Sorting

(PSC2 §1.8)
Quicksort (Hoare 1962)

input: \(x \): vector of length \(n \), interval \([a, b]\) with \(0 \leq a \leq b < n \).

output: \(x \) is sorted with \(x_i \leq x_j \) for all \(i, j \) with \(a \leq i \leq j \leq b \).

function \textsc{Quicksort}(x, a, b)

\[
\begin{align*}
 i & := \text{Split}(x, a, b); \\
 \text{if } i - 1 > a & \text{ then} \\
 & \text{Quicksort}(x, a, i - 1); \\
 \text{if } i + 1 < b & \text{ then} \\
 & \text{Quicksort}(x, i + 1, b);
\end{align*}
\]
Index r, with $0 \leq r < n$, is a splitter if

\[x_i < x_r \text{ for } i < r, \]
\[x_i \geq x_r \text{ for } i \geq r. \]

The vector \mathbf{x} of length $n = 10$ has one splitter, $i = 5$, with value $x_5 = 8$:

\[
\begin{array}{cccccccccc}
 x_i = & 3 & 6 & 2 & 7 & 5 & 8 & 13 & 14 & 10 & 11 \\
 i = & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]
Splitting a vector based on a random pivot

function `SPLIT(x, a, b)`

1. pick `piv`, with `a ≤ piv ≤ b`;
2. `val := x_{piv}`;
3. `swap(x_{piv}, x_{b})`;
4. `i := a`;
5. for `j = a to b − 1` do
 - if `x_j < val` then
 - `swap(x_i, x_j)`;
 - `i := i + 1`;
 - `swap(x_i, x_{b})`;
6. return `i`;

Loop invariant: at the start of iteration `j`

- `x[a, i − 1] < val`
- `x[i, j − 1] ≥ val`
- `x[j, b − 1]` have not been processed yet.
Parallel regular sample sort (Shi and Schaeffer 1992)
BSP algorithm: supersteps 0, 1

input: \(x: \) vector of length \(n\), \(n \mod p^2 = 0\), \(x_i \neq x_j\) for all \(i \neq j\).
\[\text{distr}(x) = \phi, \text{ with } \phi(i) = i \text{ div } b, \text{ for } 0 \leq i < n, \text{ where } b = n/p.\]

output: \(x\) is sorted with \(x_i \leq x_j\) for all \(i, j\) with \(0 \leq i \leq j < n\).
\(x\) is block distributed with variable block size \(b_s \leq 2b\).

\{ Sort the local block and create samples \} \quad \rightarrow \quad \text{Superstep (0)}
Quicksort\((x, sb, (s + 1)b - 1)\);
\text{for } i := 0 \text{ to } p - 1 \text{ do }
\quad sample_s[i] := x[sb + i \cdot \frac{n}{p^2}];

\{ Broadcast the samples \} \quad \rightarrow \quad \text{Superstep (1)}
\text{for } t := 0 \text{ to } p - 1 \text{ do }
\quad \text{put } sample_s \text{ in } P(t);
\ldots
Cost analysis: supersteps 0, 1

- Assumption: \(n \mod p = 0 \) so each processor has a block of exactly \(\frac{n}{p} \) array elements.
- Assumption: \(\frac{n}{p} \mod p = 0 \) so each processor has \(p \) subblocks with exactly \(\frac{n}{p^2} \) array elements.
- Sorting an array of length \(\frac{n}{p} \) costs
 \[
 T_{(0)} = \frac{n}{p} \log_2 \frac{n}{p} + l
 \]
- Broadcasting \(p \) samples to \(p - 1 \) other processors costs
 \[
 T_{(1)} = p(p - 1)g + l.
 \]
BSP algorithm: superstep 2

{ Concatenate and sort the samples }
for $t := 0$ to $p - 1$ do
 for $i := 0$ to $p - 1$ do
 \(sample[tp + i] := sample_t[i] \)
 \(start[t] := tp \)
 \(start[p] := p^2 \)
 Mergesort(\(sample, 0, p^2 - 1, start, p \))

{ Create splitters }
for $t := 0$ to $p - 1$ do
 \(splitval[t] := sample[tp] \)
 \(splitval[p] := \infty \)
Cost analysis: superstep 2

