Vector Distribution
(PSC 84.6)

Vector partitioning

s .
! .-.-n. 1
:. A=

-
1S
II-II

h
-~
|
-

"N | | III:.
[......l.. - -
a mEem -
.I ..- ..: - -s "
., "B E ssnslamus wwmn
- = =
- ..'. "R l--.III -

Broadway Boogie Woogie
Piet Mondriaan 1943

Vector distribution — p.2

Balance the communication!

= Aim: reduce the BSP cost hg, where

h = max h(s), h(s) = max(hs(s), h.(s)).

0<s<p
= Thus, given a matrix distribution ¢, we have to determine

a vector distribution ¢, that minimises A for the fanout and
satisfies j € Jy,(j), for 0 < j < n.

= Constraint j € Jy, ;) means: processor P(s) = P(¢v(J))
that owns v; must own a nonzero in matrix column j, I.e.,
j € Js.

= \We also have to find a vector distribution ¢, that

minimises the value h for the fanin and that satisfies the
constraint i € I, ¢, for 0 <i < n.

Vector distribution — p.3

Vector partitioning for pri me60

Global view. Both constraints are satisfied.

Vector partitioning for pri me60

Local view. The local components of the vector u are placed

to the left of the local submatrix for 7(0) and

Vector distribution — p.5

The two vector distribution problems are similar

= Nonzero pattern of row ¢ of A equals the nonzero pattern

of column i of A”:
u;s 1S sent from P(s) to P(t) in the multiplication by A

& v, is sent from P(t) to P(s) in the multiplication by A"

= \We can find a good distribution ¢, given ¢ = ¢4
by finding a good distribution ¢, given ¢ = ¢ 4.

= Hence, we only solve one problem, namely for v. We can
apply this method also for u, with A* instead of A.

Vector distribution

-p.6

General case: arbitrary g; values

= Columns with ¢; = 0 or ¢; = 1 do not cause

communication and are omitted from the problem.
Hence, we assume g; > 2, for all j.

= For processor P(s):

hs(s) = Z (¢; — 1),

Oéj<n7 va (]):8

and
he(s) = {Jj:je€Js Nov(j) # st

= Aim: for given matrix distribution and hence given
communication volume V, minimise

h = max max (hg(s), he(s)) .

0<s<p

Vector distribution

-p.7

Egoistic local bound

= An egoistic processor tries to minimise its own
h(s) = max(h.(s), hs(s)) without consideration for others.

= To minimise h,(s), it just has to maximise the number of
components v; with j € J, that it owns.

= To minimise h(s), it has to minimise the total weight of
these components, where the weight of v; is ¢; — 1.

= A locally optimal strategy is to start with h4(s) = 0 and
h.(s) = |Js| and grab the components in order of
iIncreasing weight, each time adjusting hs(s) and h.(s),
as long as h4(s) < h.(s).

Vector distribution

-p.8

Optimal values

= Denote the resulting optimal value of h,(s) by h.(s),
that of hs(s) by hs(s), and that of h(s) by h(s). We have

AN

hs(s) < he(s) = h(s), for 0 < s < p.

= The value A(s) is a local lower bound on the actual value
that can be achieved: h(s) < h(s), for all s.

Vector distribution

-p.9

Example vector distribution problem

w NN = O
|_\
H
H

R
g=122[2]2][3]3]3
j=|0ol1]2]3]4]5]6

N Wk e

= A 1in the table denotes that P(s) owns a nonzero in
column j and hence needs v;.

= Columns are ordered by increasing g;.

= Processor P(0) wants v, and vy, but nothing more,
so that h(0) = 2, h,(0) = 4, and h(0) = 4.
= The fanout will cost at least 4¢.

Vector distribution — p.10

Algorithm based on local bound

(R. H. Bisseling, W. Meesen, Electronic Transactions on
Numerical Analysis 21 (2005) pp. 47-65.)

= Define the generalised lower bound A(J, nsy, nro) for a
given index set J C J, and a given initial number of sends
nso and receives nry.

= [nitial communications are due to columns outside J.

= Bound is computed by the same method, but starting with
hs(s) = nsy and h.(s) = nrg + |J|.

= Note that A(s) = h(J,,0,0).

= Qur algorithm gives preference to the processor that
faces the toughest future, I.e., the processor with the

highest current value A(s).

