Two-Phase Broadcasting
(PSC 82.4)

Lecture 2.4 Two-phase broadcasting — p.1



Optimising a parallel algorithm

= Computation: well-balanced, little redundancy.
Hence no room for improvement.

= Communication: every bit of communication is one bit too
much. We can always try harder.
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Communication volume and balance

= The communication volume of an A-relation is the total
number of data words communicated,

= hs(s) is the number of data words sent by processor P(s)
and h.(s) is the number received.

= Note that
p—1
V <> h=ph
s=0

= An Ah-relation is balanced if

h= .
p
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Communicational load imbalance

= The communicational load imbalance of an h-relation is

h— .
p

= If an A-relation is balanced, so that

then hs(s) = h for all s. (Because hy(s) < h.)
Similarly, h.(s) = h for all s.

= The reverse is also true: if hy(s) = h for all s, then V' = ph.

= Therefore, a balanced h-relation and a full h-relation are
the same.
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hs # h, Implies communication imbalance

= |f an h-relation is balanced, we have h, = h,, where
hs = max, hg(s) and h, = max, h.(s).

= The reverse Is not true: sending and receiving can have
an equally overloaded processor, so that A, = h,, while
the h-relation is still unbalanced, with h > V/p.

= hy # h, Implies that the communication is unbalanced.
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Communication imbalance in LU decomposition

= Send cost in superstep (10), the row/column broadcast,
assuming M = N =, /p:

hy = R;H_l(N — 1) + Ok_H(M — 1) = 2Rk+1(\/]—? — 1)
= Recelve cost in superstep (10):
hy = Rg11 + Ciy1 = 2Rp41.

= Large discrepancy: h, > h,. Balance for senders must be
Improved to reduce the communication cost.
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Cause of the communication imbalance

(10a)if ¢1(k) =tthenforalli:k <i<n A ¢o(i) = s do
put a;; in P(s, *);

= The sending part of the broadcast of column £ is
unbalanced: only the ,/p processors in P(x,¢;(k)) send.
= The senders send R;;1(,/p —1) = n —k — 1 elements.

= The receiving part is balanced: all processors receive
Ry =~ (n—k —1)/,/p elements, except the senders.

= Total contribution of (10) to LU cost is about

n—1 n—1
ZQ(n —k—1)g = QQZk = 2g(n — 1)n/2 =~ n°qg.
k=0 k=0

= This is bottleneck vs. computation cost 2n°/3p.
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One-phase broadcast of a vector

input: x : vector of length n, repl(x) = P(0)
outpult: x : vector of length n, repl(x) = P(x)
call: broadcast(x, P(0), P(x)).

{ Broadcast the vector. }
(0) ifs=0thenfort:=0top—1do
fori:=0ton—1do
put z; in P(t);

Note: repl(x) = P(x) means that x is replicated such that each

processor has a copy.
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Two-phase broadcast in blocks

P(0)

P(1)

P(2)

P(3)

P(0)

P(1)

P(2)

P(3)

Phase O

Phase 1
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The two-phase idea

= First spread the data, then broadcast them.
This lets every processor participate.

= Don’t tell the spammers!

= |dea Is similar to two-phase randomised routing (Valiant
1982): first send data to a randomly chosen intermediate

location, then route them to their final destination.
This avoids congestion.

= We don’t need randomness here: in our regular problem,
we can choose the intermediate location optimally and
deterministically.
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Two-phase broadcast of a vector

input: x : vector of length n, repl(x) = P(0)
outpult: x : vector of length n, repl(x) = P(x)
call: broadcast(x, P(0), P(x)).

b:=[n/pl;

{ Spread the vector. }
(0) ifs=0thenfort:=0top—1do
for ¢ :=tbto min{(t + 1)b,n} — 1 do
put z; in P(t);
;

{ Broadcast the subvectors.
(1) fori:=sbtomin{(s+ 1)b,n} —1do
put z; in P(x);
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Cost analysis of two-phase broadcast

‘l“l .