- The p^2 samples are already arranged as p sorted parts, so we use a mergesort instead of quicksort.
- Mergesort repeatedly merges a pair of sorted parts, in $\lceil \log_2 p \rceil$ phases, each costing p^2 flops.
- Mergesort(x, start, p) sorts the vector x using the fact that the intervals $[\text{start}[t], \text{start}[t + 1] - 1]$ are already sorted, for $t = 0, \ldots, p - 1$.

\[T(2) = p^2 \lceil \log_2 p \rceil + l. \]
BSP algorithm: superstep 3

\{ Split the local block and send its parts \}

\textbf{for} \quad t := 0 \quad \textbf{to} \quad p - 1 \quad \textbf{do}

\{ Contribution from \(P(s) \) to \(P(t) \) \}

\(X_{st} := \{ x_i : \; sb \leq i < (s + 1)b \land \)

\(\text{splitval}[t] \leq x_i < \text{splitval}[t + 1] \}; \)

put \(X_{st} \) in \(P(t) \);
BSP algorithm: superstep 4

\{ Concatenate the received parts \}
\[X_s := \bigcup_{t=0}^{p-1} X_{ts}; \]

\{ Sort the local block \}
\[start_s[0] := 0; \]
\[\text{for } t := 1 \text{ to } p \text{ do} \]
\[\quad start_s[t] := start_s[t - 1] + |X_{t-1,s}|; \]
\[bs := start_s[p]; \]
\[\text{Mergesort}(X_s, start_s, p); \]
Cost analysis: supersteps 3 and 4

- Superstep 3: each processor sends at most all its data (b values), and receives at most b_s data, so

$$T_{(3)} = \max_s \max(b, b_s)g + l.$$

- Superstep 4: p operations to compute the starts.
- Mergesort repeatedly merges a pair of sorted parts, in $\lceil \log_2 p \rceil$ phases, each accessing at most all the b_s local data, so

$$T_{(4)} = p + \max_s b_s \lceil \log_2 p \rceil + l.$$
Proof that $b_s \leq 2b$ (1)

- A **subblock** is a part of the locally sorted vector of length $\frac{n}{p^2}$ that starts with a sample.
- There are p local subblocks.
- Consider a processor $P(s)$ with fixed s, containing b_s output data.
- The local output block contains exactly p samples, and hence exactly p subblocks contributing a sample, in total contributing at most $p \cdot \frac{n}{p^2} = \frac{n}{p} = b$ data values.
- Example: subblock $(17,19,23)$ with sample 17 contributes to $P(2)$.

Proof that $b_s \leq 2b$ (2)

- Thinking alert! Now consider contributions by a subblock that does not contribute a sample.
- Example: subblock (14,16,18) only contributes 18 to $P(2)$ but not the sample 14.
- Each processor $P(t)$ can contribute at most one such subblock to $P(s)$, because the subblock must have a value $< \text{splitval}[s]$ and a value $\geq \text{splitval}[s]$.
- Other subblocks of $P(t)$ will be completely to the left or right of that subblock and cannot contribute.
- Total contribution from all processors is at most $p \cdot \frac{n}{p^2} = \frac{n}{p} = b$ data values.
- Total size is $b_s \leq 2b$.
Total cost

\[T_{\text{samplesort}} = \frac{n}{p} \log_2 \frac{n}{p} + p^2 \lceil \log_2 p \rceil + \frac{2n}{p} \cdot \lceil \log_2 p \rceil \]
\[+ \left(p(p - 1) + 2 \frac{n}{p} \right) g + 5l \]
\[\approx \frac{n}{p} \left(\log_2 n + \log_2 p \right) + p^2 \log_2 p + \left(p^2 + 2 \frac{n}{p} \right) g + 5l \]

▶ Efficient if \(p^2 \leq \frac{n}{p} \), i.e. \(p \leq n^{1/3} \).
Parallel samplesort uses samples at regular intervals to split local data into \(p \) subblocks.

The resulting imbalance of parallel samplesort in memory requirements is a factor of at most 2.

Further oversampling can reduce this factor.

A BSP samplesort algorithm can be formulated with 3 computation supersteps and 2 communication supersteps.