
Cartesian Distribution
(PSC §4.4)

Cartesian distribution – p.1

Identifying 1D and 2D processor numbering

Natural column-wise identification for p = MN
processors:

P (s, t) ≡ P (s + tM), for 0 ≤ s < M and 0 ≤ t < N.

This can also be written as

P (s) ≡ P (s mod M, s div M), for 0 ≤ s < p.

For a Cartesian distribution, we map nonzeros aij to
processors P (φ(i, j)) by

φ(i, j) = φ0(i) + φ1(j)M, for 0 ≤ i, j < n and aij 6= 0.

We use 1D or 2D numbering, whichever is most
convenient in the context.

Cartesian distribution – p.2

A Cartesian distribution of cage6

0

1

1

1

s = 0

t = 0

n = 93, nz = 785, p = 4, M = N = 2.

The processor row of a matrix element aij is s = φ0(i);
the processor column is t = φ1(j).

Matrix diagonal assigned in blocks to processors
P (0) ≡ P (0, 0), P (1) ≡ P (1, 0), P (2) ≡ P (0, 1),
P (3) ≡ P (1, 1).

Cartesian distribution – p.3

Advantages of a Cartesian distribution

Advantages:

Main advantage for sparse matrices is the same as for
dense matrices: row-wise operations require
communication only within processor rows.
(Similar for columns.)

Vector component vj has to be sent to at most M

processors, and vector component ui is computed using
contributions received from at most N processors.

Simplicity: Cartesian distributions partition the matrix
orthogonally into rectangular submatrices. Non-Cartesian
distributions create arbitrarily shaped matrix parts.

Disadvantage:

Less general, so may not offer the optimal solution.

Cartesian distribution – p.4

Matching matrix and vector distribution

Vector component vj is needed only by processors that
possess an aij 6= 0, and these processors are contained
in processor column P (∗, φ1(j)).

Assigning vector component vj to one of the processors
in P (∗, φ1(j)) implies that vj has to be sent to
at most M − 1 processors, instead of M .

If we are lucky (or clever), we may even avoid
communication of vj altogether.

If vj were assigned to a different processor column,
it would always have to be communicated.

Assigning ui to a processor in processor row P (φ0(i), ∗)
reduces the number of contributions sent for ui to
at most N − 1.

Cartesian distribution – p.5

A trivial but powerful theorem

Theorem 4.4 Let A be a sparse n × n matrix and u,v vectors
of length n. Assume that:

1. distribution of A is Cartesian, distr(A) = (φ0, φ1);

2. distribution of u is such that ui resides in P (φ0(i), ∗);
3. distribution of v is such that vj resides in P (∗, φ1(j)).

Then: if ui and vj are assigned to the same processor,
aij is also assigned to that processor and does not cause
communication.

Proof Component ui is assigned to P (φ0(i), t). Component vj

to P (s, φ1(j)). Since this is the same processor, we have
(s, t) = (φ0(i), φ1(j)), so that this processor also owns aij . �

Cartesian distribution – p.6

Special case distr(u) = distr(v)

The conditions

1. distribution of A is Cartesian, distr(A) = (φ0, φ1);

2. distribution of u is such that ui resides in P (φ0(i), ∗);
3. distribution of v is such that vj resides in P (∗, φ1(j));

4. distr(u) = distr(v);

imply that ui and vi are assigned to P (φ0(i), φ1(i)),
which is the owner of the diagonal element aii.

For a fixed M and N , the choice of a Cartesian matrix
distribution determines the vector distribution.

The reverse is also true.

Cartesian distribution – p.7

Example: 1D Laplacian matrix

A =

























−2 1

1 −2 1

1 −2 1
. . .
1 −2 1

1 −2 1

1 −2

























.

This tridiagonal matrix represents a Laplacian operator
on a 1D grid of n points.

aij 6= 0 if and only if i − j = 0,±1.

Cartesian distribution – p.8

Vector distribution for tridiagonal matrix

aij 6= 0 if and only if i − j = 0,±1.

Assume we require distr(u) = distr(v). Theorem 4.4 says
that it is best to assign ui and vj (and hence uj) to the
same processor if i = j ± 1.

Therefore, a suitable vector distribution over p processors
is the block distribution,

ui 7−→ P (i div

⌈

n

p

⌉

), for 0 ≤ i < n.

Cartesian distribution – p.9

Example: 12 × 12 1D Laplacian matrix

Distribution matrix for n = 12 and M = N = 2:

distr(A) =













































0 0

0 0 0

0 0 0

1 1 1

1 1 1

1 1 3

0 2 2

2 2 2

2 2 2

3 3 3

3 3 3

3 3













































.

Cartesian distribution – p.10

Example: 12 × 12 1D Laplacian matrix (cont’d)

Position (i, j) of distr(A) gives 1D identity of the processor
that owns matrix element aij; distr(A) is obtained by:

distributing the vectors by the 1D block distribution

distributing the matrix diagonal in the same way as the
vectors

translating the 1D processor numbers into 2D numbers by
P (0) ≡ P (0, 0), P (1) ≡ P (1, 0), P (2) ≡ P (0, 1),
P (3) ≡ P (1, 1).

determining the owners of the off-diagonal nonzeros:
a56 is in the same processor row as a55, owned by
P (1) = P (1, 0); it is in the same processor column as a66,
owned by P (2) = P (0, 1). Thus, a56 is owned by
P (1, 1) = P (3).

