
Cartesian distribution

Cartesian Distribution
(PSC §4.4)

1 / 18



Cartesian distribution

Identifying 1D and 2D processor numbering

I Natural column-wise identification for p = MN processors:

P(s, t) ≡ P(s + tM), for 0 ≤ s < M and 0 ≤ t < N.

I This can also be written as

P(s) ≡ P(s mod M, s div M), for 0 ≤ s < p.

I For a Cartesian distribution (φ0, φ1), we map nonzeros aij to
processors P(φ(i , j)) by

φ(i , j) = φ0(i) + φ1(j)M, for 0 ≤ i , j < n and aij 6= 0.

I We use 1D or 2D numbering, whichever is most convenient in
the context.

2 / 18



Cartesian distribution

A Cartesian distribution of cage6

0

1

1

1

s = 0

t = 0

n = 93, nz = 785, p = 4, M = N = 2.

I The processor row of a matrix element aij is s = φ0(i);
the processor column is t = φ1(j).

I Matrix diagonal assigned in blocks to processors
P(0) ≡ P(0, 0), P(1) ≡ P(1, 0), P(2) ≡ P(0, 1),
P(3) ≡ P(1, 1).

3 / 18



Cartesian distribution

Advantages of a Cartesian distribution

Advantages:

I Main advantage for sparse matrices is the same as for dense
matrices: row-wise operations require communication only
within processor rows. (Similar for columns.)

I Vector component vj has to be sent to at most M processors,
and vector component ui is computed using contributions
received from at most N processors.

I Simplicity: Cartesian distributions partition the matrix
orthogonally into rectangular submatrices. Non-Cartesian
distributions create arbitrarily-shaped matrix parts.

Disadvantage:

I Less general, so may not offer the optimal solution.

4 / 18



Cartesian distribution

Matching matrix and vector distribution

I Vector component vj is needed only by processors that possess
an aij 6= 0, and these processors are contained in processor
column P(∗, φ1(j)).

I Assigning vector component vj to one of the processors in
P(∗, φ1(j)) implies that vj has to be sent to at most M − 1
processors, instead of M.

I If we are lucky (or clever), we may even avoid communication
of vj altogether.

I If vj were assigned to a different processor column, it would
always have to be communicated.

I Assigning ui to a processor in processor row P(φ0(i), ∗)
reduces the number of contributions sent for ui to at most
N − 1.

5 / 18



Cartesian distribution

A trivial but powerful theorem

Theorem 4.4 Let A be a sparse n × n matrix and u, v vectors of
length n. Assume that:

1. distribution of A is Cartesian, distr(A) = (φ0, φ1);

2. distribution of u is such that ui resides in P(φ0(i), ∗);

3. distribution of v is such that vj resides in P(∗, φ1(j)).

Then: if ui and vj are assigned to the same processor, aij is also
assigned to that processor and does not cause communication.

Proof Component ui is assigned to P(φ0(i), t). Component vj to
P(s, φ1(j)). Since this is the same processor, we have
(s, t) = (φ0(i), φ1(j)), so that this processor also owns aij . �

6 / 18



Cartesian distribution

Special case distr(u) = distr(v)

The conditions

1. distribution of A is Cartesian, distr(A) = (φ0, φ1);

2. distribution of u is such that ui resides in P(φ0(i), ∗);

3. distribution of v is such that vj resides in P(∗, φ1(j));

4. distr(u) = distr(v);

imply that ui and vi are assigned to P(φ0(i), φ1(i)), which is the
owner of the diagonal element aii .

I For a fixed M and N, the choice of a Cartesian matrix
distribution determines the vector distribution.

I The reverse is also true.

7 / 18



Cartesian distribution

Example: 1D Laplacian matrix

A =



−2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −2


.

I This tridiagonal matrix represents a Laplacian operator on a
1D grid of n points.

I aij 6= 0 if and only if i − j = 0,±1.

8 / 18



Cartesian distribution

Vector distribution for tridiagonal matrix

I aij 6= 0 if and only if i − j = 0,±1.

I Assume we require distr(u) = distr(v). Theorem 4.4 says
that it is best to assign ui and vj (and hence uj) to the same
processor if i = j ± 1.

I Therefore, a suitable vector distribution over p processors is
the block distribution,

ui 7−→ P(i div

⌈
n

p

⌉
), for 0 ≤ i < n.

9 / 18



Cartesian distribution

Example: 12× 12 1D Laplacian matrix

Distribution matrix for n = 12 and M = N = 2:

distr(A) =



0 0
0 0 0

0 0 0
1 1 1

1 1 1
1 1 3

0 2 2
2 2 2

2 2 2
3 3 3

3 3 3
3 3



.

