Seqguential LU Decomposition
(PSC §2.1-2.2)




Solving a linear system of equations

Find Lo, L1, T2 such that

ro + 4x;1 + 629
220 + 10z, + 17z
31’0 -+ 16[131 + 31[132

In matrix language, solve

Ax = b,
where

i 1 4 0 | i N
A=12 10 17 |, x=| x4
3 16 31 | | 29
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Lecture 2.1-2.2 Sequential LU — p.2



Solving linear systems iIs important

Applications often have as their core a linear system solver.

= Building bridges. Finite element models in engineering
give rise to linear systems involving a stiffness matrix.

= Aircraft design. Boundary element methods lead to huge
dense linear systems of equations.

= Oll refinery optimisation. Linear programming by interior
point methods requires solving a sparse linear system
(with many zero coefficients) at every step of the
computation.
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Lower and upper triangular matrices

"1 4 67 [1 0071 46
A=|210 17 |=]21 0|0 2 5|=LU
'3 16 31| [321]]l00 3

= [ iIs unit lower triangular if /;; = 1 for all ¢
and [;; = 0forall: < j.

= U is upper triangular if u;; = 0 for all 7 > 7.

= LU decomposition is the factorisation of A into A = LU,
with L unit lower triangular and U upper triangular.
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Triangular systems are easier to solve

Let A = LU. Then

Ax=b <<= L(Ux)=b <= Ly =band Ux =Y.
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Deriving an algorithm for LU decomposition

Some simple algebra:

n—1
A=LU <> ay =Y lyuy foralli,j.
r=0
Assume i < 4. Then:
n—1 1
a;; = Z lirUp; = Z liruy;  (because [, = 0 for r > i)
r=0 r=0

i—1 i—1
= E Lirtrj + Lijugy = E Lirtyj + Wij
r=0 r=0

s 1—1
«\ Ui = Qi — g LirUp ;.
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Formulae for computing /;; and u;;

Aim: rewrite the linear system to express /;; and u;; In terms
of a;; and previously computed /;; and u;;.

We have obtained

1—1

Ui — U5 — E lirurj tor ¢ < VE
r=0

Similarly,

1 Zjl
lz’j — — | Uiy — lirurj tor ¢ > ]
ujj r=0
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Modifying the matrix A in stages

For 0 < k < n, define the intermediate matrix A®*) of stage k:

k—1

(k) _ } :
aij — Q45 — Zirurj.

r=0

Note that A©® = A4 and A™ = 0. In this notation,

1—1

_ E : _ ()
Uij = Q5 — lirurj < Ui = a,ij
r=0
1 .
1 J az(;)
lz’j = — az-j — E lirurj < lz’j =
Usj —0 Usg

w-We retrieve the values u;; ( < j) In stage ¢
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Basic sequential LU decomposition algorithm

input: A n x n matrix.
output: L : n x n unit lower triangular matrix,
U : n x n upper triangular matrix,

such that LU = A,

fork:=0ton—1do
for j:=kton—1do

(k).
/u/k;] . — a/k,] y

Lecture 2.1-2.2 Sequential LU — p.9



Basic sequential LU decomposition algorithm

input: A n x n matrix.
output: L : n x n unit lower triangular matrix,
U : n x n upper triangular matrix,

such that LU = A,

fork:=0ton—1do
for j:=kton—1do

(k).
/u/k;] . — a/k,] y

fori:=k+1ton—1do

Lik = E:)/Ukk
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Basic sequential LU decomposition algorithm

input: A n x n matrix.
output: L : n x n unit lower triangular matrix,
U : n x n upper triangular matrix,

such that LU = A,

fork:=0ton—1do
for j:=kton—1do

(k).
/u/kj . — a/k,] y

fori:=k+1ton—1do

Lir, := aEZ)/Ukk;
fore.=k+1ton—1do
forj.=k+1ton—1do

(k+1) . _ (k) :
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Storing L, U, A® in the space of A

O 1 2 3 4 5 6

A(k)

AN L B~ W N = O

At the start of stage £ = 3: rows O, 1, 2 of U and columns O, 1,

2 of L below the diagonal have already been computed.
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Memory-efficient sequential LU decomposition

input: A: nxnmatrix, A= A0,

output: A: nxnmatrix, A=L — 1, + U, with
L : n x n unit lower triangular matrix,
U : n x n upper triangular matrix,
I, : n x n identity matrix,
such that LU = A,

fork:=0ton—1do
fori:=k+1ton—1do
Qi = ik / Ok
fori:=k+1ton—1do
forj.=k+1ton—1do
Aij = Q5 — Ak AL,
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Transformations of A by LU decomposition

"1 4 6° 1 4 6 1 4 6
A=19210 17| %29 5|2 2 5
3 16 31 3 4 13 '3 2 3
Hence,
10 0° "1 4 67
L=|210]|. u=|0 2 5
392 1 00 3
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Row permutations needed

LU decomposition breaks down immediately in stage O for

0 1
=1

because we try to divide by 0.

= A solution is to permute the rows suitably.
= Thus, we compute a permuted LU decomposition,

PA=LU.

