Parallel LU Decomposition
(PSC 82.3)

Lecture 2.3 Parallel LU — p.1

Designing a parallel algorithm

Main guestion: how to distribute the data?
What data”? The matrix A and the permutation .

Data distribution + sequential algorithm
—— computation supersteps.

Design backwards: insert preceding communication

supersteps following the need-to-know principle.

Lecture 2.3 Parallel LU — p.2

Data distribution for the matrix A

= The bulk of the work in the sequential computation is the
update a;; := a;; — a;ra; for matrix elements a;; with
i,j >k + 1. This takes 2(n — k — 1) flops. The other
operations take only about n — k — 1 flops. Thus, the data
distribution is chosen mainly by considering the matrix
update.

= Elements a;;, a;;, ap; may not be on the same processor.
Who does the update?

= Many elements a;; must be updated in stage £, but only
few elements a,;, ai,; are used for the update, and these

all come from column k& or row £ of the matrix. Moving
those elements around causes less traffic.

= Therefore, the owner of a;; computes the new value a;;
using communicated values of a;, a;.

Lecture 2.3 Parallel LU — p.3

Matrix update by operation a;; := a;; — a;ax;

0O 1 2 3 4 5 6

0
I

2

3 (g
4 f
5 Ajgl -1
6

Update of row ¢ uses only one value, a;., from column k.
If we distribute row i over only N processors, then a;, needs

to be sent to at most V — 1 Processors.

Lecture 2.3 Parallel LU — p.4

Matrix distribution

= A matrix distribution is a mapping
¢:401,7):0< 0, 5<n}—={(s5,1) :0<s< MAOL<t< N}

from the set of matrix index pairs to the set of processor
identifiers. The mapping function ¢ has two coordinates,

= Here, we number the processors in 2D fashion, with
p= MN. This is just a numbering!

= Processor numberings have no physical meaning. BSPIib
randomly renumbers the processors at the start.

= A processor row P(s,) is a group of N processors P(s,t)
with 0 < ¢ < N. A processor column P(x,t) is a group of
M processors P(s,t) with 0 < s < M.

Lecture 2.3 Parallel LU — p.5

Cartesian matrix distribution

tr=0 2 1 2 0 1 0

00{02{01{02|00|01|00
00{02|{01]{02|00|01|00
10112111} 12| 10| 11| 10
00{02|{01]{02|00|01|00
10112 11} 12| 10| 11| 10
00{02{01]{02|00|01|00
10112111} 12| 10| 11| 10

_ o = O = O O

A matrix distribution is called Cartesian if ¢q(¢,7) IS
independent of j and ¢;(z,) is independent of i:

(1, 7) = (¢o(i), 1(7))-

Lecture 2.3 Parallel LU — p.6

Parallel matrix update

(8) if ¢o(k) =5 A ¢1(k) =t then put ag In P(x,1);

(9) if¢i(k)=tthenforalli:k<i<n A ¢o(i) =sdo
ik, *= ik [Ak

Lecture 2.3 Parallel LU — p.7

Parallel matrix update

(8) if ¢o(k) =s A ¢1(k) =t then put ag In P(x,1);

(9) if¢(k)=tthenforalli:k<i<n A ¢o(t) =sdo
ik, *= ik [Ak

(10) if ¢1(k)=tthenforalli:k<i<n A ¢o(i) =sdo
put a;; in P(s, *);

If ¢o(k) =sthenforall j:k<j<nA ¢1(j) =tdo
put ax; in P(x,1);

(11) foralli:k<i<n A ¢o(t) =sdo
forall j:k<j<n A ¢1(j) =tdo
Aij = Q5 — Ak Aj,

Lecture 2.3 Parallel LU — p.7

Parallel pivot search

(0) if ¢1(k) =tthen ry :=argmax(|a;|: k <i<n A ¢p(i) = s);

Lecture 2.3 Parallel LU — p.8

Parallel pivot search

(0) if ¢1(k) =tthen ry :=argmax(|a;|: k <i<n A ¢p(i) = s);

(1) if ¢1(k) =tthen putrs;and a,, x in P(x,t);

Lecture 2.3 Parallel LU — p.8

Parallel pivot search

(0) if ¢1(k) =tthen ry :=argmax(|a;|: k <i<n A ¢p(i) = s);
(1) if ¢1(k) =tthen putrs;and a,, x in P(x,t);
(2) if ¢1(k) =tthen

Smax ‘= argmax(|a, x| : 0 < g < M);

ri= Tsmax;

Lecture 2.3 Parallel LU — p.8

Parallel pivot search

(0) if ¢1(k) =tthen ry :=argmax(|a;|: k <i<n A ¢p(i) = s);
(1) if ¢1(k) =tthen putrs;and a,, x in P(x,t);
(2) if ¢1(k) =tthen

Smax ‘= argmax(|a, x| : 0 < g < M);

ri= Tsmax;

(3) if ¢1(k) =tthen putrin P(s,x*);

Lecture 2.3 Parallel LU — p.8

Two parallelisation methods

= The need-to-know principle:
exactly those nonlocal data that are needed in a
computation superstep should be fetched in preceding
communication supersteps.

= Matrix update uses first parallelisation method: look at Ihs
(left-hand side) of assignment, owner computes.

= Pivot search uses second method: look at rhs of
assignment, compute what can be done locally, reduce

the number of data to be communicated.

= In pivot search: first a local search, then communication
of the local winner to all processors, finally a redundant
(replicated) search for the global winner.

= Broadcast of r in (3) is needed later in (4). Designing
backwards, we formulate (4) first and then insert (3).

