
Mondriaan Sparse Matrix Distribution
(PSC §4.5)

Mondriaan distribution – p.1

Sparse matrix–vector multiplication

Parallel sparse matrix–vector multiplication u := Av

A sparse m × n matrix, u dense m-vector, v dense n-vector
Sequential computation ui :=

∑n−1
j=0 aijvj

1

22

2 3

5

5

9

1

3

4

6

5

8

4

6

41 3

1

9 2

64

9

1

u

v

A p = 2

4 supersteps: communicate, compute, communicate, com-

pute
Mondriaan distribution – p.2

Cartesian matrix partitioning

Block distribution of 59 × 59 matrix impcol_b from
Harwell–Boeing collection with 312 nonzeros, for p = 4

#nonzeros per processor: 126, 28, 128, 30

Each separate split has optimal balance (for blocks)
Mondriaan distribution – p.3

Non-Cartesian matrix partitioning

Block distribution of 59 × 59 matrix impcol_b from
Harwell–Boeing collection with 312 nonzeros, for p = 4

#nonzeros per processor: 76, 76, 80, 80

Each separate split has optimal balance (for blocks)
Mondriaan distribution – p.4

Composition with Red, Yellow, Blue and Black

Piet Mondriaan 1921

Mondriaan distribution – p.5

Matrix prime60

Non-Cartesian block distribution of 60 × 60 matrix
prime60 with 462 nonzeros, for p = 4

aij 6= 0 ⇐⇒ i|j or j|i (1 ≤ i, j ≤ 60)
Exceptional numbering, starting at 1!

Mondriaan distribution – p.6

p-way matrix partitioning

Define

As = {(i, j) : 0 ≤ i, j < n ∧ φ(i, j) = s}

as the set of index pairs corresponding to the nonzeros of
processor P (s), for 0 ≤ s < p.

For the purpose of partitioning, we identify:
nonzero ≡ index pair;
sparse matrix ≡ set of index pairs.

A0, . . . , Ap−1 forms a p-way partitioning of

A = {(i, j) : 0 ≤ i, j < n ∧ aij 6= 0}.

We use the notation V (A0, . . . , Ap−1) = Vφ.

Mondriaan distribution – p.7

Communication volume for partitioned matrix

V (A0, A1, A2, A3) = V (A0, A1, A2 ∪ A3) + V (A2, A3)

V (A0, A1, A2, A3) is the total matrix–vector communication
volume corresponding to the partitioning A0, A1, A2, A3.

V (A2, A3) is the volume corresponding to the partitioning
A2, A3 of the matrix A2 ∪ A3.

Mondriaan distribution – p.8

Motivation of the Mondriaan splitting

Theorem. Given A: m × n sparse matrix,
A0, . . . , Ak mutually disjoint subsets of A (k ≥ 1). Then

V (A0, . . . , Ak) = V (A0, . . . , Ak−2, Ak−1 ∪ Ak) + V (Ak−1, Ak).

Meaning: k parts ⇒ k + 1 parts can be done locally,
independently, by looking at just one split. This greedily
minimises the total communication volume.

Mondriaan distribution – p.9

Proof of theorem

For a given partitioning A0, . . . , Ak−1, let the number of
processors that need a vector component vj be
qj = qj(A0, . . . , Ak−1). This equals the number of sets As

that have a nonzero in matrix column j.

Let the number that contribute to a vector component ui

be pi = pi(A0, . . . , Ak−1).

Let p′i = max(pi − 1, 0) and q′j = max(qj − 1, 0).

Instead of proving

V (A0, . . . , Ak) = V (A0, . . . , Ak−2, Ak−1 ∪Ak)+V (Ak−1, Ak),

it is sufficient to prove for all i that

p′i(A0, . . . , Ak) = p′i(A0, . . . , Ak−2, Ak−1 ∪Ak) + p′i(Ak−1, Ak).

The result then follows by summing. Similar for qj. Mondriaan distribution – p.10

Proof of theorem (cont’d)

pi = # sets As that have a nonzero in matrix row i.

If row i has a nonzero in Ak−1 ∪ Ak, then p′i = pi − 1 in all
three terms. Thus,

p′i(A0, . . . , Ak−2, Ak−1 ∪ Ak) + p′i(Ak−1, Ak)

= pi(A0, . . . , Ak−2, Ak−1 ∪ Ak) − 1 + pi(Ak−1, Ak) − 1

= pi(A0, . . . , Ak−2) + 1 − 1 + pi(Ak−1, Ak) − 1

= pi(A0, . . . , Ak−2) + pi(Ak−1, Ak) − 1

= pi(A0, . . . , Ak) − 1 = p′i(A0, . . . , Ak).

