
Sequential LU Decomposition
(PSC §2.1–2.2)

Lecture 2.1–2.2 Sequential LU – p.1

Solving a linear system of equations

Find x0, x1, x2 such that

x0 + 4x1 + 6x2 = 16

2x0 + 10x1 + 17x2 = 44

3x0 + 16x1 + 31x2 = 78

In matrix language, solve

Ax = b,

where

A =





1 4 6

2 10 17

3 16 31



 , x =





x0

x1

x2



 , b =





16

44

78





Lecture 2.1–2.2 Sequential LU – p.2

Solving linear systems is important

Applications often have as their core a linear system solver.

Building bridges. Finite element models in engineering
give rise to linear systems involving a stiffness matrix.

Aircraft design. Boundary element methods lead to huge
dense linear systems of equations.

Oil refinery optimisation. Linear programming by interior
point methods requires solving a sparse linear system
(with many zero coefficients) at every step of the
computation.

Lecture 2.1–2.2 Sequential LU – p.3

Lower and upper triangular matrices

A =





1 4 6

2 10 17

3 16 31



 =





1 0 0

2 1 0

3 2 1









1 4 6

0 2 5

0 0 3



 = LU.

L is unit lower triangular if lii = 1 for all i
and lij = 0 for all i < j.

U is upper triangular if uij = 0 for all i > j.

LU decomposition is the factorisation of A into A = LU ,
with L unit lower triangular and U upper triangular.

Lecture 2.1–2.2 Sequential LU – p.4

Triangular systems are easier to solve

Let A = LU . Then

Ax = b ⇐⇒ L(Ux) = b ⇐⇒ Ly = b and Ux = y.





1 0 0

2 1 0

3 2 1









y0

y1

y2



 =





16

44

78



 =⇒





y0

y1

y2



 =





16

12

6









1 4 6

0 2 5

0 0 3









x0

x1

x2



 =





16

12

6



 =⇒





x0

x1

x2



 =





0

1

2



 .

Lecture 2.1–2.2 Sequential LU – p.5

Deriving an algorithm for LU decomposition

Some simple algebra:

A = LU ⇐⇒ aij =

n−1
∑

r=0

lirurj for all i, j.

Assume i ≤ j. Then:

aij =
n−1
∑

r=0

lirurj =
i
∑

r=0

lirurj (because lir = 0 for r > i)

=
i−1
∑

r=0

lirurj + liiuij =
i−1
∑

r=0

lirurj + uij

⇐⇒

uij = aij −
i−1
∑

r=0

lirurj .
Lecture 2.1–2.2 Sequential LU – p.6

Formulae for computing lij and uij

Aim: rewrite the linear system to express lij and uij in terms
of aij and previously computed lij and uij .

We have obtained

uij = aij −
i−1
∑

r=0

lirurj for i ≤ j.

Similarly,

lij =
1

ujj

(

aij −

j−1
∑

r=0

lirurj

)

for i > j.

Lecture 2.1–2.2 Sequential LU – p.7

Modifying the matrix A in stages

For 0 ≤ k ≤ n, define the intermediate matrix A(k) of stage k:

a
(k)
ij = aij −

k−1
∑

r=0

lirurj .

Note that A(0) = A and A(n) = 0. In this notation,

uij = aij −
i−1
∑

r=0

lirurj ⇐⇒ uij = a
(i)
ij

lij =
1

ujj

(

aij −

j−1
∑

r=0

lirurj

)

⇐⇒ lij =
a

(j)
ij

ujj

We retrieve the values uij (i ≤ j) in stage i

and lij (i > j) in stage j. Lecture 2.1–2.2 Sequential LU – p.8

Basic sequential LU decomposition algorithm

input: A(0) : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,
such that LU = A(0).

for k := 0 to n − 1 do
for j := k to n − 1 do

ukj := a
(k)
kj ;

Lecture 2.1–2.2 Sequential LU – p.9

Basic sequential LU decomposition algorithm

input: A(0) : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,
such that LU = A(0).

for k := 0 to n − 1 do
for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do
lik := a

(k)
ik /ukk;

Lecture 2.1–2.2 Sequential LU – p.9

Basic sequential LU decomposition algorithm

input: A(0) : n × n matrix.
output: L : n × n unit lower triangular matrix,

U : n × n upper triangular matrix,
such that LU = A(0).

