
BSP Benchmarking
(PSC §1.5–1.7 )
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Benchmarking: art, science, magic?

“There are three kinds of lies: lies, damned lies, and
statistics” (Benjamin Disraeli, 1804–1881)

Benchmarking is the activity of comparing performance.

Computer benchmarking involves running computer
programs to see how certain computer systems perform.
This checks both the hardware and the system software.

Often, the benchmark result is obtained by ruthless
reduction of a large quantity of data to one statistical
figure, the flop rate.
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Sequential benchmarking

Already for sequential computers, benchmarking is
difficult, for instance because different programs can run
at very different speeds on the same machine.

Reaching only 10% of the peak rate of a computer is
quite common. No one is embarrassed. Hush!

Highest rates are obtained by algorithms that use
matrix–matrix multiplication, such as implemented in the
BLAS level 3 operation DGEMM.
(BLAS = Basic Linear Algebra Subprograms).

Lowest rates are obtained for scalar operations, which
involve single numbers, not vectors or matrices.

A reasonable intermediate rate is obtained for
vector–vector operations, such as the BLAS level 1
operation DAXPY, defined by y := αx + y. We use this
operation for sequential benchmarking.
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BSP benchmarking

We must be ruthless, but a single number will not work.
Thus we measure: r for computation,
g for communication, and l for synchronisation.

The aim is to obtain useful values of r, g, l that help us in
predicting performance of algorithms without actually
running an implementation.

Most of our troubles in this endeavour come from the
difficulty of sequential benchmarking.

A cache is a small memory close to the CPU that stores
recently accessed data. There may be a tiny primary
cache, a larger secondary cache farther away, etc.
Computations in primary cache are much faster than
others. We may have to distinguish rates r1, r2, etc. (but
we won’t).
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Communication pattern for BSP benchmark program
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P (0) sends data to P (1), P (2), P (3), P (1), P (2), P (3).

The other processors also send data in this cyclic fashion.
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Full h-relation

We measure a full h-relation, where every processor
sends and receives exactly h data.

Our intentions are the worst: we try to measure the
slowest possible communication. We put single data
words into other processors in a cyclic fashion.

This reveals whether the system software indeed
combines data for the same destination and whether it
can handle all-to-all communication efficiently.
This is after all the basis of BSP!

‘Underpromise and overdeliver’ is the motto: actual
communication performance can only be better. We call
the resulting g obtained by our benchmarking program
bspbench pessimistic.

The Oxford BSP toolset has another benchmarking
program, bspprobe, which measures optimistic g-values.
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Time of an h-relation on two connected PCs
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Two 400 MHz Pentium II PCs, both running Linux, connected
by Fast Ethernet (100 Mbit/s) and a Cisco Catalyst switch.

r = 122 Mflop/s, g = 1180, and l = 138324.
Lecture 1.5–1.7 BSP Benchmarking – p.7



Least-squares fit

Two measurements would suffice for obtaining a straight
line, but we want to use all data available in an interval
[h0, h1].

We minimise the error

ELSQ(g, l) =

h1∑

h=h0

(Tcomm(h) − (hg + l))2.

The best choice for g and l is obtained by setting

∂E

∂g
=

∂E

∂l
= 0

and solving the resulting 2 × 2 linear system.
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Time of an h-relation on an 8-processor SGI Origin

Measured data
Least-squares fit
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Silicon Graphics Origin 2000
r = 326 Mflop/s, g = 297, and l = 95 686.
Compiler plays tricks: measured value of r may be too high.
Choose h0 and h1 judiciously. Here, h0 = p.
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Time of an h-relation on a 64-processor Cray T3E
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r = 35 Mflop/s, g = 78, and l = 1825
Sending more data takes less time (cf. h ≈ 130). Weird!
Explanation: switching to a different data packing mechanism
(from short messages to long messages).
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bspbench: initialising the communication pattern

for (i=0; i<h; i++){
src[i]= (double)i;
if (p==1){

destproc[i]=0;
destindex[i]=i;

} else {
/* destination processor is one

of the p-1 others */
destproc[i]= (s+1 + i%(p-1)) %p;

/* destination index is in
my own part of dest */

destindex[i]= s + (i/(p-1))*p;
}

}

Lecture 1.5–1.7 BSP Benchmarking – p.11



bspbench: measuring the communication time

bsp_sync();
time0= bsp_time();

for (iter=0; iter<NITERS; iter++){
for (i=0; i<h; i++)

bsp_put(destproc[i], &src[i], dest,
destindex[i]*SZDBL, SZDBL);

bsp_sync();
}
time1= bsp_time();

Adjust NITERS to obtain an accurate measurement,

without waiting forever.
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Comparing BSP parameters (p = 8)

(flop) (µs)
Computer r (Mflop/s) g l g l

Cray T3E 35 31 1 193 0.88 34
IBM RS/6000 SP 212 187 148 212 0.88 698
SGI Origin 2000 326 297 95 686 0.91 294

Machines become obsolete quickly. All of the above
machines have in the mean time been replaced by faster
successors.

Newer machines will be benchmarked in the laboratory
class of this course.
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Advice from the trenches

Always plot the benchmark results. This gives insight in
your machine and reveals the accuracy of your
measurement.

Be suspicious of artefacts. Negative g values may occur if
g is small and l is huge. In that case, the least-squares fit
does not give an accurate g.

Run the benchmark at least three times. If the best two
runs agree, you can be reasonably confident.

Parallel computers are like the weather: they change all
the time. Always run a benchmark program before
running an application program, just to see what machine
you have today. (Think of: a new compiler, faster
communication switches, Challenge Projects that gobble
up network resources, and so on.)
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Summary

Benchmarking is difficult.

Machines have quirks, surprises are plenty, and
measurements are often inaccurate.

With all these caveats, it is still useful to have a table with
r, g, l values for many different machines.

This table should be kept up to date to reflect new
architectures appearing. You can do it! (Similar to the
LINPACK benchmark used to determine the
Supercomputer Top 500.)

BSP benchmarking can be done using BSPlib
(bspbench, bspprobe), but also MPI-1 (mpibench).
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