
Parallel LU Decomposition
(PSC §2.3)

Lecture 2.3 Parallel LU – p.1

Designing a parallel algorithm

Main question: how to distribute the data?

What data? The matrix A and the permutation π.

Data distribution + sequential algorithm
−→ computation supersteps.

Design backwards: insert preceding communication
supersteps following the need-to-know principle.

Lecture 2.3 Parallel LU – p.2

Data distribution for the matrix A

The bulk of the work in the sequential computation is the
update aij := aij − aikakj for matrix elements aij with
i, j ≥ k + 1. This takes 2(n − k − 1)2 flops. The other
operations take only about n − k − 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix
update.

Elements aij , aik, akj may not be on the same processor.
Who does the update?

Many elements aij must be updated in stage k, but only
few elements aik, akj are used for the update, and these
all come from column k or row k of the matrix. Moving
those elements around causes less traffic.

Therefore, the owner of aij computes the new value aij

using communicated values of aik, akj .
Lecture 2.3 Parallel LU – p.3

Matrix update by operation aij := aij − aikakj

0

1

2

3

4

5

6

aik aij

akj

0 1 2 3 4 5 6

Update of row i uses only one value, aik, from column k.

If we distribute row i over only N processors, then aik needs

to be sent to at most N − 1 processors.

Lecture 2.3 Parallel LU – p.4

Matrix distribution

A matrix distribution is a mapping

φ : {(i, j) : 0 ≤ i, j < n} → {(s, t) : 0 ≤ s < M ∧ 0 ≤ t < N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function φ has two coordinates,

φ(i, j) = (φ0(i, j), φ1(i, j)).

Here, we number the processors in 2D fashion, with
p = MN . This is just a numbering!

Processor numberings have no physical meaning. BSPlib
randomly renumbers the processors at the start.

A processor row P (s, ∗) is a group of N processors P (s, t)
with 0 ≤ t < N . A processor column P (∗, t) is a group of
M processors P (s, t) with 0 ≤ s < M .

Lecture 2.3 Parallel LU – p.5

Cartesian matrix distribution

00 02 01 02 00 01 00

00

0000

0000

00

0000 0000

0000

00 00

00 0002

02

01

01

02

02

01

01

10 12 11 12 10 11 10

10 10 10

10 10 10

12 11 12 11

00 02 0201 00 01 00

12 11 12 11

0

0

1

0

1

0

1

s =

t = 0 2 1 2 0 1 0

A matrix distribution is called Cartesian if φ0(i, j) is
independent of j and φ1(i, j) is independent of i:

φ(i, j) = (φ0(i), φ1(j)).

Lecture 2.3 Parallel LU – p.6

Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P (∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk;

Lecture 2.3 Parallel LU – p.7

Parallel matrix update

(8) if φ0(k) = s ∧ φ1(k) = t then put akk in P (∗, t);

(9) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
aik := aik/akk;

(10) if φ1(k) = t then for all i : k < i < n ∧ φ0(i) = s do
put aik in P (s, ∗);

if φ0(k) = s then for all j : k < j < n ∧ φ1(j) = t do
put akj in P (∗, t);

(11) for all i : k < i < n ∧ φ0(i) = s do
for all j : k < j < n ∧ φ1(j) = t do

aij := aij − aikakj;

Lecture 2.3 Parallel LU – p.7

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik| : k ≤ i < n ∧ φ0(i) = s);

Lecture 2.3 Parallel LU – p.8

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik| : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars,k in P (∗, t);

Lecture 2.3 Parallel LU – p.8

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik| : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars,k in P (∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k| : 0 ≤ q < M);
r := rsmax

;

Lecture 2.3 Parallel LU – p.8

Parallel pivot search

(0) if φ1(k) = t then rs := argmax(|aik| : k ≤ i < n ∧ φ0(i) = s);

(1) if φ1(k) = t then put rs and ars,k in P (∗, t);

(2) if φ1(k) = t then
smax := argmax(|arq ,k| : 0 ≤ q < M);
r := rsmax

;

(3) if φ1(k) = t then put r in P (s, ∗);

Lecture 2.3 Parallel LU – p.8

Two parallelisation methods

The need-to-know principle:
exactly those nonlocal data that are needed in a
computation superstep should be fetched in preceding
communication supersteps.

Matrix update uses first parallelisation method: look at lhs
(left-hand side) of assignment, owner computes.

Pivot search uses second method: look at rhs of
assignment, compute what can be done locally, reduce
the number of data to be communicated.

In pivot search: first a local search, then communication
of the local winner to all processors, finally a redundant
(replicated) search for the global winner.

Broadcast of r in (3) is needed later in (4). Designing
backwards, we formulate (4) first and then insert (3).

Lecture 2.3 Parallel LU – p.9

Distribution for permutation π

Store πk together with row k, somewhere in processor
row P (φ0(k), ∗).
We choose P (φ0(k), 0). This gives a true distribution.

We could also have chosen to replicate πk in processor
row P (φ0(k), ∗). This would save some if-statements in
our programs.

