Vector Distribution (PSC §4.6)

Vector partitioning

Broadway Boogie Woogie Piet Mondriaan 1943

Balance the communication!

- Aim: reduce the BSP cost hg, where

$$
h=\max _{0 \leq s<p} h(s), \quad h(s)=\max \left(h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right) .
$$

- Thus, given a matrix distribution ϕ, we have to determine a vector distribution $\phi_{\mathbf{v}}$ that minimises h for the fanout and satisfies $j \in J_{\phi_{v}(j)}$, for $0 \leq j<n$.
- Constraint $j \in J_{\phi_{\mathbf{v}}(j)}$ means: processor $P(s)=P\left(\phi_{\mathbf{v}}(j)\right)$ that owns v_{j} must own a nonzero in matrix column j, i.e., $j \in J_{s}$.
- We also have to find a vector distribution $\phi_{\mathbf{u}}$ that minimises the value h for the fanin and that satisfies the constraint $i \in I_{\phi_{\mathbf{u}}(i)}$, for $0 \leq i<n$.

Vector partitioning for prime60

Global view. Both constraints are satisfied.

Vector partitioning for prime60

Local view. The local components of the vector \mathbf{u} are placed to the left of the local submatrix for $P(0)$ and $P(2)$.

The two vector distribution problems are similar

- Nonzero pattern of row i of A equals the nonzero pattern of column i of A^{T} :
$u_{i s}$ is sent from $P(s)$ to $P(t)$ in the multiplication by A $\Leftrightarrow v_{i}$ is sent from $P(t)$ to $P(s)$ in the multiplication by A^{T}.
- We can find a good distribution $\phi_{\mathbf{u}}$ given $\phi=\phi_{A}$ by finding a good distribution $\phi_{\mathbf{v}}$ given $\phi=\phi_{A^{T}}$.
- Hence, we only solve one problem, namely for v. We can apply this method also for \mathbf{u}, with A^{T} instead of A.

General case: arbitrary q_{j} values

- Columns with $q_{j}=0$ or $q_{j}=1$ do not cause communication and are omitted from the problem. Hence, we assume $q_{j} \geq 2$, for all j.
- For processor $P(s)$:

$$
h_{\mathrm{s}}(s)=\sum_{0 \leq j<n, \phi_{\mathbf{v}}(j)=s}\left(q_{j}-1\right),
$$

and

$$
h_{\mathrm{r}}(s)=\left|\left\{j: j \in J_{s} \wedge \phi_{\mathbf{v}}(j) \neq s\right\}\right| .
$$

- Aim: for given matrix distribution and hence given communication volume V, minimise

$$
h=\max _{0 \leq s<p} \max \left(h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right) .
$$

Egoistic local bound

- An egoistic processor tries to minimise its own $h(s)=\max \left(h_{\mathrm{r}}(s), h_{\mathrm{s}}(s)\right)$ without consideration for others.
- To minimise $h_{\mathrm{r}}(s)$, it just has to maximise the number of components v_{j} with $j \in J_{s}$ that it owns.
- To minimise $h_{\mathrm{s}}(s)$, it has to minimise the total weight of these components, where the weight of v_{j} is $q_{j}-1$.
- A locally optimal strategy is to start with $h_{\mathrm{s}}(s)=0$ and $h_{\mathrm{r}}(s)=\left|J_{s}\right|$ and grab the components in order of increasing weight, each time adjusting $h_{\mathrm{s}}(s)$ and $h_{\mathrm{r}}(s)$, as long as $h_{\mathrm{s}}(s) \leq h_{\mathrm{r}}(s)$.

Optimal values

- Denote the resulting optimal value of $h_{\mathrm{r}}(s)$ by $\hat{h}_{\mathrm{r}}(s)$, that of $h_{\mathrm{s}}(s)$ by $\hat{h}_{\mathrm{s}}(s)$, and that of $h(s)$ by $\hat{h}(s)$. We have

$$
\hat{h}_{\mathrm{s}}(s) \leq \hat{h}_{\mathrm{r}}(s)=\hat{h}(s), \text { for } 0 \leq s<p
$$

- The value $\hat{h}(s)$ is a local lower bound on the actual value that can be achieved: $\hat{h}(s) \leq h(s)$, for all s.

Example vector distribution problem

$s=0$	1	\cdot	1	\cdot	1	1	1	1
1	1	1	\cdot	1	1	1	1	\cdot
2	\cdot	1	\cdot	\cdot	\cdot	1	1	1
3	\cdot	\cdot	1	1	1	\cdot	\cdot	1
$q_{j}=$	2	2	2	2	3	3	3	3
$j=$	0	1	2	3	4	5	6	7

- A 1 in the table denotes that $P(s)$ owns a nonzero in column j and hence needs v_{j}.
- Columns are ordered by increasing q_{j}.
- Processor $P(0)$ wants v_{0} and v_{2}, but nothing more, so that $\hat{h}_{\mathrm{s}}(0)=2, \hat{h}_{\mathrm{r}}(0)=4$, and $\hat{h}(0)=4$.
- The fanout will cost at least $4 g$.

Algorithm based on local bound

(R. H. Bisseling, W. Meesen, Electronic Transactions on Numerical Analysis 21 (2005) pp. 47-65.)

