
Experimental results for the FFT
(PSC §3.7)

Experimental results – p.1

Test computer: SGI Origin 3800

Photo: Walter de Jong
http://www.xs4all.nl/˜walterj/sara

Teras, the national supercomputer in the Netherlands,
located in Amsterdam. Installed in 2000; overtaken by an
SGI Altix 3700 (Aster) in 2003. Machines come and go.

Named after Teraflop/s computing rate (1012 flop/s) and
after the Greek word for ‘monster’, τερας .

1024 processors, split into 6 partitions with 512, 256, 128,
64, 32, 32 processors. Experimental results – p.2

SGI Origin 3800 is a CC-NUMA machine

Each processor has:
MIPS RS14000 CPU with a clock rate of 500 MHz and
a theoretical peak performance of 1 Gflop/s
primary data cache of 32 Kbyte
secondary cache of 8 Mbyte
memory of 1 Gbyte.

Cache Coherent Non-Uniform Memory Access:
cache is kept coherent, so user views a shared
memory
physically, the memory is distributed; hence, access
time to local and remote memory differs

Experimental results – p.3

Benchmarked BSP parameters of SGI Origin 3800

p g l Tcomm(0)

1 99 55 378
2 75 5118 1414
4 99 12743 2098
8 126 32742 4947

16 122 93488 15766

r = 285 Mflop/s.

Tcomm(0) is the time of a 0-relation.

Experimental results – p.4

Aggressive optimisation

Initial tests: maximum optimisation level -O3 for newly
installed C compiler gave benchmark rate 981 Mflop/s.

This is almost the theoretical peak rate. For a DAXPY,
such a speed is impossible.

The new compiler discovered our true intention of just
measuring the computing rate, and cleverly removed
some unnecessary statements.

We reduced the optimisation level for benchmarking to
-O2.

We may have been fooled before (predecessor Origin
2000, Chapter 1), with a measured rate of 326 Mflop/s.
This high rate is partly due to having the machine to
ourselves, but perhaps also to overly aggressive
optimisation.

Always be cautious about results! Experimental results – p.5

Time of a parallel FFT of length 262144

0

50

100

150

200

1 2 4 6 8 10 12 14 16

T
im

e
(i

n
m

s)

p

What do you think? Good or bad?

Experimental results – p.6

Time of a parallel FFT of length 262144

0

50

100

150

200

1 2 4 6 8 10 12 14 16

T
im

e
(i

n
m

s)

p

What do you think? Good or bad?

Surprise! This is the time of a theoretical, perfectly parallelised

FFT, based on a time of 155.2 ms for p = 1.
Experimental results – p.6

Measured time Tp(n) of sequential and parallel FFT

Length n

p 4096 16384 65536 262144

1 (seq) 1.16 5.99 26.6 155.2
1 (par) 1.32 6.58 29.8 167.4
2 1.06 4.92 22.9 99.4
4 0.64 3.15 13.6 52.2
8 1.18 2.00 8.9 29.3

16 8.44 11.07 9.9 26.8

Time in ms.

Experimental results – p.7

Time measurements are difficult on the Origin

Timings may suffer from interference by other programs
(caused e.g. by sharing of communication links).

Best of three: we run each experiment 3 times, and take
the best result.

Often, the best two timings are within 5% of each other,
and the third result is worse.

Experimental results – p.8

Time Tp of actual parallel FFT of length 262144

0

50

100

150

200

1 2 4 6 8 10 12 14 16

T
im

e
(i

n
m

s)

p

Measured
Ideal

Warning: this kind of picture gives some insight,

but it is not the best representation of the results.

Experimental results – p.9

Speedup

The speedup Sp(n) of a parallel program is the increase
in speed of the program running on p processors
compared to the speed of a sequential program with the
same level of optimisation,

Sp(n) =
Tseq(n)

Tp(n)
.

Do not compare with T1 instead of Tseq, since this may be
too flattering. The parallel program run with p = 1 may
have much overhead. Here: 8%.

Often, it is easy to simplify a parallel program into a
sequential one by removing overhead.

If this is too much work, then be at least clear about the
reference ‘sequential’ program.

Experimental results – p.10

Speedup Sp(n) of parallel FFT

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
ee

du
p

p

Measured n=262144
Measured n= 65536

Ideal

This kind of picture gives much more insight.

It allows comparison for different problem sizes.

Experimental results – p.11

Superlinear speedup

Bound on speedup:

0 ≤ Sp(n) ≤ p.

Sp(n) < 1 is called a slowdown. It usually happens for
p = 1, and sometimes for p = 2.

Sp(n) > p is called superlinear speedup. In theory, this
cannot happen, but in practice it does. Possible causes:

Cache effects: in the parallel case, each processor
has less data to handle than in the sequential case,
so that the local data may fit in the cache.
Different order of the computations, giving less work in
the parallel case. Example: search algorithms, where
the search stops when one processor finds a solution.
(Trick often used in demos by parallel computer
vendors.) Experimental results – p.12

Superlinear speedup: blessing or curse?