Lecture 2.3 Parallel LU — p.9

Distribution for permutation =

= Store 7, together with row £, somewhere in processor
row P(¢g(k), *).

= We choose P(¢y(k),0). This gives a true distribution.

= \WWe could also have chosen to replicate 7, In processor

row P(¢q(k),*). This would save some if-statements in
our programs.

Lecture 2.3 Parallel LU — p.10

Index and row swaps

(4) if ¢po(k) =s At =0then put 7y as 1 in P(¢o(r),0);
if po(r) =s A t=0then putr, as 7, in P(¢y(k),0);
(5) if¢g(k) =s A t=0then m :=7,;
If po(r) =s A t=0then m,. := 7y;

Lecture 2.3 Parallel LU — p.11

Index and row swaps

(4) if ¢po(k) =s A t=0then put as w, in P(¢o(r),0);
if po(r) =s A t=0then putr, as 7, in P(¢y(k),0);
(5) if¢pg(k)=s At=0then m :=7,;
If oo(r) =s A t=0then m. := 7y;
(6) if¢g(k)=sthenforall j:0<j<nA ¢1(j)=tdo
put ay; as ag; in P(¢o(r),t);
If po(r) =sthenforall j:0<j<n A ¢1(j)=tdo

put a,.; as a,; in P(¢o(k),t);

(7) if ¢o(k) =sthenforall j:0<j<n A ¢1(j)=tdo
Qfj - — d'ry
ifgbo(r)jzsthén forall j:0<j7<n A ¢1(j) =tdo
Qypj = a’k‘j!

Lecture 2.3 Parallel LU — p.11

Optimising the matrix distribution

= \WWe have chosen a Cartesian matrix distribution ¢ to limit
the communication.

= \We now specify ¢ further to achieve a good computational
load balance and to minimise the communication.

= Maximum number of local matrix rows with index > k:

Rk:ogﬁ}}w Hi:kE<i<n A ¢ot) = s}

Maximum number of local matrix columns with index > k:

Co = max [{j:hk<j<nA @)=t}

= The computation cost of the largest superstep, the matrix
update (11), isthen 2R 1Cj41.

Lecture 2.3 Parallel LU — p.12

Example

tr=0 2 1 2 0 1 0

00{02{01{02|00|01|00
00{02|{01]{02|00|01|00
10112111} 12| 10| 11| 10
00{02|{01]{02|00|01|00
10{ 12| 11| 12| 10| 11| 10
00{02{01]{02|00|01|00
10112111} 12| 10| 11| 10

R0:4,00:38.ndR4:2,O4:2

_ o = O = O O

Lecture 2.3 Parallel LU — p.13

Bound for Ry

n — k
ne 28]

Proof: Assume this is untrue, so that R, < [%*]. Because
Ry Is Integer, we even have R, < ”7"“ Hence all M processor
rows together hold less than M - ”7—’“ = n — k matrix rows. But

they hold all matrix rows £ < ¢ < n. Contradiction. []

Lecture 2.3 Parallel LU — p.14

2D cyclic distribution attains bound

tr=0 1 2 0 1 2 0

00| 01{02{00(01|02|00
10| 11| 12110} 11| 12| 10
00{01{02{ 0001|0200
10| 11| 12110} 11| 12| 10
00| 01|02{00]{01{02]|00
10| 11|12 10| 11| 12| 10
00| 01|02{00|{01|02]|00

S = O = O = O

¢o(1) =1mod M, ¢1(j) =7 mod N.

£
||

Ci =

Lecture 2.3 Parallel LU — p.15

Cost of main computation superstep (matrix update)

n—k—11[n—k—1122m_k_1y.

T(ll),cyclic =2 |7 M

n—k—1 n—k—1
T(ll),cyclic < 2(M _I_l) (N —I—l)

_ 2An—k1? 2nkoh)
p p |

The upper bound is minimal for M = N = ,/p. The
second-order term 4(n — k£ — 1)/,/p is the additional
computation cost caused by load imbalance.

Lecture 2.3 Parallel LU — p.16

Cost of main communication superstep

The cost of the broadcast of row k£ and column £ in (10) is

Taoy = (Brpi(N—1)+Crpa(M —1))g

= ([|+ o).

T(lO) ,cyclic-

n—k—1 n—k—1
T(lO),cyclic < ((M +1> N_I_(N +1) M) 9

— (k- (>) s MmNy
M N

f-:g;:::;;{The upper bound is again minimal for M = N =, /p. The
. “resulting communication cost is about 2(n — k — 1)g. wwezsrame-os

Summary

= \WWe determined the matrix distribution, first by restricting it
to be Cartesian, then by choosing the 2D cyclic
distribution, based on a careful analysis of the main
computation and communication supersteps, and finally
by showing that a square ,/p x /p distribution is best.

= Developing the algorithm goes hand in hand with the cost
analysis.

= \We now have a correct algorithm and a good distribution,

but the overall BSP cost may not be minimal yet. Wait
and see ...

Lecture 2.3 Parallel LU — p.18

	Designing a parallel algorithm
	Data distribution for the matrix A
	Matrix update by operation $a_{ij}:= a_{ij}-a_{ik}a_{kj}$
	Matrix distribution
	Cartesian matrix distribution
	Parallel matrix update
	Parallel pivot search
	Two parallelisation methods
	Distribution for permutation $pi $
	Index and row swaps
	Optimising the matrix distribution
	Example
	Bound for R_k
	2D cyclic distribution attains bound
	Cost of main computation superstep (matrix update)
	Cost of main communication superstep
	Summary

