
Program bspfft
(PSC §3.6)

Program bspfft – p.1

Sequential unordered FFT: specification

void ufft(double *x, int n, int sign, double *w){

/* This sequential function computes the
unordered DFT of a complex vector x of
length n, n=2ˆm, m>=0.
If sign = 1, the forward DFT FRx is computed.
If sign =-1, the backward UDFT conjg(F)Rx,
where F is the n by n Fourier matrix and

R the n by n bit-reversal matrix.
The output overwrites x.
w is a table of n/2 complex weights,

exp(-2*pi*i*j/n), 0 <= j < n/2,
which must have been initialised before
calling this function.

*/

Program bspfft – p.2

Data structure

A complex vector x of length n is stored
as a real array x of size 2n.

The real and imaginary parts alternate:

x[2 ∗ j] = Re(xj)

x[2 ∗ j + 1] = Im(xj)

Program bspfft – p.3

Sequential unordered FFT: body

for(k=2; k<=n; k *=2){
nk= n/k;
for(r=0; r<nk; r++){

rk= 2*r*k;
for(j=0; j<k; j +=2){

wr= w[j*nk]; // exp(-2*pi*i*j*(n/k)/n)
// = exp(-2*pi*i*j/k)

if (sign==1)
wi= w[j*nk+1];

else
wi= -w[j*nk+1];

j0= rk+j; j1= j0+1;
j2= j0+k; j3= j2+1;
taur= wr*x[j2] - wi*x[j3];
taui= wi*x[j2] + wr*x[j3];
x[j2]= x[j0]-taur; x[j3]= x[j1]-taui;
x[j0] += taur; x[j1] += taui;

}}} Program bspfft – p.4

Permutation to be used for bit reversal σ = ρn

void permute(double *x, int n, int *sigma){
/* This sequential function permutes a

complex vector x by the permutation sigma
(decomposable into disjoint swaps),

y[j] = x[sigma[j]], 0 <= j < n.
The output overwrites the vector x. */

int j, j0, j1, j2, j3;
double tmpr, tmpi;

for(j=0; j<n; j++)
if (j<sigma[j]){ // swap j and sigma[j]

j0= 2*j; j1= j0+1;
j2= 2*sigma[j]; j3= j2+1;
tmpr= x[j0]; tmpi= x[j1];
x[j0]= x[j2]; x[j1]= x[j3];
x[j2]= tmpr; x[j3]= tmpi;

}} Program bspfft – p.5

Initialisation of bit reversal ρn, n = 2m ≥ 2

void bitrev_init(int n, int *rho){
int j;
unsigned int n1=n, rem, val, k, lastbit, one=1;

for(j=0; j<n; j++){
rem= j; // j= (b(m-1),...,b1,b0) in binary
val= 0;
for (k=1; k<n1; k <<= 1){

lastbit= rem & one;
// lastbit = b(i) with i= log2(k)
rem >>= 1; // rem = (b(m-1),...,b(i+1))
val <<= 1;
val |= lastbit; // val = (b0,...,b(i))

}
rho[j]= (int)val;

}}

Assertions inside a loop (loop invariants) are powerful! Program bspfft – p.6

Bit operations

Rule: use bit operations only sparingly in scientific
computation.

Reason: they obfuscate code, and good compilers often
make them unnecessary.

Here we encounter an exception: the cost of the bit
reversal is of the same order O(n log

2
n) as that of the

FFT itself, so the bit reversal is important, and we need
access to the bits anyway.

Program bspfft – p.7

Redistribution

0
0 1 2 3 4 5 6 7

(cyclic)
0 01 12 23 3
0 1 2 3 4 5 6 7

1 10c = 2

c = 4 0 01 12 23 3

2 3 2 30 01 1 2 23 3(a)

(b)

8 9

8 9

10

10

11 12 13 14 15

1514131211

We redistribute the vector x from group-cyclic distribution
with cycle c0 to cycle c1, where c0|c1 (and hence c0 ≤ c1).

Optimisation: vector components are sent in packets,
not individually.

BSP model: no difference in cost.

BSPlib implementation: using packets is more efficient,
and gives optimistic g-values.

Program bspfft – p.8

Regular parallel algorithms

The communication pattern of a regular parallel algorithm
can be predicted exactly and each processor can
determine exactly where every communicated data
element goes.

For a regular algorithm, it is always possible for the user
to combine data for the same destination in a block, or
packet, and communicate the block using 1 put operation.

This requires packing at the source processor and
unpacking at the destination processor.

Program bspfft – p.9

Anything you can do, I can do better

Song from the musical Annie Get Your Gun, Irving Berlin,
1946.

The BSP system packs data, but for regular algorithms
the user can do better, saving header information that
identifies the data.

This is worthwhile if the communication pattern involves
sending many single data words, as happens in the FFT,
or many very small data quantities.

Anything you can send
I can send faster.
I can send anything
Faster than you.