Vector distribution — p.11

Initialisation of algorithm

fors:=0top—1do

L, :=Jg
he(s) :=0;
he(s) :=0;

= [, Is the index set of components that may still be
assigned to P(s).

= The number of sends caused by the assignments done so
far is registered as h4(s); the number of receives as h.(s).

= The current state of P(s) is represented by the triple
(Ls, hs(s), he(s)).

Vector distribution — p.12

Termination of algorithm

fors:=0top—1do
if hs(s) < hs(Ls, hs(s), he(s)) then
active(s) := true;
else active(s) := false;

= Note that nsy < iLS(J, nso, Nro), SO that trivially
hs(s) < iLS(LS, hs(s), he(s)).

= A processor will not accept more components once it has
achieved its optimum, when h(s) = hy(Ls, hs(s), he(s)).

Vector distribution — p.13

Main loop of algorithm

while (ds: 0 < s < p A active(s)) do

Smax = argmax(h, (L, hs(s), he(s)) : 0 < s < p A active(s));
7 :=min(Lg_,); {7 has minimal ¢, }

¢v(]) ‘= Smax

hs(SmaX) L= hs(smax) + q; — 1;

Vector distribution — p.14

Main loop of algorithm

while (ds: 0 < s < p A active(s)) do

Smax = argmax(h, (L, hs(s), he(s)) : 0 < s < p A active(s));
7 :=min(Lg_,); {7 has minimal ¢, }

¢v(]) ‘= Smax

hs(smax) L= hs(smax) + q; — 1;

Vector distribution — p.14

Special case: ¢; <2

= Vertex s = processor s, 0 < s <p
= Edge (s,t) = processor pair sharing matrix columns
= Edge weight w(s, t) = number of matrix columns shared

Problem: assign each matrix column/vector component to a

processor, balancing the number of data words sent and re-

==Celved

Vector distribution — p.15

Transform into unweighted undirected graph

3 3a3
50l , 0-0-0 —03
® \ 1] @1 ®
3\ ¢ 3?5 5 ./1 1
ol 03-030 \
Y [\03 /.
@
/5 3| A\ 3
*—¢" o Vo ®

= Assign two shared columns: one to processor s, one to t.
w(s,t) == w(s,t) — 2.

= Repeat until all edge weights =0 or 1.

Vector distribution — p.16

Unweighted undirected graph

o— o-0-0 ®
Vi N\
Lo, "
o. o-0-0 ¢ \

.\. ® \0 /.
°—¢ o Ne—e

Vector distribution — p.17

Transform into directed graph

T o-0-0 __o
SR
o, o-0-0 ¢ \
"‘Q ® \0 /‘
~¢ o Ne—e

= Walk path starting at odd-degree vertex

= Remove walked edges from undirected graph

= Edge s — t: processor s sends, t receives

= Even-degree vertices remain even-degree

= Repeat until all degrees in undirected graph are even.

Vector distribution — p.18

Transform into directed graph

Vector distribution — p.19

Transform into directed graph

$-0-e o/.\.
S S
0\.’. /

Vector distribution — p.20

Transform into directed graph

PN

/ []
v
0\.—_" /

= Walk path starting at even-degree vertex
= Repeat until undirected graph empty

= Solution is provably optimal (see Bisseling & Meesen
2005)

Vector distribution — p.21

Summary

= BSP cost is a natural metric that encourages
communication balancing.

= For the general vector distribution problem, we have
developed a heuristic method, which works well in
practice.

= The heuristic method is based on assigning vector
components to the processor with the toughest future,
as predicted by an egoistic local bound.

= For the special case with at most 2 processors per matrix
column, we have obtained an optimal method based on
walking paths in an associated graph, starting first at
odd-degree vertices.

Vector distribution — p.22

	Vector partitioning
	Balance the communication!
	Vector partitioning for 	exttt {prime60}
	Vector partitioning for 	exttt {prime60}
	The two vector distribution problems are similar
	General case: arbitrary q_j values
	Egoistic local bound
	Optimal values
	Example vector distribution problem
	Algorithm based on local bound
	Initialisation of algorithm
	Termination of algorithm
	Main loop of algorithm
	Special case: $q_j leq 2$
	Transform into unweighted undirected graph
	Unweighted undirected graph
	Transform into directed graph
	Transform into directed graph
	Transform into directed graph
	Transform into directed graph
	Summary