= Phase O costs (n — b)g, where b = |n/p] is the block size.
= Phase 1 costs (p — 1)bg.

= Total cost of two-phase broadcast of a vector of length n
to p processors Is

n
Toroadcast = (TL + (p — 2) |VE—‘> g+ 2] ~ 2ng + 21.

= Much less than the cost (p — 1)ng + [ of a one-phase
broadcast, except for large .
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Two-phase broadcast in LU decomposition

broadcast((a; : k <t <n A imod M = s),
P(s,k mod N), P(s,*));

broadcast((ax; : K <j<n A jmod N =t),
P(k mod M,t), P(x,t));

= Phase 0 of the row broadcast and Phase 0O of the column
broadcast are done together in superstep (6).

= Phases 1 are done together in (7).
= Less modular, but more efficient.
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Optimisation: pivot value is already known
(8) if ¢o(k) =5 A ¢1(k) =t then put ag in P(x,1);

= Delete old superstep (8), because
arr (after swap) = a, (before swap).

Pivot value a,; Is already known locally.

= Divide immediately by a,, In new superstep (2)
of Algorithm 2.8:

(2) If kmod N =tthen
Smax ‘= argmax(|a, x| : 0 < q < M);
=T
foralli:k<i<n Aimod M =s A i#rdo
Aik = At/ Qrk)
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Optimisation: combine index and row swaps

(4) 1If kmod M = sthen
if ¢t =0 then put 7, as 7, in P(r mod M, 0);
forall j:0<j7<n A jmod N =tdo
put ay; as a; in P(r mod M, t);
If » mod M = s then
if ¢t =0 then put 7, as 7, in P(k mod M, 0);
forall j:0<j7<n A jmod N =tdo
put a,.; as a,; in P(k mod M,t);

Combining communication supersteps saves

synchronisations.
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Optimisation: combine first and last superstep

fork:=0ton—1do

(0) if kmod N =tthen
re = argmax(|la;g| : k <i<n Aimod M = s);

(0) foralli:k<i<n A imod M =sdo
forall j:k<j<n A jmod N =tdo
Ajj = Qjj — Aik Ay,

= Combining the first and last superstep of the loop saves a
synchronisation.

= |In an implementation: no unnecessary bsp _sync at the
end of the main loop.
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Optimal aspect ratio M/N

= Two-phase broadcast reduces cost. Is M = N still
optimal?

= The cost of (6)/(7) is about 2( Ry 1 + Cry1)g. A bound is

— k-1 — k-1
R +Crir < (n —|—1> + (n —|—1>

M N

M+ N
= (n—k-1) T + 2,
p

which is indeed minimal for M = N = \/D-

= The row and index swap in superstep (4) costs (Cy + 1)g,
where Cy = [n/N |, so that larger values N are preferred.
Swap cost for M = N is of same order as broadcast cost.

= QOverall: M = N close to optimal, but slight preference for
M < N.
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Exact cost analysis
We need to compute sums of the form

sn-ElF-E R

k=1

Lemma 2.9. Let n,q > 1 be integers with n mod ¢ = 0. Then

z": m B n(nzj]— ) Z m2 B n(n+%)q(22n+q)'

k=0 q k=0 q
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Proof Lemma 2.9 (first part)
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Total cost of LU decomposition

. 2n3 N ( 3 2) > 5n
p— _— _ — — n -
3 \2yp p 6
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+ 8nl
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Lecture 2.4 Two-phase broadcasting — p.20



Summary

= \We have optimised our basic parallel LU decomposition
algorithm by

= performing two-phase broadcasting to spread the
communication load evenly;

= exploiting local information on the pivot value to avoid
unnecessary communication;

= reorganising the algorithm to combine supersteps,
thus saving synchronisations.

= Cost analysis gives a diagnosis, such as h, > h,.
= The resulting LU decomposition is efficient if
2n° _ 3n’g 2n3
>

— > and — > 8nl.
3p /P 3p

= Equivalent to n > max{4.5¢,2v/3l} - \/p.
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