- Define the generalised lower bound $\hat{h}\left(J, n s_{0}, n r_{0}\right)$ for a given index set $J \subset J_{s}$ and a given initial number of sends $n s_{0}$ and receives $n r_{0}$.
- Initial communications are due to columns outside J.
- Bound is computed by the same method, but starting with $h_{\mathrm{s}}(s)=n s_{0}$ and $h_{\mathrm{r}}(s)=n r_{0}+|J|$.
- Note that $\hat{h}(s)=\hat{h}\left(J_{s}, 0,0\right)$.
- Our algorithm gives preference to the processor that faces the toughest future, i.e., the processor with the highest current value $\hat{h}(s)$.

Initialisation of algorithm

$$
\begin{gathered}
\text { for } s:=0 \text { to } p-1 \text { do } \\
L_{s}:=J_{s} ; \\
h_{\mathrm{s}}(s):=0 ; \\
h_{\mathrm{r}}(s):=0 ;
\end{gathered}
$$

- L_{s} is the index set of components that may still be assigned to $P(s)$.
- The number of sends caused by the assignments done so far is registered as $h_{\mathrm{s}}(s)$; the number of receives as $h_{\mathrm{r}}(s)$.
- The current state of $P(s)$ is represented by the triple $\left(L_{s}, h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right)$.

Termination of algorithm

$$
\begin{aligned}
& \text { for } s:=0 \text { to } p-1 \text { do } \\
& \quad \text { if } h_{\mathrm{s}}(s)<\hat{h}_{\mathrm{s}}\left(L_{s}, h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right) \text { then } \\
& \quad \text { active }(s):=\text { true; } \\
& \\
& \text { else } \operatorname{active}(s):=\text { false; }
\end{aligned}
$$

- Note that $n s_{0} \leq \hat{h}_{\mathrm{S}}\left(J, n s_{0}, n r_{0}\right)$, so that trivially $h_{\mathrm{s}}(s) \leq \hat{h}_{\mathrm{s}}\left(L_{s}, h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right)$.
- A processor will not accept more components once it has achieved its optimum, when $h_{\mathrm{s}}(s)=\hat{h}_{\mathrm{s}}\left(L_{s}, h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right)$.

Main loop of algorithm

while ($\exists s: 0 \leq s<p \wedge \operatorname{active}(s))$ do

$$
\begin{aligned}
& s_{\max }:=\operatorname{argmax}\left(\hat{h}_{\mathrm{r}}\left(L_{s}, h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right): 0 \leq s<p \wedge \text { active }(s)\right) ; \\
& j:=\min \left(L_{s_{\max }}\right) ;\left\{j \text { has minimal } q_{j}\right\} \\
& \phi_{\mathrm{v}}(j):=s_{\max } ; \\
& h_{\mathrm{s}}\left(s_{\max }\right):=h_{\mathrm{s}}\left(s_{\max }\right)+q_{j}-1 ;
\end{aligned}
$$

Main loop of algorithm

while ($\exists s: 0 \leq s<p \wedge$ active(s)) do
$s_{\text {max }}:=\operatorname{argmax}\left(\hat{h}_{\mathrm{r}}\left(L_{s}, h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right): 0 \leq s<p \wedge \operatorname{active}(s)\right) ;$
$j:=\min \left(L_{s_{\text {max }}}\right) ;\left\{j\right.$ has minimal $\left.q_{j}\right\}$
$\phi_{\mathbf{v}}(j):=s_{\max }$;
$h_{\mathrm{s}}\left(s_{\max }\right):=h_{\mathrm{s}}\left(s_{\max }\right)+q_{j}-1$;
for all $s: 0 \leq s<p \wedge s \neq s_{\text {max }} \wedge j \in J_{s}$ do $h_{\mathrm{r}}(s):=h_{\mathrm{r}}(s)+1 ;$
for all $s: 0 \leq s<p \wedge j \in J_{s}$ do

$$
L_{s}:=L_{s} \backslash\{j\} ;
$$

if $h_{\mathrm{s}}(s)=\hat{h}_{\mathrm{s}}\left(L_{\mathrm{s}}, h_{\mathrm{s}}(s), h_{\mathrm{r}}(s)\right)$ then
active(s) :=false;

Special case: $q_{j} \leq 2$

- Vertex $s=$ processor $s, 0 \leq s<p$
- Edge $(s, t)=$ processor pair sharing matrix columns
- Edge weight $w(s, t)=$ number of matrix columns shared

Problem: assign each matrix column/vector component to a processor, balancing the number of data words sent and received

Transform into unweighted undirected graph

- Assign two shared columns: one to processor s, one to t. $w(s, t):=w(s, t)-2$.
- Repeat until all edge weights $=0$ or 1 .

Unweighted undirected graph

Transform into directed graph

- Walk path starting at odd-degree vertex
- Remove walked edges from undirected graph
- Edge $s \rightarrow t$: processor s sends, t receives
- Even-degree vertices remain even-degree
- Repeat until all degrees in undirected graph are even.

Transform into directed graph

Transform into directed graph

Transform into directed graph

- Walk path starting at even-degree vertex
- Repeat until undirected graph empty
- Solution is provably optimal (see Bisseling \& Meesen 2005)

Summary

- BSP cost is a natural metric that encourages communication balancing.
- For the general vector distribution problem, we have developed a heuristic method, which works well in practice.
- The heuristic method is based on assigning vector components to the processor with the toughest future, as predicted by an egoistic local bound.
- For the special case with at most 2 processors per matrix column, we have obtained an optimal method based on walking paths in an associated graph, starting first at odd-degree vertices.