= Here, P Is a permutation matrix, obtained by permuting
the rows of 1,,.

= QOutput of LU decomposition of A: L, U, P.
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Permutations and permutation matrices

Leto: {0,...,n—1} —{0,...,n — 1} be a permutation.
We define the permutation matrix P, corresponding to ¢ by

1 ifi=0(y)
0 otherwise.

(Fs)ij = {

Thus, column j of P, is 1 in row o(j), and O everywhere else.
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Relation between ¢ and P,

Leto0(0) =1, o(1) =2, and ¢(2) = 0. Then

P,=11
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Property of P,

Leto: {0,...,n—1} —{0,...,n — 1} be a permutation.
Let x be a vector of length n. Then

—_

n_

(PJX)i — (Pa)z'jﬂ?j — Lo—1(3);

.
I
o

because only the term with o(j) = 7 is nonzero,

i.e., the term j = o7 1(4).
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Lemma 2.5 Properties of P,

Leto: {0,...,n—1} —{0,...,n — 1} be a permutation.
Let x be a vector of length n and A an n x n matrix. Then

(Pox); = Tp-1(5y, for0 <i<m,

(PyA)ij = ap-1(3,5, for0<14,5 <n,

(PJAPZ)M = Ao-1(3),0-1(j) for 0 < 1,7 < n.

Proofs: similar to before.
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Lemma 2.6 Matrices isomorphic to permutations

Leto,7:40,...,n—1} — {0,...,n — 1} be permutations.
Then
P.P,=P.,and (P,)"' = P, 1.

Here, 7o denotes o followed by 7.

Proof first part:

i
—_

(PTPO‘)Z'J' — (PT)ik(PU)kj — (PJ)T_l(’i),j
0

7
I

because only one term k = 77!(4) is nonzero. By the definition
~ of P,,theresultis 1if 77'(i) = o(j), i.e.,i = 7(o(j)) = (10)(j),

1\.and 0 otherwise. This is the same as for (P.,);;. [
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LU decomposition with row permutations

input: A: nxnmatrix, A= A0,

output: A: nxnmatrix, A=L — 1, + U, with
L : n x n unit lower triangular matrix,
U : n x n upper triangular matrix,
7 . permutation vector of length n.

fore:=0ton—1do m, := i;
fork:=0ton—1do
r .= argmax(|a;| : k <1i < n);
swap (s, 7, );
for j:=0ton —1do
swap(ag;, ar;);
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LU decomposition with row permutations

input: A: nxnmatrix, A= A0,

output: A: nxnmatrix, A=L — 1, + U, with
L : n x n unit lower triangular matrix,
U : n x n upper triangular matrix,
7 . permutation vector of length n.

fore:=0ton—1do m, := i;
fork:=0ton—1do
r .= argmax(|a;| : k <1i < n);
swap (s, 7, );
for j:=0ton —1do
swap(ag;, ar;);
fori:=k+1ton—1do
Aik "= ik ) Ak
fori:=k+1ton—1do
forj.=k+1ton—1do
Qjj ‘= QAj5 — Qjk ALy,
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Partial row pivoting

= The pivot element in stage £ Is the largest element a,,, In
column k. Everything revolves around it. It is farthest from
0 and division by a,, IS most stable.

= The pivot row r Is thus determined by
la,,| = max(lag| - k <1 <n).

= r IS the argument (or index) of the maximum.

= Full pivoting would take the largest pivot from the whole
submatrix A(k:n —1,k:n —1). This gives the best stability,
but is more costly. In practice, partial pivoting suffices.
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The meaning of &

= The algorithm permutes the matrix by a permutation
matrix P,. We obtain the LU decomposition P, A = LU.

= The same matrix is applied to the initial vector
e=(0,1,2,...,n—1)L. We obtain = = P,e.

= Therefore, by Lemma 2.5,
7T(Z) — (Pae)z- — €o—1(4) = O_l(i).
= Thus, # = ¢~ ! and hence

P.-1A=LU.
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Seqguential time complexity

Lemma 2.7:

i:k:n(n+1) Zk2:n(n+1)(2n+1)
—0 2 7 |

Proof. By induction on n.

The number of flops of the LU decomposition algorithm is

1 n—1

3
|

Tq = D @n—k—17+n—k—1)=3 (2K +k)
—0 k=0
_ (=Dp@n—1)  (n—1n
_ 3 >
om 1 2n®>  n® n
(n )n ( 3 _|_ 6) 3 2 6 Lecture 2.1-2.2 Sequential LU — p.22



Summary

= Solving a linear system Ax = b can best be done by:
= finding an LU decomposition PA = LU,
= permuting b into Pb;
= solving the triangular systems Ly = Pb and Ux =y.

= The LU decomposition costs about 2n° /3 flops and each
triangular system solve about »n? flops.

= |t Is always difficult to keep permutations and their
iInverses apart. In theoretical analysis, it is sometimes
easier to work with permutation matrices than with the
corresponding permutations.

= We defined the matrix P,; its jth columnis 1 in row o(j),
and O everywhere else.

= An important connection between a permutation ¢ and
the matrix P, is given by (FP,x); = z,-1(.
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