
Laplacian Matrices
(PSC §4.8)

Laplacian matrices – p.1

Physical domain

In many applications, a physical domain exists that can
be distributed naturally by assigning a contiguous
subdomain to every processor.

Communication is only needed for exchanging
information across the subdomain boundaries.

Often, the domain is structured as a multidimensional
rectangular grid, where grid points interact only with a set
of immediate neighbours.

In the 2D case, these could be the neighbours to the
north, east, south, and west.

An example is the heat equation, where the value at a
grid point represents the temperature at the
corresponding location.

Laplacian matrices – p.2

2D Laplacian operator for k × k grid

Compute

∆i,j = xi−1,j + xi+1,j + xi,j+1 + xi,j−1 − 4xi,j , for 0 ≤ i, j < k,

where xi,j denotes the temperature at grid point (i, j).
By convention, xi,j = 0 outside the grid.

xi+1,j − xi,j approximates the derivative of the
temperature in the i-direction.

(xi+1,j − xi,j) − (xi,j − xi−1,j) = xi−1,j + xi+1,j − 2xi,j

approximates the second derivative.

Laplacian matrices – p.3

Relation grid–vector

(1,0)(0,0) (2,0)

(0,1)

(0,2)

0 1 2

3 4 5

6 7 8

A 3 × 3 grid, which corresponds to a vector of length 9.
For each grid point (i, j), the index i + 3j of the
corresponding vector component is shown.

More in general,

vi+jk ≡ xi,j, ui+jk ≡ ∆i,j,

for 0 ≤ i, j < k.

Laplacian matrices – p.4

Relation operator–matrix

A =































−4 1 · 1 · · · · ·
1 −4 1 · 1 · · · ·
· 1 −4 · · 1 · · ·
1 · · −4 1 · 1 · ·
· 1 · 1 −4 1 · 1 ·
· · 1 · 1 −4 · · 1

· · · 1 · · −4 1 ·
· · · · 1 · 1 −4 1

· · · · · 1 · 1 −4































u = Av ⇐⇒

∆i,j = xi−1,j + xi+1,j + xi,j+1 + xi,j−1 − 4xi,j , for 0 ≤ i, j < k.

Laplacian matrices – p.5

Domain view vs. matrix view

In general, it is best to view the Laplacian as an operator
on the physical domain.

This domain view has the advantage that it naturally
leads to the use of a regular data structure.

Occasionally, however, it may be beneficial to view the
Laplacian as a matrix, so that we can apply our
knowledge about sparse matrix–vector multiplication.

Laplacian matrices – p.6

Find a domain distribution

Here, we adopt the domain view, so that we must assign
each grid point to a processor.

We assign the values xi,j and ∆i,j to the owner of grid
point (i, j), which translates into distr(u) = distr(v).

We use a row distribution for the matrix and assign row
i + jk to the same processor as vector component ui+jk

and hence grid point (i, j).

The resulting sparse matrix–vector multiplication
algorithm has two supersteps, the fanout and the local
matrix–vector multiplication.

The computation time for an interior point is 5 flops; for a
border point 4 flops; for a corner point 3 flops.

Laplacian matrices – p.7

Distribution into strips and blocks

(a) (b) (c)

(a) Distribution into strips: long Norwegian borders,

Tcomm, strips = 2kg.

(b) Boundary corrections improve load balance.

(c) Distribution into square blocks: shorter borders,

Tcomm, squares =
4k√

p
g (for p > 4).

Laplacian matrices – p.8

Surface-to-volume ratio

The communication-to-computation ratio for square
blocks is

Tcomm, squares

Tcomp, squares

=
4k/

√
p

5k2/p
g =

4
√

p

5k
g.

This ratio is often called the surface-to-volume ratio,
because in 3D the surface of a domain represents the
communication with other processors and the volume
represents the amount of computation of a processor.

Laplacian matrices – p.9

What do we do at scientific workshops?

Participants of HLPP 2001, International Workshop on High-

Level Parallel Programming, Orléans, France, June 2001,

studying Château de Blois.

Laplacian matrices – p.10

The high-level object of our study

Laplacian matrices – p.11

Blocks are nice, diamonds . . .

c

r = 3

Digital diamond, or closed l1-sphere, defined by

Br(c0, c1) = {(i, j) ∈ Z
2 : |i − c0| + |j − c1| ≤ r},

for integer radius r ≥ 0 and centre c = (c0, c1) ∈ Z
2.

Br(c) is the set of points with Manhattan distance ≤ r
to the central point c. Laplacian matrices – p.12

Points of a diamond

c

r = 3
The number of points of Br(c) is

1 + 3 + 5 + · · · + (2r − 1) + (2r + 1) + (2r − 1) + · · · + 1

= 2

r−1
∑

k=0

(2k + 1) + (2r + 1) = 4

r−1
∑

k=0

k + 4r + 1

= 2(r − 1)r + 4r + 1 = 2r2 + 2r + 1.

