
Sequential Fast Fourier Transform
(PSC §3.1–3.2)

Sequential FFT – p.1



Applications of Fourier analysis

Fourier analysis studies the decomposition of functions
into their frequency components.

Piano Concerto no. 9 by Mozart: enhance high
frequencies.

Chest picture by Computerised Tomography: reconstruct
your interior without slicing you up.

Star picture by pre-repair Hubble Space Telescope:
remove blur.

Sequential FFT – p.2



Fourier series

Let f : R → C be a T -periodic function:
f(t + T ) = f(t) for all t ∈ R.

Fourier series associated with f :

f̃(t) =
∞
∑

k=−∞

cke
2πikt/T .

Fourier coefficients ck are given by

ck =
1

T

∫ T

0

f(t)e−2πikt/T dt.

i is the complex number with i2 = −1.

Series converges if f is piecewise smooth (continuously
differentiable).

Sequential FFT – p.3



Fourier series for real-valued function

Complex Fourier coefficients ck and corresponding real
coefficients ak, bk for T -periodic f : R → R are given by

ck = ak − ibk =
1

T

∫ T

0

f(t)

(

cos
2πkt

T
− i sin

2πkt

T

)

dt.

Since c−k = ck, ak = (ck + ck)/2, and bk = (ck − ck)i/2:

f̃(t) =

∞
∑

k=−∞

cke
2πikt/T =

∞
∑

k=1

cke
−2πikt/T + c0 +

∞
∑

k=1

cke
2πikt/T

= c0 +
∞
∑

k=1

(ck + ck) cos
2πkt

T
+

∞
∑

k=1

(−ck + ck)i sin
2πkt

T

= a0 + 2
∞
∑

k=1

ak cos
2πkt

T
+ 2

∞
∑

k=1

bk sin
2πkt

T
.

Sequential FFT – p.4



It’s a discrete world

One second of audio on a compact disc contains 44,100
function values f(tj) in regularly spaced sample points

tj =
jT

n
, 0 ≤ j < n.

Sequential FFT – p.5



Approximation of Fourier coefficients

Trapezoidal rule on interval [tj , tj+1] =
[

jT
n

, (j+1)T
n

]

:

∫ tj+1

tj

f(t) dt ≈
f(tj) + f(tj+1)

2
·
T

n
.

On the whole interval [0, T ]:

ck =
1

T

∫ T

0

f(t)e−2πikt/T dt

≈
1

T
·
T

n

(

f(0)

2
+

n−1
∑

j=1

f(tj)e
−2πiktj/T +

f(T )

2

)

=
1

n

n−1
∑

j=0

f(tj)e
−2πijk/n (because f(0) = f(T ) = f(t0)).

Sequential FFT – p.6



Discrete Fourier transform

The discrete Fourier transform (DFT) of a vector
x = (x0, . . . , xn−1)

T is the vector y = (y0, . . . , yn−1)
T with

yk =
n−1
∑

j=0

xje
−2πijk/n =

n−1
∑

j=0

xjωn
jk, for 0 ≤ k < n.

Here, ωn = e−2πi/n.

Compare:

ck ≈
1

n

n−1
∑

j=0

f(tj)e
−2πijk/n

Thus c ≈ DFT (x), where xj = f(tj)/n.

Sequential FFT – p.7



Inverse DFT

Easy to prove: the inverse DFT (IDFT) of a vector
x = (x0, . . . , xn−1)

T is the vector y = (y0, . . . , yn−1)
T with

yk =
1

n

n−1
∑

j=0

xje
+2πijk/n, for 0 ≤ k < n.

Same as DFT formula, except for the scaling 1/n and the
sign of the exponent.

Sequential FFT – p.8



Roots of unity

ω

ω

ω

ω

ωω

ω

ω
04

= i

= 1

2

13

5

6

7

ω8 = e−2πi/8 = e−πi/4 = 1
2

√
2 − 1

2

√
2i.

ωn
n = e−2πin/n = e−2πi = 1.

ωn
n/2 = e−2πi(n/2)/n = e−πi = −1.

ωn
2 = e−4πi/n = e−2πi/(n/2) = ωn/2.

Sequential FFT – p.9



Matrix–vector multiplication

Define the n × n Fourier matrix Fn by

(Fn)jk = ωn
jk, for 0 ≤ j, k < n.

Hence Fnx = DFT (x):

(Fnx)j =

n−1
∑

k=0

(Fn)jkxk =

n−1
∑

k=0

xkωn
jk = (DFT (x))j.

Because ω4 = e−2πi/4 = e−πi/2 = −i:

F4 =









ω4
0 ω4

0 ω4
0 ω4

0

ω4
0 ω4

1 ω4
2 ω4

3

ω4
0 ω4

2 ω4
4 ω4

6

ω4
0 ω4

3 ω4
6 ω4

9









=









1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i









.

Sequential FFT – p.10



Cost of straightforward DFT

Complex multiplication

(a + bi)(c + di) = (ac − bd) + (ad + bc)i

requires 1 real addition, 1 real subtraction, 4 real
multiplications, hence a total of 6 flops.

Complex addition

(a + bi) + (c + di) = (a + c) + (b + d)i

requires 2 real additions.