Not everything you can do, you should do.

Program bspfft – p.10

How to pack

Leave this to someone else. Good packers in theory
make bad packers in practice.

If you can leave it up to the BSP system, that’s OK too.

Main question: which data move to the same processor?

Consider xj and xj′ residing on the same processor in the
old distribution with cycle c0. They are in the same block
of size nc0

p
handled by a group of c0 processors.

Each block of the old distribution fits entirely in a block of
the new distribution, because c0|c1.

Thus, xj and xj′ will automatically be in the same new
block of size nc1

p
handled by a group of c1 processors.

Program bspfft – p.11

When are xj and xj′ on the same processor?

Write
j = j2

c0n

p
+ j1c0 + j0.

Because j2 and j0 depend only on the processor number,
which is the same for j and j ′, we can write

j ′ = j2

c0n

p
+ j ′

1
c0 + j0.

In the new distribution:

xj and xj′ are on the same processor

⇐⇒ j ≡ j ′ (mod c1)

⇐⇒ j1c0 ≡ j ′

1
c0 (mod c1)

⇐⇒ j1 ≡ j ′

1
(mod

c1

c0

).
Program bspfft – p.12

Putting one packet

j = j2

c0n

p
+ j1c0 + j0

The local index of vector component xj on its processor is
j = j1.

xj and xj′ on the same processor in the new distribution
⇐⇒ j1 ≡ j ′

1
(mod c1

c0
) ⇐⇒ j ≡ j′(mod c1

c0
).

Thus, we can pack components with local indices
j, j + c1

c0
, j + 2c1

c0
, . . ., into a temporary array and then put

all of these components together into the destination
processor as one packet.

We define ratio = c1/c0, which is the stride for packing
data.

Program bspfft – p.13

How not to unpack

Unpacking is moving data from the location they were put
into, to their final location on the same processor.

If xj and xj′ are two adjacent components in a packet,
with local indices at the source satisfying j′ = j + ratio,
then the global indices satisfy j ′ = j + c1

c0
c0 = j + c1.

Thus, the local indices at the destination in the
group-cyclic distribution with cycle c1 satisfy j′ = j + 1.

We are lucky: if we put the first component xj of the
packet directly into its final location, and the next
component of the packet into the next location, and so on,
then all components of the packet immediately reach their
final destination.

Hence, we do not have to unpack!

Program bspfft – p.14

Redistribution (simplified)

void bspredistr(double *x, int n, int p, int s,
int c0, int c1){ ...

np= n/p; ratio= c1/c0;
size= MAX(np/ratio,1); npackets= np/size;
j0= s%c0; j2= s/c0;

tmp= vecallocd(2*size);
for(j=0; j<npackets; j++){

jglob= j2*c0*np + j*c0 + j0;
destproc= (jglob/(c1*np))*c1 + jglob%c1;
destindex= (jglob%(c1*np))/c1;
for(r=0; r<size; r++){

tmp[2*r]= x[2*(j+r*ratio)];
tmp[2*r+1]= x[2*(j+r*ratio)+1];

}
bsp_put(destproc,tmp,x,destindex*2*SZDBL,

size*2*SZDBL);
} bsp_sync(); vecfreed(tmp);

}

Program bspfft – p.15

Main function bspfft (forward)

void bspfft(double *x, int n, int p, int s,
double *w0, double *w, double *tw,
int *rho_np, int *rho_p){

...
np= n/p; k1= k1_init(n,p); rev= TRUE;
permute(x,np,rho_np);
for(r=0; r<np/k1; r++)

ufft(&x[2*r*k1],k1,1,w0);
c0= 1; ntw= 0;
for (c=k1; c<=p; c *=np){

bspredistr(x,n,p,s,c0,c,rev,rho_p);
rev= FALSE;
twiddle(x,np,1,&tw[2*ntw*np]);
ufft(x,np,1,w);
c0= c; ntw++;

}}

Program bspfft – p.16

Summary

We have optimised the communication in the only
communication function the parallel FFT program has,
the redistribution. This function is crucial for the parallel
performance.

The optimisation is done by packing data, which is always
possible for regular algorithms with a predictable
communication pattern.

Where possible, we have moved computations to
initialisation functions, e.g. for the table of weights.

Because all communication is isolated in one function,
the program can easily be ported to another
communication library such as MPI.

Program bspfft – p.17

	Sequential unordered FFT: specification
	Data structure
	Sequential unordered FFT: body
	Permutation to be used for bit reversal $sigma = ho _n$
	Initialisation of bit reversal $ho _n$, $n=2^m geq 2$
	Bit operations
	Redistribution
	Regular parallel algorithms
	Anything you can do, I can do better
	How to pack
	When are x_j and $x_{j'}$ on the same processor?
	Putting one packet
	How not to unpack
	Redistribution (simplified)
	Main function 	exttt {bspfft} (forward)
	Summary