Lecture 2.3 Parallel LU – p.10

Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P (φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P (φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r;
if φ0(r) = s ∧ t = 0 then πr := π̂k;

Lecture 2.3 Parallel LU – p.11

Index and row swaps

(4) if φ0(k) = s ∧ t = 0 then put πk as π̂k in P (φ0(r), 0);
if φ0(r) = s ∧ t = 0 then put πr as π̂r in P (φ0(k), 0);

(5) if φ0(k) = s ∧ t = 0 then πk := π̂r;
if φ0(r) = s ∧ t = 0 then πr := π̂k;

(6) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put akj as âkj in P (φ0(r), t);

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
put arj as ârj in P (φ0(k), t);

(7) if φ0(k) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
akj := ârj ;

if φ0(r) = s then for all j : 0 ≤ j < n ∧ φ1(j) = t do
arj := âkj ;

Lecture 2.3 Parallel LU – p.11

Optimising the matrix distribution

We have chosen a Cartesian matrix distribution φ to limit
the communication.

We now specify φ further to achieve a good computational
load balance and to minimise the communication.

Maximum number of local matrix rows with index ≥ k:

Rk = max
0≤s<M

|{i : k ≤ i < n ∧ φ0(i) = s}|.

Maximum number of local matrix columns with index ≥ k:

Ck = max
0≤t<N

|{j : k ≤ j < n ∧ φ1(j) = t}|.

The computation cost of the largest superstep, the matrix
update (11), is then 2Rk+1Ck+1.

Lecture 2.3 Parallel LU – p.12

Example

00 02 01 02 00 01 00

00

0000

0000

00

0000 0000

0000

00 00

00 0002

02

01

01

02

02

01

01

10 12 11 12 10 11 10

10 10 10

10 10 10

12 11 12 11

00 02 0201 00 01 00

12 11 12 11

0

0

1

0

1

0

1

s =

t = 0 2 1 2 0 1 0

R0 = 4, C0 = 3 and R4 = 2, C4 = 2

Lecture 2.3 Parallel LU – p.13

Bound for Rk

Rk ≥
⌈

n − k

M

⌉

.

Proof: Assume this is untrue, so that Rk < dn−k
M

e. Because

Rk is integer, we even have Rk < n−k
M

. Hence all M processor

rows together hold less than M · n−k
M

= n − k matrix rows. But

they hold all matrix rows k ≤ i < n. Contradiction. �

Lecture 2.3 Parallel LU – p.14

2D cyclic distribution attains bound

t = 0 1 2 0 1 2 0

00 000000 00000s =

1

0

1

0

1

0

01 02 00 01 02

00 01 02 00 01 02 00

11 12 121110 10

00

00

00

00 00

00

10

10

10 10

10 10

10

01

01 01

01

11

11 11

1112

12 12

12

02

0202

02

φ0(i) = i mod M, φ1(j) = j mod N.

Rk =

⌈

n − k

M

⌉

, Ck =

⌈

n − k

N

⌉

.

Lecture 2.3 Parallel LU – p.15

Cost of main computation superstep (matrix update)

T(11),cyclic = 2

⌈

n − k − 1

M

⌉ ⌈

n − k − 1

N

⌉

≥ 2(n − k − 1)2

p
.

T(11),cyclic < 2

(

n − k − 1

M
+ 1

) (

n − k − 1

N
+ 1

)

=
2(n − k − 1)2

p
+

2(n − k − 1)

p
(M + N) + 2.

The upper bound is minimal for M = N =
√

p. The
second-order term 4(n − k − 1)/

√
p is the additional

computation cost caused by load imbalance.

Lecture 2.3 Parallel LU – p.16

Cost of main communication superstep

The cost of the broadcast of row k and column k in (10) is

T(10) = (Rk+1(N − 1) + Ck+1(M − 1))g

≥
(⌈

n − k − 1

M

⌉

(N − 1) +

⌈

n − k − 1

N

⌉

(M − 1)

)

g

= T(10),cyclic.

T(10),cyclic <

((

n − k − 1

M
+ 1

)

N +

(

n − k − 1

N
+ 1

)

M

)

g

=

(

(n − k − 1)

(

N

M
+

M

N

)

+ M + N

)

g.

The upper bound is again minimal for M = N =
√

p. The
resulting communication cost is about 2(n − k − 1)g. Lecture 2.3 Parallel LU – p.17

Summary

We determined the matrix distribution, first by restricting it
to be Cartesian, then by choosing the 2D cyclic
distribution, based on a careful analysis of the main
computation and communication supersteps, and finally
by showing that a square

√
p ×√

p distribution is best.

Developing the algorithm goes hand in hand with the cost
analysis.

We now have a correct algorithm and a good distribution,
but the overall BSP cost may not be minimal yet. Wait
and see . . .

Lecture 2.3 Parallel LU – p.18

	Designing a parallel algorithm
	Data distribution for the matrix A
	Matrix update by operation $a_{ij}:= a_{ij}-a_{ik}a_{kj}$
	Matrix distribution
	Cartesian matrix distribution
	Parallel matrix update
	Parallel pivot search
	Two parallelisation methods
	Distribution for permutation $pi $
	Index and row swaps
	Optimising the matrix distribution
	Example
	Bound for R_k
	2D cyclic distribution attains bound
	Cost of main computation superstep (matrix update)
	Cost of main communication superstep
	Summary