If row i has no nonzero in Ak−1 ∪ Ak, then both Ak−1 and
Ak are empty, so that

p′i(A0, . . . , Ak−2, Ak−1 ∪ Ak) + p′i(Ak−1, Ak)

= p′i(A0, . . . , Ak−2) + 0 = p′i(A0, . . . , Ak). �
Mondriaan distribution – p.11

Computational load balance

Paint all nonzeros black:

No communication, but no parallelism. No pain, no gain!

A load balance criterion must therefore be satisfied:

max
0≤s<p

nz(As) ≤ (1 + ε)
nz(A)

p
.

ε is specified allowable imbalance;
ε′ is imbalance achieved by partitioning.

Mondriaan distribution – p.12

BSP cost determines ε

Best choice of ε is machine-dependent and can be found
by using the BSP model.

Communication cost is V g
p

, assuming communication is
balanced by subsequent vector partitioning.

Total BSP cost is

2(1 + ε′)
nz(A)

p
+

V g

p
+ 4l.

To get a good trade-off between computation imbalance
and communication, we require

2ε′
nz(A)

p
≈

V g

p
, i.e., ε′ ≈

V g

2nz(A)
.

If necessary, we adjust ε and run the partitioner again.Mondriaan distribution – p.13

Bipartitioning: splitting into 2 parts

A =















0 3 0 0 1

4 1 0 0 0

0 5 9 2 0

6 0 0 5 3

0 0 5 8 9















.

The number of possible 2-way partitionings is
2nz(A)−1 = 212 = 4096. (Symmetry saved a factor of 2.)

Finding the best solution by enumeration, trying all
possibilities and choosing the best, works only for small
problems. Thus, we need heuristic methods.

Splitting by columns restricts the search space to
2n−1 = 24 = 16 possibilities. An optimal column split for
ε = 0.1 is {0, 1, 2} | {3, 4}, with V = 4. Mondriaan distribution – p.14

Repeated splits

The partitioning starts with a complete matrix, splits it into
2 submatrices, splits each submatrix, giving 4
submatrices, and so on. The method can be formulated
recursively. For simplicity, we assume that p = 2q.

Rows and columns in the submatrix need not be
consecutive.

The recursion level of a submatrix is the number of times
the original submatrix must be split to reach the
submatrix. The level of the original matrix is 0.

The final result for processor P (s) is a submatrix defined
by an index set Īs × J̄s. The sets are mutually disjoint.

Removing empty rows and columns from Īs × J̄s gives
Is × Js. Thus

As ⊂ Is × Js ⊂ Īs × J̄s.

Mondriaan distribution – p.15

Global view of matrix prime60

Distribution of 60× 60 matrix prime60 with 462 nonzeros,
for p = 4, obtained by Mondriaan partitioning with ε = 3%.

Maximum number of nonzeros per processor is 117;
average is 462/4=115.5. Achieved imbalance is ε′ ≈ 1.3%.

Communication volume is: fanout 51; fanin 47; V = 98.
Mondriaan distribution – p.16

Local view of matrix prime60

The local submatrix Īs × J̄s of processor P (s) has size:
29 × 26 for P (0); 29 × 34 for P (1)

31 × 31 for P (2); 31 × 29 for P (3)

Note that Ī1 × J̄1 has 6 empty rows and 9 empty columns,
giving a size of 23 × 25 for I1 × J1. Mondriaan distribution – p.17

Growth of load imbalance by splitting

If the growth factor at each recursion level is 1 + δ, the
overall growth factor is (1 + δ)q ≈ 1 + qδ. Here, p = 2q.
This motivates starting with qδ = ε, i.e., δ = ε/q.

After the first split, one part has at least half the nonzeros,
and the other part at most half. We recompute the ε
values for both halves based on the new situation.

The less-loaded processor can increase the allowed load
imbalance to reduce communication.

Mondriaan distribution – p.18

Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, ε)
input: p = 2q, ε = allowed load imbalance, ε > 0.
output: p-way partitioning of A with imbalance ≤ ε.

if p > 1 then
maxnz := (1 + ε)nz(A)

p
;

(Brow
0 , Brow

1) := split(A, row, ε
q
);

(Bcol
0 , Bcol

1) := split(A, col, ε
q
);

if V (Brow
0 , Brow

1) ≤ V (Bcol
0 , Bcol

1) then
(B0, B1) := (Brow

0 , Brow
1);

else (B0, B1) := (Bcol
0 , Bcol

1);

Mondriaan distribution – p.19

Recursive, adaptive bipartitioning algorithm

MatrixPartition(A, p, ε)
input: p = 2q, ε = allowed load imbalance, ε > 0.
output: p-way partitioning of A with imbalance ≤ ε.

if p > 1 then
maxnz := (1 + ε)nz(A)

p
;

(Brow
0 , Brow

1) := split(A, row, ε
q
);

(Bcol
0 , Bcol

1) := split(A, col, ε
q
);

if V (Brow
0 , Brow

1) ≤ V (Bcol
0 , Bcol

1) then
(B0, B1) := (Brow

0 , Brow
1);

else (B0, B1) := (Bcol
0 , Bcol

1);