10 / 18



Cartesian distribution

Example: 12× 12 1D Laplacian matrix (cont’d)

Position (i , j) of distr(A) gives 1D identity of the processor that
owns matrix element aij ; distr(A) is obtained by:

I distributing the vectors by the 1D block distribution

I distributing the matrix diagonal in the same way as the vectors

I translating the 1D processor numbers into 2D numbers by
P(0) ≡ P(0, 0), P(1) ≡ P(1, 0), P(2) ≡ P(0, 1),
P(3) ≡ P(1, 1).

I determining the owners of the off-diagonal nonzeros: a56 is in
the same processor row as a55, owned by P(1) = P(1, 0); it is
in the same processor column as a66, owned by
P(2) = P(0, 1). Thus, a56 is owned by P(1, 1) = P(3).

11 / 18



Cartesian distribution

Cost analysis

Assuming a good spread of nonzeros and vector components over
processors, matrix rows over processor rows, matrix columns over
processor columns:

T(0) = (M − 1)
ng

p
+ l ,

T(1) =
2cn

p
+ l ,

T(2) = (N − 1)
ng

p
+ l ,

T(3) =
Nn

p
+ l .

TMV, M×N ≤
2cn

p
+

n

M
+

M + N − 2

p
ng + 4l .

12 / 18



Cartesian distribution

Efficient computation for M = N =
√
p

TMV,
√
p×√p ≤

2cn

p
+

n
√
p

+ 2

(
1
√
p
− 1

p

)
ng + 4l .

I Computation is efficient if 2cn
p > 2ng√

p , i.e., c >
√
pg .

I Improvement of factor
√
p compared to previous general

efficiency criterion.

13 / 18



Cartesian distribution

Dense matrices

I Dense matrices are the limit of sparse matrices for c → n.

I Analysing the dense case is easier and it can give us insight
into the sparse case as well.

I Substituting c = n in previous cost formula gives

TMV, dense ≤
2n2

p
+

n
√
p

+ 2

(
1
√
p
− 1

p

)
ng + 4l .

I All spreading assumptions must hold.

I Which distribution will yield this cost?

14 / 18



Cartesian distribution

Square cyclic distribution? No!

I Previously, we have extolled the virtues of the square cyclic
distribution for LU decomposition and all parallel linear
algebra.

I Diagonal element aii is assigned to P(i mod
√
p, i mod

√
p),

so that the matrix diagonal is assigned to the diagonal
processors P(s, s), 0 ≤ s <

√
p.

I Only
√
p processors have part of the matrix diagonal and the

vectors. The vector spreading assumption fails.

I The trouble is that diagonal processors must send
√
p − 1

copies of n√
p vector components: hs = n − n√

p in (0).

I The total cost for the square cyclic distribution is

TMV, dense,
√
p×√p cyclic =

2n2

p
+ n + 2

(
1− 1
√
p

)
ng + 4l .

15 / 18



Cartesian distribution

Cyclic row distribution? No!

I Communication balance can be improved by choosing a
distribution that spreads the matrix diagonal evenly,
φu(i) = φv(i) = i mod p, and translating from 1D to 2D.

I We still have the freedom to choose M and N, where
MN = p. For the choice M = p and N = 1, this gives the
cyclic row distribution φ0(i) = i mod p and φ1(j) = 0.

I The total cost for the cyclic row distribution is

TMV, dense, p×1 cyclic =
2n2

p
+

(
1− 1

p

)
ng + 2l .

I This distribution skips supersteps (2) and (3), since each
matrix row is completely contained in one processor.

I The trouble is that the fanout is very expensive: each
processor has to send n

p vector components to all others.

16 / 18



Cartesian distribution

Square Cartesian distribution? Yes!

0 1 2 3 0 1 2 3

0 0 1 1 0 0 1 1
0

1

0

0

1

1

0

1

0

0

1

1

2

2

3

3

0

0

1

1

3

3

2

2

Au

v

n = 8, p = 4, M = N = 2. Square Cartesian distribution based on
a cyclic distribution of the matrix diagonal.

I We take the same distribution method,
φu(i) = φv(i) = i mod p, but now we choose M = N =

√
p

when translating from 1D to 2D.

I Et voilà! We achieve the optimal BSP cost.

17 / 18



Cartesian distribution

Summary

I For Cartesian distributions, we use both 1D and 2D processor
numberings to our advantage, with the identification
P(s, t) ≡ P(s + tM).

I We have seen the example of a tridiagonal matrix, where we
obtained a 2D matrix distribution, slightly different from a 1D
block row distribution. For band matrices with a wider band,
this may be advantageous.

I A square Cartesian matrix distribution based on a cyclic
distribution of the matrix diagonal and the input and output
vectors is an optimal data distribution for dense matrices and
for sparse matrices that are relatively dense.

I There exist other optimal data distributions, e.g. based on a
block distribution of the matrix diagonal.

18 / 18


