
Bulk Synchronous Message Passing: bspmv
(PSC §4.9)

Bulk Synchronous Message Passing – p.1

Parallel sparse matrix–vector multiplication

Function bspmv is an implementation of Algorithm 4.5 for
parallel sparse matrix–vector multiplication.

It can handle every possible distribution of the matrix and
vectors.

Bulk Synchronous Message Passing – p.2

Data structure: indexing

void bspmv_init(int p, int s, int n,
int nrows, int ncols, int nv, int nu,
int *rowindex, int *colindex, ...){

Each processor first builds its own local data structure for
representing the local part of the sparse matrix.

Local nonempty rows are numbered i = 0, . . . , nrows− 1,
where nrows = |Is|.

Global index of the row with local index i is
i = rowindex[i].

Global index of the column with local index j is
j = colindex[j].

Bulk Synchronous Message Passing – p.3

Data structure: nonzeros

void bspmv(int p, int s, int n, int nz,
int nrows, int ncols,
double *a, int *inc, ...){

Nonzeros stored in order of increasing local row index i.

Nonzeros of each local row stored consecutively in order
of increasing local column index j, using the incremental
compressed row storage (ICRS) data structure.

The kth nonzero is stored as a pair (a[k], inc[k]), where
a[k] is the numerical value of the nonzero and inc[k] the
increment in the local column index.

Bulk Synchronous Message Passing – p.4

Creating the matrix data structure

Each triple (i, j, aij) is read from an input file and sent to
the responsible processor, as determined by the matrix
distribution.

The local triples are then sorted by increasing global
column index.

This enables conversion to local column indices. During
the conversion, the global indices are registered in
colindex.

The triples are sorted again, now by global row index.
The original mutual precedences between triples from the
same matrix row are maintained (i.e., the sort is stable).

Bulk Synchronous Message Passing – p.5

Data structure: vector components

void bspmv_init(int p, int s, int n,
int nrows, int ncols, int nv, int nu,
int *rowindex, int *colindex,
int *vindex, int *uindex, ...){

Vector component vj corresponds to a local component
v[k] in P (φv(j)), where j = vindex[k]. Here, 0 ≤ k < nv.

All the needed vector components vj, whether obtained
from other processors or already present locally, are
written into a local array vloc, which has the same local
indices as the matrix columns.

vloc[j] stores a copy of vj, where j = colindex[j]. Here,
0 ≤ j < ncols.

Bulk Synchronous Message Passing – p.6

Where to get the input vector components

void bspmv(int p, int s, int n, int nz,
int nrows, int ncols,
double *a, int *inc,
int *srcprocv, int *srcindv, ...){

bsp_get is used to obtain vj, because the receiver
knows it needs vj.

The processor from which to get the value has processor
number φv(j) = srcprocv[j].

The source processor needs to be determined only once.
Its processor number can be used without additional cost
in repeated application of the matrix–vector multiplication.

We also store the location of vj in the source processor
as the local index srcindv[j].

Bulk Synchronous Message Passing – p.7

Bulk synchronous message passing (BSMP)

A different way of communicating data.

bsp_send primitive allows us to send data to a given
processor without specifying the location where the data
is to be stored.

We view bsp_send as a bsp_put with a wildcard for the
destination address.

BSMP is 1-sided communication, since it does not require
any activity by the receiver in the same superstep.

In the next superstep, the receiver must do something,
at least if it wants to use the received data.

BSPlib has 5 primitives for BSMP.

Bulk Synchronous Message Passing – p.8

Motivation for BSMP

Fanin uses bsp_send to send nonzero partial sum uit to
P (φu(i)).

The information whether a nonzero partial sum for a
certain row exists is only available at the sender.

A sender does not know what others send to the same
destination. Processors do not know what they will
receive.

If we were to use a bsp_put, we would have to specify a
destination address.

Reserving space for each possible partial sum would
require too much memory. First telling how much is going
to be sent, reserving space, and asking the senders to
put data there is clumsy, and requires 3 supersteps.

bsp_send just sends the data to the right destination,
without worrying about what happens afterwards.Bulk Synchronous Message Passing – p.9

Send operation from BSPlib

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

nbytes

dest

maxnbytes

source

move

send

payloadtagMessage

pid

bsp_pid

bsp_send(pid, tag, source, nbytes);

bsp_send copies nbytes of data from the local
processor bsp_pid into a message, adds a tag, and
sends the message to the destination processor pid.

source points to the start of the data to be copied.

In the next superstep, bsp_move writes at most
maxnbytes into the memory pointed to by dest.

