
Parallel Inner Product Computation
(PSC §1.3)

Lecture 1.3 Parallel Inner Product Computation – p.1

Inner product of two vectors

The inner product of two vectors x = (x0, . . . , xn−1)
T and

y = (y0, . . . , yn−1)
T is defined by

α = x
T
y =

n−1
∑

i=0

xiyi.

Here, ‘T’ denotes transposition. All vectors are column
vectors.

Lecture 1.3 Parallel Inner Product Computation – p.2

Data distributions for vector

block

cyclic

P(0) P(1) P(2) P(3)

p = # processors = 4
n = vector length = 16

Lecture 1.3 Parallel Inner Product Computation – p.3

Block distribution

The block distribution is defined by

xi 7−→ P (i div b), for 0 ≤ i < n.

Here the div operator stands for dividing and rounding
down: i div b = bi/bc.

The block size is b = dn

p
e = n

p
rounded up.

For n = 9 and p = 4, this assigns 3, 3, 3, 0 vector
components to the processors, respectively. You may
blink at an empty processor, but this distribution is just as
good as 3, 2, 2, 2. Really!

Lecture 1.3 Parallel Inner Product Computation – p.4

Cyclic distribution

The cyclic distribution is defined by

xi 7−→ P (i mod p), for 0 ≤ i < n.

This distribution is easiest to compute. Note the advantage of
starting to count at zero: the formula becomes very simple.

Some kids have been raised to start
counting at zero.

Lecture 1.3 Parallel Inner Product Computation – p.5

Parallel inner product computation

Design decisions:

Assign xi and yi to the same processor, for all i.
This makes computing xi · yi a local operation.
Thus distr(x) = distr(y).

Choose a distribution with an even spread of vector
components. Both block and cyclic distributions are fine.
We choose cyclic, following the way card players deal
their cards.

The data distribution naturally leads to a work distribution
and a parallel algorithm.

Lecture 1.3 Parallel Inner Product Computation – p.6

Example for n = 10 and p = 4

12 -1 30 2 -24 157 11

0 1 2 3 4 5 6 7 8 9

1 9 -1 312 82 1 20

22

22 228 8 23 2322 2223 22 23 22 22 228 8

75 757575

22238

0 1 2 3 4 5 6 7 8 9

*

+

+

Lecture 1.3 Parallel Inner Product Computation – p.7

Parallel inner product algorithm for P (s)

input: x,y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = x
T
y.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi;

Lecture 1.3 Parallel Inner Product Computation – p.8

Parallel inner product algorithm for P (s)

input: x,y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = x
T
y.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi;

(1) for t := 0 to p − 1 do
put αs in P (t);

Lecture 1.3 Parallel Inner Product Computation – p.8

Parallel inner product algorithm for P (s)

input: x,y : vector of length n,
distr(x) = distr(y) = φ,
with φ(i) = i mod p, for 0 ≤ i < n.

output: α = x
T
y.

(0) αs := 0;
for i := s to n − 1 step p do

αs := αs + xiyi;

(1) for t := 0 to p − 1 do
put αs in P (t);

(2) α := 0;
for t := 0 to p − 1 do

α := α + αt;

Lecture 1.3 Parallel Inner Product Computation – p.8

Single Program, Multiple Data (SPMD)

Only one program text needs to be written. All processors
run the same program, but on their own data.

The program text is parametrised in the processor
number s, 0 ≤ s < p, also called processor identity.
The actual execution of the program depends on s.

Processor P (s) computes a partial inner product

αs =
∑

0≤i<n, i mod p=s

xiyi.

This computation is completely local.

The corresponding computation superstep (0) costs

2

⌈

n

p

⌉

+ l.

. (1 addition and 1 multiplication per local vector
component.)

Lecture 1.3 Parallel Inner Product Computation – p.9

Result needed on all processors

The partial inner products must be added. This could
have been done by P (0), i.e. processor 0.

Sending the αs to P (0) is a (p − 1)-relation. Sending them
to P (∗), i.e., to all the processors, costs the same.
The cost is (p − 1)g + l.

Computing α on P (0) costs the same as computing it on
all the processors redundantly, i.e. in a replicated fashion.
The cost is p + l.

Often, the result is needed on all processors. An example
is iterative linear system solvers. The algorithm does just
this.

Lecture 1.3 Parallel Inner Product Computation – p.10

Total BSP cost of inner product

Tinprod = 2

⌈

n

p

⌉

+ p + (p − 1)g + 3l.

Lecture 1.3 Parallel Inner Product Computation – p.11

One-sided communication

The ‘put’ operation involves an active sender and a
passive receiver. We assume all puts are accepted. Thus
we can define each data transfer by giving only the action
of one side.

No clutter in programs: shorter and simpler texts.

No danger of the dreaded deadlock. What happens if
both processors want to receive first? Deadlock can
easily occur in message passing, with an active sender
and an active receiver that must shake hands, or kiss.
This may cause lots of problems.

Another one-sided communication is the ‘get’. The name
says it all.

One-sided communications are more efficient.

Lecture 1.3 Parallel Inner Product Computation – p.12

Summary

We design algorithms in Single Program, Multiple Data
style. Each processor runs its own copy of the same
program, on its own data.

The block and cyclic distributions are commonly used in
parallel computing. Both are suitable for an inner product
computation.

The BSP style encourages balancing the communication
among the processors. Sending all data to one processor
is discouraged. Better: all to all.

One-sided communications such as puts and gets are
easy to use and efficient.

Lecture 1.3 Parallel Inner Product Computation – p.13

	Inner product of two vectors
	Data distributions for vector
	Block distribution
	Cyclic distribution
	Parallel inner product computation
	Example for $n=10$ and $p=4$
	Parallel inner product algorithm for $P(s)$
	Single Program, Multiple Data (SPMD)
	Result needed on all processors
	Total BSP cost of inner product
	One-sided communication
	Summary

