
Vector Distribution
(PSC §4.6)

Vector distribution – p.1

Vector partitioning

Broadway Boogie Woogie
Piet Mondriaan 1943

Vector distribution – p.2

Balance the communication!

Aim: reduce the BSP cost hg, where

h = max
0≤s<p

h(s), h(s) = max(hs(s), hr(s)).

Thus, given a matrix distribution φ, we have to determine
a vector distribution φv that minimises h for the fanout and
satisfies j ∈ Jφv(j), for 0 ≤ j < n.

Constraint j ∈ Jφv(j) means: processor P (s) = P (φv(j))
that owns vj must own a nonzero in matrix column j, i.e.,
j ∈ Js.

We also have to find a vector distribution φu that
minimises the value h for the fanin and that satisfies the
constraint i ∈ Iφu(i), for 0 ≤ i < n.

Vector distribution – p.3

Vector partitioning for prime60

Global view. Both constraints are satisfied.
Vector distribution – p.4

Vector partitioning for prime60

Local view. The local components of the vector u are placed

to the left of the local submatrix for P (0) and P (2).
Vector distribution – p.5

The two vector distribution problems are similar

Nonzero pattern of row i of A equals the nonzero pattern
of column i of AT :
uis is sent from P (s) to P (t) in the multiplication by A

⇔ vi is sent from P (t) to P (s) in the multiplication by AT .

We can find a good distribution φu given φ = φA

by finding a good distribution φv given φ = φAT .

Hence, we only solve one problem, namely for v. We can
apply this method also for u, with AT instead of A.

Vector distribution – p.6

General case: arbitrary qj values

Columns with qj = 0 or qj = 1 do not cause
communication and are omitted from the problem.
Hence, we assume qj ≥ 2, for all j.

For processor P (s):

hs(s) =
∑

0≤j<n, φv(j)=s

(qj − 1),

and
hr(s) = |{j : j ∈ Js ∧ φv(j) 6= s}|.

Aim: for given matrix distribution and hence given
communication volume V , minimise

h = max
0≤s<p

max (hs(s), hr(s)) .

Vector distribution – p.7

Egoistic local bound

An egoistic processor tries to minimise its own
h(s) = max(hr(s), hs(s)) without consideration for others.

To minimise hr(s), it just has to maximise the number of
components vj with j ∈ Js that it owns.

To minimise hs(s), it has to minimise the total weight of
these components, where the weight of vj is qj − 1.

A locally optimal strategy is to start with hs(s) = 0 and
hr(s) = |Js| and grab the components in order of
increasing weight, each time adjusting hs(s) and hr(s),
as long as hs(s) ≤ hr(s).

Vector distribution – p.8

Optimal values

Denote the resulting optimal value of hr(s) by ĥr(s),
that of hs(s) by ĥs(s), and that of h(s) by ĥ(s). We have

ĥs(s) ≤ ĥr(s) = ĥ(s), for 0 ≤ s < p.

The value ĥ(s) is a local lower bound on the actual value
that can be achieved: ĥ(s) ≤ h(s), for all s.

Vector distribution – p.9

Example vector distribution problem

s = 0 1 · 1 · 1 1 1 1
1 1 1 · 1 1 1 1 ·

2 · 1 · · · 1 1 1
3 · · 1 1 1 · · 1

qj = 2 2 2 2 3 3 3 3
j = 0 1 2 3 4 5 6 7

A 1 in the table denotes that P (s) owns a nonzero in
column j and hence needs vj.

Columns are ordered by increasing qj.

Processor P (0) wants v0 and v2, but nothing more,
so that ĥs(0) = 2, ĥr(0) = 4, and ĥ(0) = 4.

The fanout will cost at least 4g.
Vector distribution – p.10

Algorithm based on local bound

(R. H. Bisseling, W. Meesen, Electronic Transactions on
Numerical Analysis 21 (2005) pp. 47–65.)

Define the generalised lower bound ĥ(J, ns0, nr0) for a
given index set J ⊂ Js and a given initial number of sends
ns0 and receives nr0.

Initial communications are due to columns outside J .

Bound is computed by the same method, but starting with
hs(s) = ns0 and hr(s) = nr0 + |J |.

Note that ĥ(s) = ĥ(Js, 0, 0).

Our algorithm gives preference to the processor that
faces the toughest future, i.e., the processor with the
highest current value ĥ(s).

