Experiments with bspl u
(PSC §2.5-2.6)

Lecture 2.5-2.6 Experiments with bspl u - p.1

Broadcast function

voi d bsp broadcast (double *x, int n, int src,
Int sO, int stride, 1 nt pO,
Int s, 1 nt phase){

/| * Broadcast the vector x of length n

from processor src to processors sO+t*stride,

0 <=t < p0. x has already been registered.

s = | ocal processor identity.

phase= phase of two-phase broadcast (0 or 1)

Only one phase is perforned, wthout sync. */
= Standard 1D-2D identification P(s,t) = P(s +tM).

= stride =1, pO = M: broadcast within processor column.
stride =M, pO= N: broadcast within processor row.

= No sync inside function to allow combining supersteps.

Lecture 2.5-2.6 Experiments with bspl u - p.2

Phase 0: source processor spreads the data

b= (n%0==0 ? n/p0 : n/pO0+1); /* block size */

| f (phase==0 && s==src){
for (t=0; t<pO0; t++){
dest = sO+t *stri de;
nbytes= M N(b, n-t*b)*SZDBL,;
| f (nbytes>0)
bsp put (dest, &[t*Db], X,
t *b*SZDBL, nbyt es) ;

}

Data is put in the same location ¢-b of array x in the destination

Processor as In the source Processor.

Lecture 2.5-2.6 Experiments with bspl u - p.3

Phase 1: participating processors perform broadcast

| f (phase==1 && s¥%stride==s0%tride){
t=(s-s0)/stride; /* s = sO+t*stride */
1 f (0<=t && t<p0){
nbytes= M N(b, n-t*b)*SZDBL,;
| f (nbytes>0){
for (t1=0; t1<p0; t1++){
dest= sO+t 1*stri de;
| f (dest!=src)
bsp put (dest, &[t*Db], X,
t *b*SZDBL, nbyt es) ;

}

.__Data is not sent back to source. No influence on BSP cost, but

|t reduces the communication volume. This canngt he bad.

Experiments with bspl u - p.4

Local and global indices for cyclic distribution

1

Local 12 | -1 3 0 2 |2 4 15 7 11
0 1 2 0 1 2 0 1 0 |
P(0) P(1) PQ) PG)

Global index: :
Local index on P(s): |

Relation: i =i -p + s

/[* Initialise pernutation vector pi */
nflr= nloc(Ms,n); /* nunber of |ocal rows */
| f (t==0)
for(1=0; 1<nlr; 1++)
pi[i]=1*Mts; /* global row index */

Lecture 2.5-2.6 Experiments with bspl u - p.5

Putting data directly into a 2D array

a = mtallocd(nlr, nlc); /* Iin bsplu test.c */

void bsplu(..., Int *pi, double **a){
doubl e *pa= NULL,
1T (nlr>0)
pa= a[0] ;

bsp _push_reg(pa, nlr*nl c*SZDBL) ;
bsp _push_reg(pi, nlr*SZI NT);

| f (k%vE=s) {

[* Store pi(k) Iin pi(r) on P(r9%v 0) */

1 f (t==0)

bsp put (r%m &pi [k/IM, pi,
(r/ M *SZI NT, SZI NT) ;
/[* Store row k of Ainrowr on P(r%Mt) */
bsp_put (r%wt*M a] k/ M, pa,
(r/ M *nl c*SZDBL, nl ¢c* SZDBL) ;

Lecture 2.5-2.6 Experiments with bspl u - p.6

Two-phase broadcast of column £

doubl e *Ik;
nlr=nloc(Ms,n); /* nunber of |ocal rows */
kr= nloc(Ms,k); /* first |ocal row

wth global 1 ndex >= k */
kc= nloc(N,t, K);
krl= nloc(Ms, k+1);
| k= vecal |l ocd(nlr); bsp _push reg(lk,nlr*SZDBL);

| f (k%WN==t) /* Store new colum k in |k */
for(i=krl; i<nlr; i++)

| K[1-kr1]= a[i][kc];

bsp broadcast (I k,nlr-krl, s+(k%N *M
s, MN,s+t*M 0) ;

bsp_sync();
bsp broadcast (I k, nlr-krl, s+(kK¥%\) *M
. s,MN s+t*M1);
i\ bsp_sync();

Lecture 2.5-2.6 Experiments with bspl u —p.7

Time (in s) of LU decomposition

n one-phase two-phase
1 000 1.21 1.33
2 000 7.04 7.25
3 000 21.18 21.46
4 000 47.49 47.51
5000 89.90 89.71

6 000 153.23 152.79
7 000 239.21 238.25
8 000 355.84 354.29
9 000 501.92 499.74
10 000 689.91 689.56

Cray T3E with p = 64, r = 38.0 Mflop/s, g = 87, | = 2718

= (measured by bspbench). 8 x 8 cyclic distribution.