To compute yk, we need n complex multiplications and
n − 1 complex additions, so 6n + 2(n − 1) = 8n − 2 flops.

To compute the n components of y, we need 8n2 − 2n
flops.

Sequential FFT – p.11



Splitting into even and odd components

yk =
n−1
∑

j=0

xjω
jk
n =

n/2−1
∑

j=0

x2jω
2jk
n +

n/2−1
∑

j=0

x2j+1ω
(2j+1)k
n .

Using ω2
n = ωn/2 gives

yk =

n/2−1
∑

j=0

x2jω
jk
n/2 + ωk

n

n/2−1
∑

j=0

x2j+1ω
jk
n/2, for 0 ≤ k < n.

Each sum is a DFT of length n/2, with 0 ≤ k < n/2.

Thus, we can compute the first half of the DFT by a DFT
on the even components of x and a DFT on the odd
components.

Cost is 2 · [8(n/2)2 − 2(n/2)] + 8(n/2) = 4n2 + 2n flops.
Sequential FFT – p.12



Computing the second half of the DFT

Let n/2 ≤ k < n. Substituting k = k′ + n/2 into

yk =

n/2−1
∑

j=0

x2jω
jk
n/2 + ωk

n

n/2−1
∑

j=0

x2j+1ω
jk
n/2

gives 0 ≤ k′ < n/2 and

yk′+n/2 =

n/2−1
∑

j=0

x2jω
j(k′+n/2)
n/2 + ωk′+n/2

n

n/2−1
∑

j=0

x2j+1ω
j(k′+n/2)
n/2

=

n/2−1
∑

j=0

x2jω
jk′

n/2 − ωk′

n

n/2−1
∑

j=0

x2j+1ω
jk′

n/2,

because ω
n/2
n/2 = 1 and ω

n/2
n = −1. Now drop the primes.

Sequential FFT – p.13



Cost reduction of one split

yk+n/2 =

n/2−1
∑

j=0

x2jω
jk
n/2 − ωk

n

n/2−1
∑

j=0

x2j+1ω
jk
n/2, for 0 ≤ k < n/2.

This is the same formula as for the first half, except for the
subtraction.

Thus, we can compute the second half of the DFT almost
without extra work, performing just n/2 complex
subtractions, i.e., n flops.

The total cost for the whole DFT with one split is 4n2 + 3n
flops, thus saving about half the flops from the original
8n2 − 2n.

Sequential FFT – p.14



Recursive computation of DFT

0

0

0

0

1

1

1

1

2

2

3

3

3

3

4

4

2

24

4

5

5

5

5

6

6

6

6

7

7

7

7

The problem is split repeatedly, until the problem size is 1.

Sequential FFT – p.15



Recursive fast Fourier transform (FFT) algorithm

input: x : vector of length n.
output: y : vector of length n, y = Fnx.
call: y := FFT(x, n).

if n mod 2 = 0 then
xe := x(0: 2:n − 1); ye := FFT(xe, n/2);
xo := x(1: 2:n − 1); yo := FFT(xo, n/2);
for k := 0 to n/2 − 1 do

τ := ωk
ny

o
k;

yk := ye
k + τ ;

yk+n/2 := ye
k − τ ;

else y := DFT(x, n);

yk =

n/2−1
∑

j=0

x2jω
jk
n/2 + ωk

n

n/2−1
∑

j=0

x2j+1ω
jk
n/2, for 0 ≤ k < n/2.

Sequential FFT – p.16



Cost of fast Fourier transform

Loop has complex multiplication, addition, subtraction,
together 6 + 2 + 2 = 10 flops.

n/2 iterations of loop, hence a total of n/2 · 10 = 5n flops.

Perform 2 FFT(n/2) operations and 5n flops for FFT(n):

T (n) = 2T (
n

2
) + 5n

= 2
(

2T (
n

4
) + 5

n

2

)

+ 5n = 4T (
n

4
) + 2 · 5n

= · · · = nT (1) + (log2 n) · 5n = 5n log2 n.

Much faster than 8n2 time for direct computation of DFT.

For n = 32768 (0.74 s audio), an FFT can be done
real-time on a 3.3 Mflop/s PC, but it would take 43 min
using the straightforward DFT. Gain factor: 3500.

Sequential FFT – p.17



Summary

The fast Fourier transform (FFT) idea was discovered by
Gauss (1805), rediscovered by Danielson and Lanczos
(1942), and is commonly attributed to Cooley and Tukey
(1965), who rediscovered it in the digital era.

The FFT is the computational workhorse in many
applications, from weather forecasting to signal and
image processing. Without the FFT, modern medicine
would be impossible.

The cost of an FFT of length n is 5n log2 n flops.

We have derived a recursive FFT algorithm, i.e., an
algorithm that calls itself with a smaller problem size.

Sequential FFT – p.18


	Applications of Fourier analysis
	Fourier series
	Fourier series for real-valued function
	It's a discrete world
	Approximation of Fourier coefficients
	Discrete Fourier transform
	Inverse DFT
	Roots of unity
	Matrix--vector multiplication
	Cost of straightforward DFT
	Splitting into even and odd components
	Computing the second half of the DFT
	Cost reduction of one split
	Recursive computation of DFT
	Recursive fast Fourier transform (FFT)
algorithm
	Cost of fast Fourier transform
	Summary