for k := 0 to n − 1 do
for j := k to n − 1 do

ukj := a
(k)
kj ;

for i := k + 1 to n − 1 do
lik := a

(k)
ik /ukk;

for i := k + 1 to n − 1 do
for j := k + 1 to n − 1 do

a
(k+1)
ij := a

(k)
ij − likukj;

Lecture 2.1–2.2 Sequential LU – p.9

Storing L, U , A(k) in the space of A

0

0 1 2 3 4 5

1

2

3

4

5

6

6

L

U

(k)A

At the start of stage k = 3: rows 0, 1, 2 of U and columns 0, 1,

2 of L below the diagonal have already been computed.

Lecture 2.1–2.2 Sequential LU – p.10

Memory-efficient sequential LU decomposition

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L − In + U , with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
In : n × n identity matrix,
such that LU = A(0).

for k := 0 to n − 1 do
for i := k + 1 to n − 1 do

aik := aik/akk;
for i := k + 1 to n − 1 do

for j := k + 1 to n − 1 do
aij := aij − aikakj ;

Lecture 2.1–2.2 Sequential LU – p.11

Transformations of A by LU decomposition

A =





1 4 6

2 10 17

3 16 31





(0)
−→





1 4 6

2 2 5

3 4 13





(1)
−→





1 4 6

2 2 5

3 2 3



 .

Hence,

L =





1 0 0

2 1 0

3 2 1



 , U =





1 4 6

0 2 5

0 0 3



 .

Lecture 2.1–2.2 Sequential LU – p.12

Row permutations needed

LU decomposition breaks down immediately in stage 0 for

A =

[

0 1

1 0

]

,

because we try to divide by 0.

A solution is to permute the rows suitably.

Thus, we compute a permuted LU decomposition,

PA = LU.

Here, P is a permutation matrix, obtained by permuting
the rows of In.

Output of LU decomposition of A: L, U , P .

Lecture 2.1–2.2 Sequential LU – p.13

Permutations and permutation matrices

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
We define the permutation matrix Pσ corresponding to σ by

(Pσ)ij =

{

1 if i = σ(j)

0 otherwise.

Thus, column j of Pσ is 1 in row σ(j), and 0 everywhere else.

Lecture 2.1–2.2 Sequential LU – p.14

Relation between σ and Pσ

Let σ(0) = 1, σ(1) = 2, and σ(2) = 0. Then

Pσ =





· · 1

1 · ·

· 1 ·



 .

Lecture 2.1–2.2 Sequential LU – p.15

Property of Pσ

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
Let x be a vector of length n. Then

(Pσx)i =
n−1
∑

j=0

(Pσ)ijxj = xσ−1(i),

because only the term with σ(j) = i is nonzero,

i.e., the term j = σ−1(i).

Lecture 2.1–2.2 Sequential LU – p.16

Lemma 2.5 Properties of Pσ

Let σ : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation.
Let x be a vector of length n and A an n × n matrix. Then

(Pσx)i = xσ−1(i), for 0 ≤ i < n,

(PσA)ij = aσ−1(i),j, for 0 ≤ i, j < n,

(PσAP T
σ)ij = aσ−1(i),σ−1(j), for 0 ≤ i, j < n.

Proofs: similar to before.

Lecture 2.1–2.2 Sequential LU – p.17

Lemma 2.6 Matrices isomorphic to permutations

Let σ, τ : {0, . . . , n − 1} → {0, . . . , n − 1} be permutations.
Then

PτPσ = Pτσ and (Pσ)−1 = Pσ−1 .

Here, τσ denotes σ followed by τ .

