Mastermath midterm examination Parallel Algorithms

Teacher: Rob H. Bisseling, Utrecht University

October 26, 2022

Each of the four questions is worth 10 points. Total time 120 minutes. Closed-book exam. Motivate you answers!

1. (a) [5 pt] What is a mixed superstep in a BSP algorithm?
(b) [5 pt] Explain the BSP cost of a mixed superstep. Give the meaning of the variables you use in the explanation.
2. Let \mathbf{x} be a given vector of length n, which is distributed by the block distribution over p processors, with $n \bmod p=0$. We want to compute the vector \mathbf{y}, also of length n, defined by

$$
y_{i}=\max \left\{x_{j}: 0 \leq j \leq i\right\} \quad \text { for } 0 \leq i<n .
$$

(a) [5 pt] Give an efficient BSP algorithm for processor $P(s)$ (in the notation we learned) for the computation of the vector \mathbf{y}. The output vector y must be obtained in the block distribution.
(b) [5 pt] Analyse the BSP cost of your algorithm. Here, assume that a comparison costs one flop, but an assignment is for free.
3. Let A be an $n \times n$ matrix, which is distributed by a square Cartesian distribution with $p=M^{2}$ processors. Assume that n and M are powers of 2 with $n>M$. Furthermore, assume we write A in block form as

$$
A=\left[\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right]
$$

where $A_{00}, A_{01}, A_{10}, A_{11}$ are matrices of size $n / 2 \times n / 2$.
(a) $[3 \mathrm{pt}]$ We want to compute the matrix

$$
B=\left[\begin{array}{ll}
A_{00}+A_{11} & A_{10}-A_{01} \\
A_{10}+A_{01} & A_{00}-A_{11}
\end{array}\right]
$$

Choose an efficient distribution for A and B, either the square block distribution or the square cyclic distribution, with $\operatorname{distr}(A)=$ distr (B). Be sure to motivate your choice.
(b) $[4 \mathrm{pt}]$ Describe a parallel algorithm for the computation of B with your chosen distribution. Use the notation we have learned to express algorithms, and use $a_{i j}$ and $b_{i j}$ to denote the elements of the matrices A and B, respectively.
(c) $[3 \mathrm{pt}]$ Analyse the BSP cost of your algorithm.
4. Cholesky decomposition is the equivalent of LU decomposition for symmetric matrices A; it computes L with $A=L L^{\mathrm{T}}$. If A is symmetric positive definite (SPD), the algorithm does not need pivoting. For this situation, the sequential algorithm is given by Algorithm 1. In the algorithm, A being SPD guarantees that the square root is always taken from a positive value $a_{k k}$.

```
Algorithm 1 Sequential Cholesky decomposition.
Input: \(A: n \times n\) matrix, \(A=\operatorname{Lower}\left(A^{(0)}\right)\), i.e. the lower triangular part.
Output: \(A: n \times n\) matrix, \(A=L\), with
    \(L: n \times n\) lower triangular matrix, such that \(L L^{\mathrm{T}}=A^{(0)}\).
    for \(k:=0\) to \(n-1\) do
    \(a_{k k}:=\sqrt{a_{k k}}\)
    for \(i:=k+1\) to \(n-1\) do
        \(a_{i k}:=a_{i k} / a_{k k} ;\)
    for \(j:=k+1\) to \(n-1\) do
        for \(i:=j\) to \(n-1\) do
            \(a_{i j}:=a_{i j}-a_{i k} a_{j k} ;\)
```

(a) $[3 \mathrm{pt}]$ Formulate (in the notation we have learned) the computation superstep of a BSP algorithm for processor $P(s, t)$ that parallelises the matrix update (the last three lines) of Algorithm 1. Assume a square $M \times M$ cyclic distribution for the matrix, with $p=M^{2}$.
(b) $[2 \mathrm{pt}]$ Compare the BSP cost of the matrix update in stage k to that of the LU decomposition. You may give the result as an approximation.
(c) [3 pt] Describe (in words) an efficient communication superstep preceding the matrix update that obtains the necessary values from column k of the matrix.
(d) $[2 \mathrm{pt}]$ Compare the BSP cost of this communication in stage k to that of the LU decomposition. You may give the result as an approximation.