Effects that cause superlinear speedups make it difficult
to judge the quality of the parallelisation. Even if no actual
superlinear speedups are observed ...

Still, a faster computation is always welcome. Besides,
you paid for the multiple caches of a parallel computer.

Experimental results – p.13

Efficiency

The efficiency Ep(n) of a parallel program is the fraction
of the total computing power that is usefully employed.
It is defined by

Ep(n) =
Sp(n)

p
=

Tseq(n)

pTp(n)
.

Bound on efficiency:

0 ≤ Ep(n) ≤ 1.

Experimental results – p.14

Measured efficiency Ep(n) of parallel FFT

0

0.2

0.4

0.6

0.8

1

1 2 4 6 8 10 12 14 16

E
ff

ic
ie

nc
y

p

n=262144
n= 65536

The ideal value is 1.

Experimental results – p.15

Inefficiency

The normalised cost (or inefficiency) Cp(n) is the ratio
between the time of the parallel program and the time of a
perfectly parallelised version of the sequential program. It
is defined by

Cp(n) =
Tp(n)

Tseq(n)/p
=

pTp(n)

Tseq(n)
=

1

Ep(n)
.

Bound on the inefficiency: Cp(n) ≥ 1.

The parallel overhead equals Cp(n) − 1. It usually
consists of:

load imbalance
communication time
synchronisation time

Experimental results – p.16

Normalised cost Cp(n) of parallel FFT

0

1

2

3

4

5

6

1 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 c
os

t

p

Measured n= 65536
Measured n=262144

Ideal

Experimental results – p.17

Breakdown of predicted execution time

p TComp TComm TSync TFFT Tp

(pred.) (meas.)
1 82.78 0.00 0.00 82.78 167.4
2 41.39 68.99 0.05 110.43 99.4
4 20.70 45.53 0.13 66.36 52.2
8 10.35 28.97 0.35 39.67 29.3

16 5.17 14.03 0.98 20.18 26.8

Time in ms. n = 262144.
Prediction is based on time

Tp(n) = 5
n

p
log2 n + 2

n

p
g + 3l.

Experimental results – p.18

Insights gained from breakdown

It is difficult to predict the total time correctly, mainly due
to misprediction of the sequential computation time.

n = 1024 DAXPY benchmark fits in cache, but n = 262144
FFT does not. This reduces the rate from 285 Mflop/s to
144 Mflop/s.

Benchmark of computing rate r can be adapted to
application, if desired.

Communication is the bottleneck, even though we
perform only one data permutation.

Prediction overestimates the communication time, being
based on a pessimistic g-value, but the actual parallel
FFT was optimised to send data in packets.

Synchronisation is unimportant for this problem size.

Experimental results – p.19

Total computing rate Rp(n)

The total computing rate of the FFT is defined by

Rp(n) =
5n log2 n

Tp(n)
.

The rate is based on the sequential flop count 5n log2 n.
This count is commonly used to measure FFT rates,
even for FFT variants with fewer actual flops.

Radix-4 FFTs have 4.25n log2 n flops.

Experimental results – p.20

Computing rate Rp(n) of sequential and parallel FFT

Length n

p 4096 16384 65536 262144

1 (seq) 220 197 202 155
1 (par) 193 179 180 144
2 239 240 234 243
4 397 375 395 462
8 216 591 607 824

16 30 107 545 900

Rate in Mflop/s. Measured on SGI Origin 3800.

Note: we need at least 4 processors to exceed sequential

benchmark speed of 285 Mflop/s.

Experimental results – p.21

Summary

We have introduced several metrics to express the
performance of a parallel program:

Tp(n), the time (in s)
Sp(n) = Tseq(n)/Tp(n), the speedup
Ep(n) = Sp(n)/p, the efficiency
Cp(n) = 1/Ep(n), the normalised cost or inefficiency
Cp(n) − 1, the overhead
Rp(n) = (5n log2 n)/Tp(n), the total computing rate
(in flop/s).

Speedup plots give much insight.

Always take a critical look at experimental results
obtained on a parallel computer.

Experimental results – p.22

	Test computer: SGI Origin 3800
	SGI Origin 3800 is a CC-NUMA machine
	Benchmarked BSP parameters of SGI Origin 3800
	Aggressive optimisation
	Time of a parallel FFT of length 262144
	Measured time $T_p(n)$
of sequential and parallel FFT
	Time measurements are difficult on the Origin
	Time T_p of actual parallel FFT of length 262144
	Speedup
	Speedup $S_p(n)$
of parallel FFT
	Superlinear speedup
	Superlinear speedup: blessing or curse?
	Efficiency
	Measured efficiency $E_p(n)$
of parallel FFT
	Inefficiency
	Normalised cost $C_p(n)$
of parallel FFT
	Breakdown of predicted execution time
	Insights gained from breakdown
	Total computing rate $R_p(n)$
	Computing rate $R_p(n)$
of sequential and parallel FFT
	Summary

