
Experiments with bsplu
(PSC §2.5–2.6)

Lecture 2.5–2.6 Experiments with bsplu – p.1

Broadcast function

void bsp_broadcast(double *x, int n, int src,
int s0, int stride, int p0,
int s, int phase){

/* Broadcast the vector x of length n
from processor src to processors s0+t*stride,
0 <= t < p0. x has already been registered.

s = local processor identity.
phase= phase of two-phase broadcast (0 or 1)
Only one phase is performed, without sync. */

Standard 1D–2D identification P (s, t) ≡ P (s + tM).

stride = 1, p0 = M : broadcast within processor column.
stride = M , p0 = N : broadcast within processor row.

No sync inside function to allow combining supersteps.

Lecture 2.5–2.6 Experiments with bsplu – p.2

Phase 0: source processor spreads the data

b= (n%p0==0 ? n/p0 : n/p0+1); /* block size */

if (phase==0 && s==src){
for (t=0; t<p0; t++){

dest= s0+t*stride;
nbytes= MIN(b,n-t*b)*SZDBL;
if (nbytes>0)

bsp_put(dest,&x[t*b],x,
t*b*SZDBL,nbytes);

}
}

Data is put in the same location t ·b of array x in the destination

processor as in the source processor.

Lecture 2.5–2.6 Experiments with bsplu – p.3

Phase 1: participating processors perform broadcast

if (phase==1 && s%stride==s0%stride){
t=(s-s0)/stride; /* s = s0+t*stride */
if (0<=t && t<p0){

nbytes= MIN(b,n-t*b)*SZDBL;
if (nbytes>0){

for (t1=0; t1<p0; t1++){
dest= s0+t1*stride;
if (dest!=src)

bsp_put(dest,&x[t*b],x,
t*b*SZDBL,nbytes);

}
}

}
}

Data is not sent back to source. No influence on BSP cost, but

it reduces the communication volume. This cannot be bad.
Lecture 2.5–2.6 Experiments with bsplu – p.4

Local and global indices for cyclic distribution

12

12

–1

–1

3

3

0

0

2

2

–2

–2

4

4

15

15

7

7

11

11

P(2) P(3)P(1)P(0)

0 1 2

0 1 2 0 1 2 0 1 0 1

3 4 5 6 7 8 9

Global

Local

Global index: i
Local index on P (s): i
Relation: i = i · p + s

/* Initialise permutation vector pi */
nlr= nloc(M,s,n); /* number of local rows */
if (t==0)

for(i=0; i<nlr; i++)
pi[i]= i*M+s; /* global row index */

Lecture 2.5–2.6 Experiments with bsplu – p.5

Putting data directly into a 2D array

a = matallocd(nlr, nlc); /* in bsplu_test.c */
void bsplu(..., int *pi, double **a){

double *pa= NULL;
if (nlr>0)

pa= a[0];
bsp_push_reg(pa,nlr*nlc*SZDBL);
bsp_push_reg(pi,nlr*SZINT);
...
if (k%M==s){

/* Store pi(k) in pi(r) on P(r%M,0) */
if (t==0)

bsp_put(r%M,&pi[k/M],pi,
(r/M)*SZINT,SZINT);

/* Store row k of A in row r on P(r%M,t) */
bsp_put(r%M+t*M,a[k/M],pa,

(r/M)*nlc*SZDBL,nlc*SZDBL);
} ...

Lecture 2.5–2.6 Experiments with bsplu – p.6

Two-phase broadcast of column k

double *lk;
nlr= nloc(M,s,n); /* number of local rows */
kr= nloc(M,s,k); /* first local row

with global index >= k */
kc= nloc(N,t,k);
kr1= nloc(M,s,k+1);
lk= vecallocd(nlr); bsp_push_reg(lk,nlr*SZDBL);
...
if (k%N==t) /* Store new column k in lk */

for(i=kr1; i<nlr; i++)
lk[i-kr1]= a[i][kc];

bsp_broadcast(lk,nlr-kr1,s+(k%N)*M,
s,M,N,s+t*M,0);

bsp_sync();
bsp_broadcast(lk,nlr-kr1,s+(k%N)*M,

s,M,N,s+t*M,1);
bsp_sync();

Lecture 2.5–2.6 Experiments with bsplu – p.7

Time (in s) of LU decomposition

n one-phase two-phase
1 000 1.21 1.33
2 000 7.04 7.25
3 000 21.18 21.46
4 000 47.49 47.51
5 000 89.90 89.71
6 000 153.23 152.79
7 000 239.21 238.25
8 000 355.84 354.29
9 000 501.92 499.74

10 000 689.91 689.56

Cray T3E with p = 64, r = 38.0 Mflop/s, g = 87, l = 2718

(measured by bspbench). 8 × 8 cyclic distribution.
Lecture 2.5–2.6 Experiments with bsplu – p.8

Total broadcast time of LU decomposition

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000

T
im

e
(i

n
s)

n

1-phase broadcast
2-phase broadcast

Cray T3E with p = 64, r = 38.0 Mflop/s, g = 87, l = 2718.

