Parallel Fast Fourier Transform
(PSC 83.4)

Data distributions for butterflies of FFT

butterfly distance
1 N N N\ N\ N\ N
T block
2 NN DS NS

4 7 OXN N RN

cyclic

. HEN EN EN ==
8 \\&@% p=4,n=16

n, p must be powers of two with p < n.

In stage k£, component pair (z;, z;,/,) at distance k/2 is

combined.
Block distribution works for k = 2,4,... n/p.

Cyclic distribution works for k& = 2p, 4p, ..., n.

Parallel FFT — p.2

Block distribution works for small butterflies

Let n = 8,p = 2. In stage k£ = 2, the vector x Is multiplied by

—1

14 ® By =

= The first two butterfly blocks z(0: 1), x(2: 3) are contained
In processor block z(0: 3).

= The last two butterfly blocks x(4:5), x(6: 7) are contained
In processor block x(4:7).

Parallel FFT — p.3

Cyclic distribution works for large butterflies

In stage k& = 8§, the vector x is multiplied by

I1 ® Bg = Bg =

where w = wg = e ™/* = 1/2 — 1/2;.

= The pairs (xg, z4) and (x,, z¢) are combined on P(0).

= The pairs (21, z5) and (z3, z7) are combined on P(1).

Parallel FFT — p.4

Parallelisation strategy: use different distributions

= At the start, for £ < n/p, we use the block distribution.
= Near the end, for k£ > 2p, the cyclic distribution.

= This sufficesif p < n/p, i.e. p < /n.
For example: p < 32 for n = 1024.

= If p > /n, we need an intermediate distribution, a
generalisation of the block and cyclic distribution.

= Split the vector into blocks. Each block is owned by a
group of processors and is distributed by the cyclic
distribution over the processors of that group.

Parallel FFT — p.5

Group-cyclic distribution

= Let cbe fixed suchthat 1 <c¢ <pandpmodc=0. The
group-cyclic distribution with cycle c is defined by

z; — P((j div [%)H(]‘ mod _%—‘)mod).

= ¢ IS the number of processors in a group and {%W

H

= If n mod p = 0, as happens in the FFT, this reduces to

IS the size of a block owned by a group.

z; — P((j div @)c%—j mod c).
p

= For ¢ = 1, we get the block distribution.
For ¢ = p, we get the cyclic distribution.

Parallel FFT — p.6

From block to cyclic distribution

@ c=1 |o]o|a]1 ENAEREE
1 2 3 4 5 6 7

(block) o

m c=2 |ola] o] 1 EERAE
1 2 3 4 5 6 7

0

c c=4 n

(cyclic) o 1
n=38,p=4,sothatp > /n.

2 sIJHN 2 s
2 3 4 5 6 7

In (b), we have p/c = 2 groups of ¢ = 2 processors.

Parallel FFT — p.7

Global and local indices

= n,p and hence c are powers of two. We have 1 < ¢ < %
= Thus, we can write the global index j as
N .
J = J2— + Ji€ T+ Jo,
p
where 0 < jo < cand 0 < j; < n/p.
= The processor that owns component z,; IS

P((j div %)c—kj mod ¢) = P(jac + Jo)-

= Processors in the same processor group have the same
7o, but different ;.

= \We obtain the local index j by ordering the local
components by increasing global index j, so that] =j;.

Which operations are local?

Butterfly operation on (z;, z;./2) is local if
= 7, %tk/2 Are in the same group, i.e. k < .
= distance k/2 is a multiple of ¢, i.e. k£ > 2c.
We can use the group-cyclic distribution with cycle ¢ for

2c < k < —c.

TS

Outline of algorithm:
= start with ¢ = 1, perform stages k£ = 2,4, ... ,n/p;

= increase c to ¢ = n/p, perform stages
k=2n/p,dn/p,...,(n/p)*

= finish with ¢ = p, instead of ¢ = (n/p)* > p.

Parallel FFT — p.9

Warning: difficult slides ahead

Parallel FFT — p.10

Parallel unordered FFT

{ distr(x) = block } k :=2; c:=1;
while £ <n do

(0) Jjo := s mod ¢; j5 := s div ¢;
while k < Sc do
nblocks = Z—;;

for r := j5 - nblocks to (jo + 1) - nblocks — 1 do
{ Compute part of z(rk: (r + 1)k — 1) }
for j := joto & — 1 step ¢ do

e) .
T = WpLrk+j+k/2,
Lrktj+k/2 = Trktj — T,

Lrk+j - — Lrk+j + 7,
k= 2k;

