Vector Distribution

(PSC §4.6)
Vector partitioning

Broadway Boogie Woogie
Piet Mondriaan 1943
Balance the communication!

- Aim: reduce the BSP cost hg, where

$$h = \max_{0 \leq s < p} h(s), \quad h(s) = \max(h_s(s), h_r(s)).$$

- Thus, given a matrix distribution ϕ, we have to determine a vector distribution ϕ_v that minimises h for the fanout and satisfies $j \in J_{\phi_v}(j)$, for $0 \leq j < n$.

- Constraint $j \in J_{\phi_v}(j)$ means: processor $P(s) = P(\phi_v(j))$ that owns v_j must own a nonzero in matrix column j, i.e., $j \in J_s$.

- We also have to find a vector distribution ϕ_u that minimises the value h for the fanin and that satisfies the constraint $i \in l_{\phi_u}(i)$, for $0 \leq i < n$.
Vector partitioning for prime60

Global view. Both constraints are satisfied.
Vector partitioning for prime60

Local view. The local components of the vector u are placed to the left of the local submatrix for $P(0)$ and $P(2)$.
The two vector distribution problems are similar

- Nonzero pattern of row i of A equals the nonzero pattern of column i of A^T: u_is is sent from $P(s)$ to $P(t)$ in the multiplication by A $\iff v_i$ is sent from $P(t)$ to $P(s)$ in the multiplication by A^T.
- We can find a good distribution ϕ_u given $\phi = \phi_A$ by finding a good distribution ϕ_v given $\phi = \phi_{A^T}$.
- Hence, we only solve one problem, namely for v. We can apply this method also for u, with A^T instead of A.
General case: arbitrary q_j values

- Columns with $q_j = 0$ or $q_j = 1$ do not cause communication and are omitted from the problem. Hence, we assume $q_j \geq 2$, for all j.
- For processor $P(s)$:

\[h_s(s) = \sum_{0 \leq j < n, \phi_v(j) = s} (q_j - 1), \]

and

\[h_r(s) = |\{j : j \in J_s \wedge \phi_v(j) \neq s\}|. \]

- Aim: for given matrix distribution and hence given communication volume V, minimise

\[h = \max_{0 \leq s < p} \max (h_s(s), h_r(s)). \]
An egoistic processor tries to minimise its own
\(h(s) = \max(h_r(s), h_s(s)) \) without consideration for others.

To minimise \(h_r(s) \), it just has to maximise the number of components \(v_j \) with \(j \in J_s \) that it owns.

To minimise \(h_s(s) \), it has to minimise the total weight of these components, where the weight of \(v_j \) is \(q_j - 1 \).

A locally optimal strategy is to start with \(h_s(s) = 0 \) and \(h_r(s) = |J_s| \) and grab the components in order of increasing weight, each time adjusting \(h_s(s) \) and \(h_r(s) \), as long as \(h_s(s) \leq h_r(s) \).
Denote the resulting optimal value of $h_r(s)$ by $\hat{h}_r(s)$, that of $h_s(s)$ by $\hat{h}_s(s)$, and that of $h(s)$ by $\hat{h}(s)$. We have

$$\hat{h}_s(s) \leq \hat{h}_r(s) = \hat{h}(s), \text{ for } 0 \leq s < p.$$

The value $\hat{h}(s)$ is a local lower bound on the actual value that can be achieved: $\hat{h}(s) \leq h(s)$, for all s.
Example vector distribution problem

<table>
<thead>
<tr>
<th>(s = 0)</th>
<th>1</th>
<th>.</th>
<th>1</th>
<th>.</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>.</td>
<td>.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>.</td>
<td>.</td>
<td>1</td>
</tr>
<tr>
<td>(q_j =)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>(j =)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

- A 1 in the table denotes that \(P(s)\) owns a nonzero in column \(j\) and hence needs \(v_j\).
- Columns are ordered by increasing \(q_j\).
- Processor \(P(0)\) wants \(v_0\) and \(v_2\), but nothing more, so that \(\hat{h}_s(0) = 2\), \(\hat{h}_r(0) = 4\), and \(\hat{h}(0) = 4\).
- The fanout will cost at least \(4g\).
Algorithm based on local bound

- Define the generalised lower bound $\hat{h}(J, ns_0, nr_0)$ for a given index set $J \subset J_s$ and a given initial number of sends ns_0 and receives nr_0.
- Initial communications are due to columns outside J.
- Bound is computed by the same method, but starting with $h_s(s) = ns_0$ and $h_r(s) = nr_0 + |J|$.
- Note that $\hat{h}(s) = \hat{h}(J_s, 0, 0)$.
- Our algorithm gives preference to the processor that faces the toughest future, i.e., the processor with the highest current value $\hat{h}(s)$.

