is an unordered GFFT with parameter
α = j0/c = (s mod c)/c.

Note the dependence on the processor number s.

Weights – p.11



An incomplete sequence is OK at the start

For c = 1, we have j0 = s mod c = 0, so that all factors
have the form Inc

kp
⊗ B

j0/c
k/c = I n

kp
⊗ Bk.

Now we do not need a complete sequence to obtain a
simple formula: if we multiply the matrices for
k = 2, 4, . . . , k1 from right to left we get

(I n
k1p

⊗ Bk1
) · · · (I n

4p
⊗ B4)(I n

2p
⊗ B2)

= I n
k1p

⊗ ((I1 ⊗ Bk1
) · · · (I k1

4

⊗ B4)(I k1

2

⊗ B2))

= I n
k1p

⊗ (Fk1
Rk1

).

We restructure our algorithm, modifying the c-loop so that
we start with one incomplete sequence, and then execute
the remainder with complete sequences.

Weights – p.12



Number of iterations at the start

We have t + 1 iterations, where

c = 1, k1, k1
n

p
, . . . , k1

(

n

p

)t−1

= p.

Thus, k1 is given by

k1 =
n

(n/p)t
.

Weights – p.13



Restructured parallel FFT

{ distr(x) = cyclic }
(0) bitrev(x(s: p:n − 1), n/p);

{ distr(x) = block with bit-reversed processor number }

t := d log2 p
log2(n/p)

e; k1 := n
(n/p)t ; rev := true;

for r := s · n
k1p

to (s + 1) · n
k1p

− 1 do
UFFT(x(rk1: (r + 1)k1 − 1), k1);

Weights – p.14



Restructured parallel FFT

{ distr(x) = cyclic }
(0) bitrev(x(s: p:n − 1), n/p);

{ distr(x) = block with bit-reversed processor number }

t := d log2 p
log2(n/p)

e; k1 := n
(n/p)t ; rev := true;

for r := s · n
k1p

to (s + 1) · n
k1p

− 1 do
UFFT(x(rk1: (r + 1)k1 − 1), k1);

c0 := 1; c := k1;
while c ≤ p do

(1) redistr(x, n, p, c0, c, rev );
{ distr(x) = group-cyclic with cycle c }

(2) j0 := s mod c; j2 := s div c; rev := false;
UGFFT(x(j2

nc
p

+ j0: c: (j2 + 1)nc
p
− 1), n/p, j0/c);

c0 := c; c := n
p
c;

{ distr(x) = cyclic }

Weights – p.14



A different way of computing the GDFT

We can rewrite the ordered GDFT as

yk =
n−1
∑

j=0

(xjω
jα
n )ωjk

n .

Thus, we can multiply the components of the input vector
first by scalar factors and then perform a DFT.

In matrix language, define the twiddle matrix

T α
n = diag(1, ωα

n , ω2α
n , . . . , ω(n−1)α

n ),

giving F α
n = FnT

α
n .

For an unordered GDFT, we twiddle with RnT α
n Rn.

Twiddling costs n/p extra complex multiplications, or 6n/p
flops, in every computation superstep except the first.

Weights – p.15



Memory needed by the parallel FFT

The total amount of memory space per processor in reals
used by the parallel FFT is

MFFT =

(

2 ·

⌈

log2 p

log2(n/p)

⌉

+ 3

)

·
n

p
.

This is for:
n/p complex vector components;
n/(2p) complex weights of an FFT of length n/p;

n/p complex twiddle factors for each of the d log2 p
log

2
(n/p)

e

GFFTs performed locally.

Weights – p.16



Memory scalability

We call the memory requirements of a BSP algorithm
scalable if

M(n, p) = O

(

Mseq(n)

p
+ p

)

.

Motivation of the O(p) term: BSP algorithms are based
on all-to-all communication supersteps, where each
processor deals with p − 1 others, and needs already
O(p) buffer memory for storing communication meta-data.

Weights – p.17



The parallel FFT is memory-scalable

For p ≤ n/p, only one twiddle array has to be stored, so
that the total memory requirement is M(n, p) = 5n/p,
which is of the right order.

For p > n/p, we need t − 1 additional iterations, each
requiring a twiddle array. Fortunately, the total extra
twiddle memory is at most

2(t − 1)n

p
= 2

(

n

p
+

n

p
+ · · · +

n

p

)

≤ 2
n

p
·
n

p
· · ·

n

p

= 2

(

n

p

)t−1

=
2p

k1

≤ p.

Weights – p.18



Summary

We have introduced the Generalised Discrete Fourier
Transform defined by

yk =

n−1
∑

j=0

xjω
j(k+α)
n .

We have restructured our parallel algorithm, expressing
the local computations as sequential GFFTs.

The sequential GFFTs can be performed at little extra
cost by multiplying the local vector first by a diagonal
twiddle matrix, and then performing an unordered FFT.

The restructured algorithm is memory-scalable, with

M(n, p) = O

(

Mseq(n)

p
+ p

)

.
Weights – p.19


	Sequential computation of weights
	Using symmetry to compute weights faster
	Weights for parallel computation
	Generalised Discrete Fourier Transform
	Generalised results---without words
	Aim: reformulating the parallel FFT
	Inner loop in GDFT lingo
	In matrix notation
	Real butterflies
	Butterflies form an unordered GFFT
	An incomplete sequence is OK at the start
	Number of iterations at the start
	Restructured parallel FFT
	A different way of computing the GDFT
	Memory needed by the parallel FFT
	Memory scalability
	The parallel FFT is memory-scalable
	Summary