Cartesian distribution – p.11

Cost analysis

Assuming a good spread of nonzeros and vector components
over processors, matrix rows over processor rows, matrix
columns over processor columns:

T(0) = (M − 1)
ng

p
+ l,

T(1) =
2cn

p
+ l,

T(2) = (N − 1)
ng

p
+ l,

T(3) =
Nn

p
+ l.

TMV, M×N ≤ 2cn

p
+

n

M
+

M + N − 2

p
ng + 4l.

Cartesian distribution – p.12

Efficient computation for M = N =
√

p

TMV,
√

p×
√

p ≤
2cn

p
+

n
√

p
+ 2

(

1
√

p
− 1

p

)

ng + 4l.

Computation is efficient if 2cn

p
> 2ng

√
p

, i.e., c >
√

pg.

Improvement of factor
√

p compared to previous general
efficiency criterion.

Cartesian distribution – p.13

Dense matrices

Dense matrices are the limit of sparse matrices for c → n.

Analysing the dense case is easier and it can give us
insight into the sparse case as well.

Substituting c = n in previous cost formula gives

TMV, dense ≤
2n2

p
+

n
√

p
+ 2

(

1
√

p
− 1

p

)

ng + 4l.

All spreading assumptions must hold.

Which distribution will yield this cost?

Cartesian distribution – p.14

Square cyclic distribution? No!

Previously, we have extolled the virtues of the square
cyclic distribution for LU and all parallel linear algebra.

Diagonal element aii is assigned to
P (i mod

√
p, i mod

√
p), so that the matrix diagonal is

assigned to the diagonal processors P (s, s), 0 ≤ s <
√

p.

Only
√

p processors have part of the matrix diagonal and
the vectors. The vector spreading assumption fails.

The trouble is that diagonal processors must send
√

p − 1

copies of n√
p

vector components: hs = n − n√
p

in (0).

The total cost for the square cyclic distribution is

TMV, dense,
√

p×
√

p cyclic =
2n2

p
+ n + 2

(

1 − 1
√

p

)

ng + 4l.

Cartesian distribution – p.15

Cyclic row distribution? No!

Communication balance can be improved by choosing a
distribution that spreads the matrix diagonal evenly,
φu(i) = φv(i) = i mod p, and translating from 1D to 2D.

We still have the freedom to choose M and N , where
MN = p. For the choice M = p and N = 1, this gives the
cyclic row distribution φ0(i) = i mod p and φ1(j) = 0.

The total cost for the cyclic row distribution is

TMV, dense, p×1 cyclic =
2n2

p
+

(

1 − 1

p

)

ng + 2l.

This distribution skips supersteps (2) and (3), since each
matrix row is completely contained in one processor.

The trouble is that the fanout is very expensive: each
processor has to send n

p
vector components to all others.

Cartesian distribution – p.16

Square Cartesian distribution? Yes!

0 1 2 3 0 1 2 3

0 0 1 1 0 0 1 1

0

1

0

0

1

1

0

1

0

0

1

1

2

2

3

3

0

0

1

1

3

3

2

2

Au

v

n = 8, p = 4, M = N = 2. Square Cartesian distribution
based on a cyclic distribution of the matrix diagonal.

We take the same distribution method,
φu(i) = φv(i) = i mod p, but now we choose M = N =

√
p

when translating from 1D to 2D.

Et voilà! We achieve the optimal BSP cost.
Cartesian distribution – p.17

Summary

For Cartesian distributions, we use both 1D and 2D
processor numberings to our advantage, with the
identification P (s, t) ≡ P (s + tM).

We have seen the example of a tridiagonal matrix, where
we obtained a 2D matrix distribution, slightly different
from a 1D block row distribution. For band matrices with a
wider band, this may be advantageous.

A square Cartesian matrix distribution based on a cyclic
distribution of the matrix diagonal and the input and
output vectors is an optimal data distribution for dense
matrices and for sparse matrices that are relatively dense.

Cartesian distribution – p.18

	Identifying 1D and 2D processor numbering
	A Cartesian distribution of 	exttt {cage6}
	Advantages of a Cartesian distribution
	Matching matrix and vector distribution
	A trivial but powerful theorem
	Special case $mathrm {distr}(vecu)
= mathrm {distr}(vecv)$
	Example: 1D Laplacian matrix
	Vector distribution for tridiagonal matrix
	Example: $12 	imes 12$ 1D Laplacian matrix
	Example: $12 	imes 12$ 1D Laplacian matrix (cont'd)
	Cost analysis
	Efficient computation for $M=N= sqrt {p}$
	Dense matrices
	Square cyclic distribution? No!
	Cyclic row distribution? No!
	Square Cartesian distribution? Yes!
	Summary