Bulk Synchronous Message Passing – p.10

Sending a partial sum

for(i=0; i<nrows; i++){
*psum= 0.0;
... /* compute psum */
bsp_send(destprocu[i],&destindu[i],

psum,SZDBL);
}

The tag is an index destindu[i] corresponding to i and
the payload is the partial sum psum = uit consisting of 1
double.

The destination processor, given by φu(i) = destprocu[i],
has been initialised beforehand by bspmv_init.

The identity of the source processor is irrelevant and is
not sent along with the data.

Bulk Synchronous Message Passing – p.11

Use it or lose it

bsp_move(dest, maxnbytes);

The message sent using bsp_send is first stored by the
system in a local send buffer.

The message is then sent and stored in a buffer on the
receiving processor.

Some time after the message has been sent, it becomes
available to the user. BSP philosophy: this happens at the
end of the current superstep.

In the next superstep, the messages can be read; reading
messages means moving them from the receive buffer
into the desired destination memory.

At the end of the next superstep, all remaining unmoved
messages will be lost, which saves buffer memory and
forces the user into the right habit of cleaning his desk.

Bulk Synchronous Message Passing – p.12

Summation of received partial sums

bsp_qsize(&nsums,&nbytes);
bsp_get_tag(&status,&i);
for(k=0; k<nsums; k++){

bsp_move(&sum,SZDBL);
u[i] += sum;
bsp_get_tag(&status,&i);

}

bsp_qsize gives the number of messages received, i.e.,
the number nsums of partial sums.

Each message is processed immediately. Instead, we
could also have allocated nbytes storage space and
process all the messages together.

The index i is obtained from the tag; the sum from the
payload.

Bulk Synchronous Message Passing – p.13

Set the tag size

int tagsz= SZINT;
bsp_set_tagsize(&tagsz);
bsp_sync();

When calling bsp_set_tagsize, tagsz represents the
desired tag size.

As a result, the system uses the desired tag size for all
messages to be sent by bsp_send, starting from the next
superstep.

All processors must call the function with the same tag
size.

Side effect: tagsz is modified so that after the call it
contains the previous tag size of the system.
(This is a way of preserving the old system value.)

Bulk Synchronous Message Passing – p.14

Pointer magic for ICRS

psum= ∑
pa= a; pinc= inc;
pvloc= vloc; pvloc_end= pvloc + ncols;
pvloc += *pinc;
for(i=0; i<nrows; i++){

*psum= 0.0;
while (pvloc<pvloc_end){

/* sum += a[k] * vloc[j] */
*psum += (*pa) * (*pvloc);
pa++;
pinc++;
pvloc += *pinc;

}
bsp_send(destprocu[i],&destindu[i],

psum,SZDBL);
pvloc -= ncols;

}
Bulk Synchronous Message Passing – p.15

Initialisation function bspmv_init

This is what I have. Write owner of every local component vj

cyclically into a temporary array.
for(j=0; j<nv; j++){

jglob= vindex[j];
bsp_put(jglob%p,&s,tmpprocv,

(jglob/p)*SZINT,SZINT);
}
bsp_sync();
Where can I find what I need?
for(j=0; j<ncols; j++){

jglob= colindex[j];
bsp_get(jglob%p,tmpprocv,

(jglob/p)*SZINT,&srcprocv[j],SZINT);
}

I can get vj from P (srcprocv[j]) at location srcindv[j]

Bulk Synchronous Message Passing – p.16

Summary

We have encountered a new style of communication:
bulk synchronous message passing (BSMP),
which uses the bsp_send primitive.

In one superstep, an arbitrary number of communication
operations can be performed, using either bsp_put,
bsp_get, or bsp_send. These can be mixed freely.

The BSP model and BSPlib do not favour any particular
type of communication. It is up to the user to choose the
most convenient primitive in a given situation.
(But usually BSPlib is pretty paternalistic, forcing you to
do the right thing.)

Irregular algorithms benefit most from bsp_send.

Bulk Synchronous Message Passing – p.17

	Parallel sparse matrix--vector multiplication
	Data structure: indexing
	Data structure: nonzeros
	Creating the matrix data structure
	Data structure: vector components
	Where to get the input vector components
	Bulk synchronous message passing (BSMP)
	Motivation for BSMP
	Send operation from BSPlib
	Sending a partial sum
	Use it or lose it
	Summation of received partial sums
	Set the tag size
	Pointer magic for ICRS
	Initialisation function 	exttt {bspmv_init}
	Summary