ε0 := maxnz

nz (B0)
· p

2
− 1; ε1 := maxnz

nz (B1)
· p

2
− 1;

(A0, . . . , Ap/2−1) := MatrixPartition(B0,
p
2
, ε0);

(Ap/2, . . . , Ap−1) := MatrixPartition(B1,
p
2
, ε1);

else A0 := A;
Mondriaan distribution – p.19

Hypergraph

0

4

2

1

3

6

8

5

7

Hypergraph with 9 vertices and 6 hyperedges (nets),
partitioned over 2 processors

Mondriaan distribution – p.20

The magic split function

0
1
2
3
4
5

0 1 2 3 4 5 6
vertices

nets

Magic column bipartitioning of m × n matrix

Hypergraph H = (V ,N) ⇒ exact communication volume.

Columns ≡ Vertices: 0, 1, 2, 3, 4, 5, 6.
Rows ≡ Hyperedges (nets, subsets of V).
Net ni = {j : 0 ≤ j < n ∧ aij 6= 0}:

n0 = {1, 4, 6}, n1 = {0, 3, 6}, n2 = {4, 5, 6},

n3 = {0, 2, 3}, n4 = {2, 3, 5}, n5 = {1, 4, 6}.

Mondriaan distribution – p.21

Minimising communication volume

0
1
2
3
4
5

0 1 2 3 4 5 6
vertices

nets

Broken nets: n1, n2 cause one horizontal communication.

Use Kernighan–Lin algorithm for hypergraph
bipartitioning: try to improve initial random partitioning
by moving vertices (columns) to the other part.

The vertex with the largest gain (communication
reduction) is moved. If the best possible move increases
the communication, it is still accepted.

Several passes are carried out. Vertices are never moved
twice in a pass. Best solution encountered is kept.

Mondriaan distribution – p.22

Multilevel scheme

1. Merge similar columns in pairs to reduce the problem
size, and repeat this until the problem is small:



























· 1 · · · · · ·

1 · · · 1 · 1 ·

1 1 1 1 · · · 1

· 1 1 1 · · · ·

· · · · 1 1 · ·

· · · · 1 1 · ·

· · · · · · 1 1

· · 1 1 · · 1 1



























merge

−→



























1 · · ·

1 · 1 1

1 1 · 1

1 1 · ·

· · 1 ·

· · 1 ·

· · · 1

· 1 · 1



























2. Bipartition the smaller problem using Kernighan–Lin with
improved implementation by Fiduccia and Mattheyses.

3. Refine the bipartitioning using a simplified KLFM scheme.
Mondriaan distribution – p.23

Communication volume and time: 1D vs. 2D

(Source: Vastenhouw and Bisseling, SIAM Review 47 (2005)
pp.67–95.)

p Volume (in data words) Time (in ms)
1D row 1D col 2D 1D row 1D col 2D

1 0 0 0 67.55 67.61 74.15
2 15764 24463 15764 36.65 32.26 32.16
4 42652 54262 30444 14.06 12.22 12.14
8 90919 96038 49120 6.49 6.35 6.62

16 177347 155604 75884 5.22 4.22 4.20
32 297658 227368 106563 4.32 4.08 3.23

Term-by-document matrix tbdlinux:
112,757 rows; 20,167 columns; 2,157,675 nonzeros.

Timings obtained on an SGI Origin 3800.

Mondriaan distribution – p.24

Summary

We have derived a recursive partitioning algorithm for a
sparse matrix. It is greedy (minimises splits separately
without looking ahead) and adapts the allowed load
imbalance to the current partitioning.

The result is a p-way matrix partitioning A0, . . . , Ap−1 with

As ⊂ Is × Js ⊂ Īs × J̄s.

A hypergraph H = (V ,N) is a generalisation of a graph.
It consists of a set of vertices V and a set of hyperedges,
or nets, N , which are subsets of V.

Multilevel methods for hypergraph partitioning find good
splits of a sparse matrix in reasonable time.

Mondriaan distribution – p.25

	Sparse matrix--vector multiplication
	Cartesian matrix partitioning
	Non-Cartesian matrix partitioning
	Composition with Red, Yellow, Blue and Black
	Matrix 	exttt {prime60}
	p-way matrix partitioning
	Communication volume for partitioned matrix
	Motivation of the Mondriaan splitting
	Proof of theorem
	Proof of theorem (cont'd)
	Computational load balance
	BSP cost determines $epsilon $
	Bipartitioning: splitting into 2 parts
	Repeated splits
	Global view of matrix 	exttt {prime60}
	Local view of matrix 	exttt {prime60}
	Growth of load imbalance by splitting
	Recursive, adaptive bipartitioning algorithm
	Hypergraph
	The magic 	extit {split} function
	Minimising communication volume
	Multilevel scheme
	Communication volume and time: 1D vs. 2D
	Summary