The number of neighbouring points is 4r + 4.
Laplacian matrices – p.13

Diamonds are forever

Assume that the diamond has its fair share
2r2 + 2r + 1 = k2

p
of the grid points.

Therefore, 2r2 ≈ k2

p
for large r, and hence r ≈ k

√

2p
.

Just on the basis of 4r + 4 receives, we have

Tcomm, diamonds

Tcomp, diamonds

=
4r + 4

5(2r2 + 2r + 1)
g ≈ 2

5r
g ≈ 2

√
2p

5k
g.

Compare with value 4
√

p

5k
g for square blocks:

factor
√

2 less.

Gain caused by reuse of data: value at grid point is used
twice but sent only once.

Laplacian matrices – p.14

Alhambra: tile the whole space

Laplacian matrices – p.15

Tile the whole sky with diamonds

a

b

r = 3
Diamond centres at c = λa + µb, λ, µ ∈ Z,
where a = (r, r + 1) and b = (−r − 1, r).

Good method for an infinite grid.
Laplacian matrices – p.16

Practical method for finite grids

c

r = 3

Discard one layer of points from the north-eastern and
south-eastern border of the diamond.

For r = 3, the number of points decreases from 25 to 18.

Laplacian matrices – p.17

12 × 12 computational grid: periodic partitioning

8 processors

Total computation: 672 flops. Avg 84. Max 90.

Communication: 104 values. Avg 13. Max 14.

Total time: 90 + 14g = 90 + 14 · 10 = 230 (ignoring 2l).

Rectangular 6 × 3 blocks: time would be
87 + 15 · 10 = 237. Worse!

Laplacian matrices – p.18

12 × 12 computational grid: Mondriaan partitioning

8 processors

Total computation: 672 flops. Avg 84. Max 91. (ε = 10%.)

Communication: 85 values. Avg 10.525. Max 16.

Total time: 91 + 16g = 91 + 16 · 10 = 251.

Challenge: better solution can be obtained manually,
using ideas from both solutions shown. Current best
known solution is 200 (Vermolen 2005). Laplacian matrices – p.19

Three dimensions

If a processor has a cubic block of N = k3/p points,
about 6k2

p2/3
= 6N 2/3 are boundary points. In 2D, only 4N 1/2.

If a processor has a 10 × 10 × 10 block, 488 points are on
the boundary. About half!

Thus, communication is important in 3D.

Based on the surface-to-volume ratio of a 3D digital
diamond, we can aim for a reduction by a factor√

3 ≈ 1.73 in communication cost.

The prime application of diamond-shaped distributions
will most likely be in 3D.

Laplacian matrices – p.20

Basic cell for 3D

Basic cell: grid points in a truncated octahedron.

For load balancing, take care with the boundaries.

What You See, Is What You Get (WYSIWYG):
4 hexagons and 3 squares visible at the front are
included. Also 12 edges, 6 vertices.

Gain factor of 1.68 achieved for p = 2q3.
Laplacian matrices – p.21

Comparing 3 distribution methods in 2D and 3D

Grid p Rectangular Diamond Mondriaan
1024 × 1024 2 1024 2046 1024

4 1024 2048 1240
8 1280 1026 1378

16 1024 1024 1044
32 768 514 766
64 512 512 548

128 384 258 395
64 × 64 × 64 16 4096 2402 2836

128 1024 626 829
Communication cost (in g) for a Laplacian operation on a grid.

Mondriaan with ε = 10%.

Laplacian matrices – p.22

Summary

Communication can be reduced tremendously by using
knowledge of the physical domain.

To achieve a good distribution with a low
surface-to-volume ratio, all dimensions must be cut.
In 2D, this gives square blocks. In 3D, cubic subdomains.

In 2D, an even better method is to use digital diamonds
(with two edge layers removed). This basic cell can be
used to tile a rectangular domain in a straightforward
manner. Best performance is obtained for p = 2q2.

In 3D, the best method is to use truncated octahedra with
WYSIWYG tie breaking at the boundaries.
Best performance is obtained for p = 2q3.

In 3D, the performance of Mondriaan is between that of
cubes and truncated octahedra.

Laplacian matrices – p.23

	Physical domain
	2D Laplacian operator for $k 	imes k$ grid
	Relation grid--vector
	Relation operator--matrix
	Domain view vs. matrix view
	Find a domain distribution
	Distribution into strips and blocks
	Surface-to-volume ratio
	What do we do at scientific workshops?
	The high-level object of our study
	Blocks are nice, diamonds $ldots $
	Points of a diamond
	Diamonds are forever
	Alhambra: tile the whole space
	Tile the whole sky with diamonds
	Practical method for finite grids
	$12 	imes 12$ computational grid: periodic partitioning
	$12 	imes 12$ computational grid: Mondriaan partitioning
	Three dimensions
	Basic cell for 3D
	Comparing 3 distribution methods in 2D and 3D
	Summary