Proof first part:

(PτPσ)ij =

n−1
∑

k=0

(Pτ)ik(Pσ)kj = (Pσ)τ−1(i),j

because only one term k = τ−1(i) is nonzero. By the definition

of Pσ, the result is 1 if τ−1(i) = σ(j), i.e., i = τ(σ(j)) = (τσ)(j),

and 0 otherwise. This is the same as for (Pτσ)ij . �
Lecture 2.1–2.2 Sequential LU – p.18

LU decomposition with row permutations

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L − In + U , with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

for i := 0 to n − 1 do πi := i;
for k := 0 to n − 1 do

r := argmax(|aik| : k ≤ i < n);
swap(πk, πr);
for j := 0 to n − 1 do

swap(akj , arj);

Lecture 2.1–2.2 Sequential LU – p.19

LU decomposition with row permutations

input: A : n × n matrix, A = A(0).
output: A : n × n matrix, A = L − In + U , with

L : n × n unit lower triangular matrix,
U : n × n upper triangular matrix,
π : permutation vector of length n.

for i := 0 to n − 1 do πi := i;
for k := 0 to n − 1 do

r := argmax(|aik| : k ≤ i < n);
swap(πk, πr);
for j := 0 to n − 1 do

swap(akj , arj);
for i := k + 1 to n − 1 do

aik := aik/akk;
for i := k + 1 to n − 1 do

for j := k + 1 to n − 1 do
aij := aij − aikakj ;

Lecture 2.1–2.2 Sequential LU – p.19

Partial row pivoting

The pivot element in stage k is the largest element ark in
column k. Everything revolves around it. It is farthest from
0 and division by ark is most stable.

The pivot row r is thus determined by

|ark| = max(|aik| : k ≤ i < n).

r is the argument (or index) of the maximum.

Full pivoting would take the largest pivot from the whole
submatrix A(k:n− 1, k:n− 1). This gives the best stability,
but is more costly. In practice, partial pivoting suffices.

Lecture 2.1–2.2 Sequential LU – p.20

The meaning of π

The algorithm permutes the matrix by a permutation
matrix Pσ. We obtain the LU decomposition PσA = LU .

The same matrix is applied to the initial vector
e = (0, 1, 2, . . . , n − 1)T . We obtain π = Pσe.

Therefore, by Lemma 2.5,

π(i) = (Pσe)i = eσ−1(i) = σ−1(i).

Thus, π = σ−1 and hence

Pπ−1A = LU.

Lecture 2.1–2.2 Sequential LU – p.21

Sequential time complexity

Lemma 2.7:

n
∑

k=0

k =
n(n + 1)

2
,

n
∑

k=0

k2 =
n(n + 1)(2n + 1)

6
.

Proof: By induction on n.

The number of flops of the LU decomposition algorithm is

Tseq =
n−1
∑

k=0

(2(n − k − 1)2 + n − k − 1) =
n−1
∑

k=0

(2k2 + k)

=
(n − 1)n(2n − 1)

3
+

(n − 1)n

2

= (n − 1)n

(

2n

3
+

1

6

)

=
2n3

3
−

n2

2
−

n

6
.

Lecture 2.1–2.2 Sequential LU – p.22

Summary

Solving a linear system Ax = b can best be done by:
finding an LU decomposition PA = LU ;
permuting b into Pb;
solving the triangular systems Ly = Pb and Ux = y.

The LU decomposition costs about 2n3/3 flops and each
triangular system solve about n2 flops.

It is always difficult to keep permutations and their
inverses apart. In theoretical analysis, it is sometimes
easier to work with permutation matrices than with the
corresponding permutations.

We defined the matrix Pσ; its jth column is 1 in row σ(j),
and 0 everywhere else.

An important connection between a permutation σ and
the matrix Pσ is given by (Pσx)i = xσ−1(i).

Lecture 2.1–2.2 Sequential LU – p.23

	Solving a linear system of equations
	Solving linear systems is important
	Lower and upper triangular matrices
	Triangular systems are easier to solve
	Deriving an algorithm for LU decomposition
	Formulae for computing l_{ij} and u_{ij}
	Modifying the matrix A in stages
	Basic sequential LU decomposition algorithm
	Storing L, U, $A^{(k)}$
in the space of A
	Memory-efficient sequential LU decomposition
	Transformations of A by LU decomposition
	Row permutations needed
	Permutations and permutation matrices
	Relation between $sigma $ and $P_{sigma }$
	Property of $P_{sigma }$
	Lemma 2.5 Properties of $P_{sigma }$
	Lemma 2.6 Matrices isomorphic to permutations
	LU decomposition with row permutations
	Partial row pivoting
	The meaning of $pi $
	Sequential time complexity
	Summary