Vector distribution
Initialisation of algorithm

\[
\text{for } s := 0 \text{ to } p - 1 \text{ do }
\begin{align*}
L_s & := J_s; \\
h_s(s) & := 0; \\
h_r(s) & := 0;
\end{align*}
\]

- \(L_s\) is the index set of components that may still be assigned to \(P(s)\).
- The number of sends caused by the assignments done so far is registered as \(h_s(s)\); the number of receives as \(h_r(s)\).
- The current state of \(P(s)\) is represented by the triple \((L_s, h_s(s), h_r(s))\).
Termination of algorithm

\[\text{for } s := 0 \text{ to } p - 1 \text{ do}\]
\[
\text{if } h_s(s) < \hat{h}_s(L_s, h_s(s), h_r(s)) \text{ then } \\
\quad \text{active}(s) := true; \\
\text{else } \text{active}(s) := false; \\
\]

- Note that \(n s_0 \leq \hat{h}_s(J, n s_0, n r_0)\), so that trivially \(h_s(s) \leq \hat{h}_s(L_s, h_s(s), h_r(s))\).

- A processor will not accept more components once it has achieved its optimum, when \(h_s(s) = \hat{h}_s(L_s, h_s(s), h_r(s))\).
Main loop of algorithm

while \((\exists s : 0 \leq s < p \land \text{active}(s))\) do

\(s_{\text{max}} := \arg\max(h_r(L_s, h_s(s), h_r(s)) : 0 \leq s < p \land \text{active}(s))\);

\(j := \min(L_{s_{\text{max}}}); \{j \text{ has minimal } q_j \}\)

\(\phi_v(j) := s_{\text{max}};\)

\(h_s(s_{\text{max}}) := h_s(s_{\text{max}}) + q_j - 1;\)
Main loop of algorithm

\[
\text{while } (\exists s : 0 \leq s < p \land \text{active}(s)) \text{ do }
\]
\[
s_{\text{max}} := \text{argmax}(\hat{h}_r(L_s, h_s(s), h_r(s)) : 0 \leq s < p \land \text{active}(s));
\]
\[
j := \min(L_{s_{\text{max}}}); \{j \text{ has minimal } q_j \}
\]
\[
\phi_v(j) := s_{\text{max}};
\]
\[
h_s(s_{\text{max}}) := h_s(s_{\text{max}}) + q_j - 1;
\]

\text{for all } s : 0 \leq s < p \land s \neq s_{\text{max}} \land j \in J_s \text{ do }
\]
\[
h_r(s) := h_r(s) + 1;
\]

\text{for all } s : 0 \leq s < p \land j \in J_s \text{ do }
\]
\[
L_s := L_s \setminus \{j\};
\]
\[
\text{if } h_s(s) = \hat{h}_s(L_s, h_s(s), h_r(s)) \text{ then }
\]
\[
\text{active}(s) := false;
\]
Special case: $q_j \leq 2$

- Vertex $s = \text{processor } s, \ 0 \leq s < p$
- Edge $(s, t) = \text{processor pair sharing matrix columns}$
- Edge weight $w(s, t) = \text{number of matrix columns shared}$

Problem: assign each matrix column/vector component to a processor, balancing the number of data words sent and received.
Transform into unweighted undirected graph

- Assign two shared columns: one to processor \(s \), one to \(t \).
 \[w(s, t) := w(s, t) - 2. \]
- Repeat until all edge weights \(\equiv 0 \) or \(1 \).
Unweighted undirected graph
Transform into directed graph

- Walk path starting at odd-degree vertex
- Remove walked edges from undirected graph
- Edge $s \rightarrow t$: processor s sends, t receives
- Even-degree vertices remain even-degree
- Repeat until all degrees in undirected graph are even.
Transform into directed graph
Transform into directed graph
Transform into directed graph

- Walk path starting at even-degree vertex
- Repeat until undirected graph empty
- Solution is provably optimal (see Bisseling & Meesen 2005)
Summary

- BSP cost is a natural metric that encourages communication balancing.
- For the general vector distribution problem, we have developed a heuristic method, which works well in practice.
- The heuristic method is based on assigning vector components to the processor with the toughest future, as predicted by an egoistic local bound.
- For the special case with at most 2 processors per matrix column, we have obtained an optimal method based on walking paths in an associated graph, starting first at odd-degree vertices.