Lecture 2.5–2.6 Experiments with bsplu – p.9

Any actual savings by two-phase broadcast?

Not much difference in total time between one-phase and
two-phase approach.

For n < 4000, with local broadcast length < 500,
one-phase is better.

For n > 4000, two-phase is better. But savings are
insignificant compared to computation time. Total
broadcast time is < 5% of overall time.

BSP analysis gives insight and explains results, even if
they are surprising/disappointing/...

On a different machine with slower communication, such
as a PC cluster, the savings will be significant. Try it!

Lecture 2.5–2.6 Experiments with bsplu – p.10

Total measured and predicted time

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000

T
im

e
(i

n
s)

n

Pessimistic prediction
Optimistic prediction

Broadcast, phase 0
Broadcast, phase 1

Row swaps

Lecture 2.5–2.6 Experiments with bsplu – p.11

Optimistic prediction is right

BSP model predicts: row swaps, phase 0 of the
broadcast, and phase 1 all take the same time.
Measurements validate this.

Very different communication patterns: row swaps and
phase 0 are very unbalanced, phase 1 is well-balanced.

Pessimists are usually wrong. The pessimistic g-value
(for puts of single data words) is far off.

You need to plug the right g-value into the BSP cost
formula to obtain meaningful predictions. bsplu puts
elements from row and column k as large data packets.
Therefore, we should use the optimistic g-value.

Lecture 2.5–2.6 Experiments with bsplu – p.12

Profile of stages k = 0, 1, 2 of an LU decomposition

Oxford BSP Toolset [flags -O3 -prof -flibrary-level 2 -fcombi...]Oxford BSP Toolset [flags -O3 -prof -flibrary-level 2 -fcombi...]0.232 seconds elapsed on a Cray T3E Fri Jun 15 11:57:32 2001

62.75 63.00 63.25 63.50 63.75 64.00 64.25 64.50 64.75 65.00 milliseconds
0

500

1000

1500

2000

2500

3000

3500

4000

4500

bytes in

9

10

11

12

13

14

10

11

12

13

14

10

11

12

13

14

62.75 63.00 63.25 63.50 63.75 64.00 64.25 64.50 64.75 65.00 milliseconds
0

500

1000

1500

2000

2500

3000

3500

4000

4500

bytes out

9

10

11

12

13

14

10

11

12

13

14

10

11

12

13

14

9 bsplu.c 86

10 bsplu.c 121

11 bsplu.c 150

12 bsplu.c 168

13 bsplu.c 187

14 bsplu.c 197

Step Filename Line

Process 0

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Process 7

Cray T3E: n = 100, M = 8, N = 1. Obtained by bspprof.

Lecture 2.5–2.6 Experiments with bsplu – p.13

Game: recognise the supersteps

M = 8, N = 1: row distribution of the matrix.

Column broadcast is for free.

Row swap involves two processors; each time a different
pair. This must be superstep 12.

Phase 0 of row broadcast has 1 sender, 7 receivers. This
must be superstep 13.

Phase 1 has 7 senders, 7 receivers, and takes about the
same time (bar width) as superstep 13. So this must be
superstep 14.

The wide gap between supersteps 14 and 10 is a big
computation superstep. This must be the matrix update.

Superstep 10 must be the exchange of local winners in
the pivot search. Relatively costly, because the problem
size is only n = 100.

Lecture 2.5–2.6 Experiments with bsplu – p.14

Summary

We use global indices in the description of an algorithm,
but local indices in an actual program.

We understand the behaviour of our program, though we
may not always like it.

Very different communication patterns with the same BSP
cost take about the same time on an actual parallel
computer, the Cray T3E.

Profiling is a way of getting intimate knowledge of your
program. The superstep concept makes this very easy.

Lecture 2.5–2.6 Experiments with bsplu – p.15

	Broadcast function
	Phase 0: source processor spreads the data
	Phase 1: participating processors perform broadcast
	Local and global indices for cyclic distribution
	Putting data directly into a 2D array
	Two-phase broadcast of column k
	Time (in s)
of LU decomposition
	Total broadcast time of LU decomposition
	Any actual savings by two-phase broadcast?
	Total measured and predicted time
	Optimistic prediction is right
	Profile of stages $k=0,1,2$ of an LU decomposition
	Game: recognise the supersteps
	Summary