Parallel FFT — p.11

Parallel unordered FFT

{ distr(x) = block } k :=2; c:=1;
while £ <n do

(0) Jjo := s mod ¢; j5 := s div ¢;
while k < Sc do
nblocks = “<:

2
for r .= j5 “nblocks to (jo + 1) - nblocks — 1 do

{ Compute part of z(rk: (r + 1)k — 1) }
- . k
for j:=joto 5 —1stepcdo
T = wixrk—l—j—l—k/Q;
Trk+j+k/2 = Trk+j — T,
Lrk+j - — Lrk+j + 7,

k= 2k;
If ¢ < pthen
Co 1= ¢; ¢ :=min("c,p);
(1) rediStr(Xa n,p,Co, C);

{ distr(x) = cyclic }

Parallel FFT — p.11

Parallel bit reversal

p=28,n =256
local index = 20 procnr= 6

j=166=[L[OJLJOTO NN cyclic distribution

KL

0[0[1]0] L FIFNED

ERERNO[OTT[OTT] block distribution with
>K bit—reversed processor numbering

p(j)=101=NFRENOJOTI]OTT] block distribution

procnr=3 local index =5

Start in cyclic distribution with local bit reversal.
Then swap the data between processors P(s) and P(p,(s)).

We end up in the block distribution.

Parallel FFT — p.12

Postponing the processor swaps

= The distribution just before the swaps is the block
distribution with bit-reversed processor numbering.

= All processors perform the same operations in stages
k=2,4,...,n/pof the FFT, multiplying local blocks of x

= |'ll scratch your back If you scratch mine: processors
perform the work of their partner.

= The data swap can be postponed until the first
redistribution, immediately after stage & = n/p.

= Buy 2, Pay 1. two permutations can be done at the cost
of one by combining them. Hence no extra
communication is incurred by the data swaps.

Parallel FFT — p.13

Redistribution with possible proc-number reversal

Input: x : vector of length n = 2™,
distr(x) = group-cyclic with cycle ¢, over p = 29 procs
If rev IS true, processor numbering is bit-reversed.

output: distr(x) = group-cyclic with cycle ¢;.
call: redistr(x, n, p, co, c1, r€V);
(1) If rev then

Jo = pp(s) mod co;
Jo = pp(s) div co;
else

7o := s mod cg;

9o := s div cp;

for j :=jo=2* + jo to (j2 +1)<%* — 1 step ¢, do
dest := (j div <*)er + j mod ¢
put x, in P(dest);

Parallel FFT — p.14

Last iteration of main loop

= The last iteration is determined by the smallest integer ¢
such that (n/p)* > p.

= The cycles of the iterations are

c=(n/p)°, (n/p)', ..., (n/P)' ", p.
= The total number of iterations is therefore ¢ + 1.
= Since

(n/p)tzp — ntht+1<:>2mt22q(t+1)
< mt>qt+1)<= mt—qt >q
q
m—q’

P [L] |
m — q Parallel FFT — p.15

— (2>

It follows that

BSP cost

= Every iteration has a computation superstep and a
communication superstep, except the last, which has no

data redistribution. Therefore,

Tope = (2t + 1) = (2[d W+1) l

m—dq

= Every redistribution moves at most all the local data in
and out, i.e., n/p complex numbers, or 2n/p real data

words. Therefore,

2 2
Tcomm:t'_ng: |7—q —‘ —ng
p m —dq p

= Look mama, without counting!

TCOHlp — (5” 10g2 n) /p Parallel FFT — p.16

Summary

= We have used different distributions in different parts of
the algorithm, trying to make our operations local.

= The algorithm starts and finishes in the cyclic distribution.

= |f we split a vector into p/c blocks and distribute each
block over ¢ processors by the cyclic distribution, then we
obtain the group-cyclic distribution with cycle c.

= The total BSP cost of the parallel FFT algorithm is

1 I 1
Trpr = on Og2n+2.[052 P —‘.294— (2 { 252D w + 1) L.
p logy(n/p) | p logy(n/p)

= For practical p, we need only one data redistribution:

on 1
nlogyn on g

p p

TFFT, 1<p<y/n —

Parallel FFT — p.17

	Data distributions for butterflies of FFT
	Block distribution works for small butterflies
	Cyclic distribution works for large butterflies
	Parallelisation strategy: use different distributions
	Group-cyclic distribution
	From block to cyclic distribution
	Global and local indices
	Which operations are local?
	Warning: difficult slides ahead
	Parallel unordered FFT
	Parallel bit reversal
	Postponing the processor swaps
	Redistribution with possible proc-number reversal
	Last iteration of main loop
	BSP cost
	Summary