Vector distribution – p.11

Initialisation of algorithm

for s := 0 to p − 1 do
Ls := Js;
hs(s) := 0;
hr(s) := 0;

Ls is the index set of components that may still be
assigned to P (s).

The number of sends caused by the assignments done so
far is registered as hs(s); the number of receives as hr(s).

The current state of P (s) is represented by the triple
(Ls, hs(s), hr(s)).

Vector distribution – p.12

Termination of algorithm

for s := 0 to p − 1 do
if hs(s) < ĥs(Ls, hs(s), hr(s)) then

active(s) := true;
else active(s) := false;

Note that ns0 ≤ ĥs(J, ns0, nr0), so that trivially
hs(s) ≤ ĥs(Ls, hs(s), hr(s)).

A processor will not accept more components once it has
achieved its optimum, when hs(s) = ĥs(Ls, hs(s), hr(s)).

Vector distribution – p.13

Main loop of algorithm

while (∃s : 0 ≤ s < p ∧ active(s)) do
smax := argmax(ĥr(Ls, hs(s), hr(s)) : 0 ≤ s < p ∧ active(s));
j := min(Lsmax

); {j has minimal qj }
φv(j) := smax;
hs(smax) := hs(smax) + qj − 1;

Vector distribution – p.14

Main loop of algorithm

while (∃s : 0 ≤ s < p ∧ active(s)) do
smax := argmax(ĥr(Ls, hs(s), hr(s)) : 0 ≤ s < p ∧ active(s));
j := min(Lsmax

); {j has minimal qj }
φv(j) := smax;
hs(smax) := hs(smax) + qj − 1;

for all s : 0 ≤ s < p ∧ s 6= smax ∧ j ∈ Js do
hr(s) := hr(s) + 1;

for all s : 0 ≤ s < p ∧ j ∈ Js do
Ls := Ls\{j};
if hs(s) = ĥs(Ls, hs(s), hr(s)) then

active(s) := false;

Vector distribution – p.14

Special case: qj ≤ 2

3

1

3

66

2

1

5

3

3
5

1

3

1
3

4

2217

3

2

4

55
66

2

3

3

1

3

1

5
4

1 2

2

Vertex s = processor s, 0 ≤ s < p

Edge (s, t) = processor pair sharing matrix columns

Edge weight w(s, t) = number of matrix columns shared

Problem: assign each matrix column/vector component to a

processor, balancing the number of data words sent and re-

ceived

Vector distribution – p.15

Transform into unweighted undirected graph

5

3

3
5

1

11
3

17

3

55

3

3

1

3

1

5

1

3 3

1

3

Assign two shared columns: one to processor s, one to t.
w(s, t) := w(s, t) − 2 .

Repeat until all edge weights = 0 or 1.

Vector distribution – p.16

Unweighted undirected graph

Vector distribution – p.17

Transform into directed graph

Walk path starting at odd-degree vertex

Remove walked edges from undirected graph

Edge s → t: processor s sends, t receives

Even-degree vertices remain even-degree

Repeat until all degrees in undirected graph are even.

Vector distribution – p.18

Transform into directed graph

Vector distribution – p.19

Transform into directed graph

Vector distribution – p.20

Transform into directed graph

Walk path starting at even-degree vertex

Repeat until undirected graph empty

Solution is provably optimal (see Bisseling & Meesen
2005)

Vector distribution – p.21

Summary

BSP cost is a natural metric that encourages
communication balancing.

For the general vector distribution problem, we have
developed a heuristic method, which works well in
practice.

The heuristic method is based on assigning vector
components to the processor with the toughest future,
as predicted by an egoistic local bound.

For the special case with at most 2 processors per matrix
column, we have obtained an optimal method based on
walking paths in an associated graph, starting first at
odd-degree vertices.

Vector distribution – p.22

	Vector partitioning
	Balance the communication!
	Vector partitioning for 	exttt {prime60}
	Vector partitioning for 	exttt {prime60}
	The two vector distribution problems are similar
	General case: arbitrary q_j values
	Egoistic local bound
	Optimal values
	Example vector distribution problem
	Algorithm based on local bound
	Initialisation of algorithm
	Termination of algorithm
	Main loop of algorithm
	Special case: $q_j leq 2$
	Transform into unweighted undirected graph
	Unweighted undirected graph
	Transform into directed graph
	Transform into directed graph
	Transform into directed graph
	Transform into directed graph
	Summary