Lecture 2.5-2.6 Experiments with bspl u - p.8

Total broadcast time of LU decomposition

1-phase broadcast —
14 2-phase broadcast .

12 -

10 |

Time(ins)

0 2000 4000 6000 8000 10000
n

Cray T3E with p = 64, r = 38.0 Mflop/s, g = 87, | = 2718.

Lecture 2.5-2.6 Experiments with bspl u - p.9

Any actual savings by two-phase broadcast?

= Not much difference in total time between one-phase and
two-phase approach.

= For n < 4000, with local broadcast length < 500,
one-phase Is better.

= For n > 4000, two-phase Is better. But savings are
Insignificant compared to computation time. Total
broadcast time is < 5% of overall time.

= BSP analysis gives insight and explains results, even if
they are surprising/disappointing/...

= On a different machine with slower communication, such
as a PC cluster, the savings will be significant. Try it!

Lecture 2.5-2.6 Experiments with bspl u - p.10

Total measured and predicted time

Time(ins)

35

30

25

20

15

10

Pessimistic prediction
Optimistic prediction
Broadcast, phase 0
Broadcast, phase 1
Row swaps

8000

10000

Lecture 2.5-2.6 Experiments with bspl u - p.11

Optimistic prediction is right

= BSP model predicts: row swaps, phase 0 of the
broadcast, and phase 1 all take the same time.
Measurements validate this.

= Very different communication patterns: row swaps and
phase O are very unbalanced, phase 1 is well-balanced.

= Pessimists are usually wrong. The pessimistic g-value
(for puts of single data words) is far off.

= You need to plug the right g-value into the BSP cost
formula to obtain meaningful predictions. bspl u puts
elements from row and column k as large data packets.
Therefore, we should use the optimistic g-value.

Lecture 2.5-2.6 Experiments with bspl u - p.12

Profile of stages £ =0, 1,2 of an LU decompaosition

Oxford B@oolset [flags -O3 -prof -flibrary-level 2 -fcombi...]

0.232 seconds elapsed on a Cray T3E

Fri Jun 15 11:57:32 2001

2

bytes out

14
R

4500
4000
3500+
3000
2500+

10

NN
NN\

10

ASSNN
NN\

2000
12

15004

10004

14

12

500

0

Ll 1

Step

Filename Line

10
11
12
13
14

86
121
150
168
187
197

bsplu.c
bsplu.c
bsplu.c
bsplu.c
bsplu.c

bsplu.c

T T T
62. 63.00 63.25 63.75

bytes in 4

75

4500

4000

3500

3000+

2500+ 10
DN\

AR

AN\
AR

T
63.50

2000+

12

1500

10004

T T
64.00 64.50

12

5004

\
ﬂﬁ

0+

T
64.

T 1
75 65.00 milliseconds

T T T T
62.75 63.00 63.25 63.50 63.75

T
64.50

T
64.75

T 1
65.00 milliseconds

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

77 N N Ehaan

Cray T3E: n = 100, M = 8, N = 1. Obtained by bsppr of .

Lecture 2.5-2.6 Experiments with bspl u - p.13

Game: recognise the supersteps

m M =8, N = 1: row distribution of the matrix.
= Column broadcast Is for free.

= Row swap involves two processors; each time a different
pair. This must be superstep 12.

= Phase O of row broadcast has 1 sender, 7 receivers. This
must be superstep 13.

= Phase 1 has 7 senders, 7 receivers, and takes about the
same time (bar width) as superstep 13. So this must be

superstep 14.

= The wide gap between supersteps 14 and 10 is a big
computation superstep. This must be the matrix update.

= Superstep 10 must be the exchange of local winners in
the pivot search. Relatively costly, because the problem
size is only n = 100.

Lecture 2.5-2.6 Experiments with bspl u - p.14

Summary

= We use global indices in the description of an algorithm,
but local indices in an actual program.

= \We understand the behaviour of our program, though we
may not always like it.

= Very different communication patterns with the same BSP
cost take about the same time on an actual parallel
computer, the Cray T3E.

= Profiling is a way of getting intimate knowledge of your
program. The superstep concept makes this very easy.

Lecture 2.5-2.6 Experiments with bspl u - p.15

	Broadcast function
	Phase 0: source processor spreads the data
	Phase 1: participating processors perform broadcast
	Local and global indices for cyclic distribution
	Putting data directly into a 2D array
	Two-phase broadcast of column k
	Time (in s)
of LU decomposition
	Total broadcast time of LU decomposition
	Any actual savings by two-phase broadcast?
	Total measured and predicted time
	Optimistic prediction is right
	Profile of stages $k=0,1,2$ of an LU decomposition
	Game: recognise the supersteps
	Summary

