
Mastermath midterm examination
Parallel Algorithms. Solution

Teacher: Rob H. Bisseling, Utrecht University

October 26, 2022

1. (a) A mixed superstep contains both computation and communica-
tion. Each processor performs a number of operations on local
data and it sends data to other processors or it receives data from
them.

(b) The cost of a mixed superstep is an expression

T = w + hg + l,

where w is the maximum number of flops of a processor in the
superstep, h = max(hs, hr) with hs the maximum number of data
words a processor sends, hr the maximum number of data words
a processor receives, g the time per data word, l the global syn-
chronisation time.

2. (a) The basic idea is that every processor P (s) computes its local
partial maxima, without regard for the others. P (0) will then
already have the correct result, but the others will have to perform
a correction, which consists of comparing the maximum obtained
with the maximum for all processors P (t) with t < s. This can be
done by each processor sending its maximum value to all higher-
numbered processors. The maximum of the received maxima is
then computed and in a final pass through the local data, the
correction is carried ou. This is shown in the following algorithm:

1



input: x vector of length n, distr(x) = block.
output: y vector of length n, distr(y) = block,

yi = max{xj : 0 ≤ j ≤ i} for 0 ≤ i < n.

b = dn/pe; . Superstep (0)
maxval s := −∞;
for i := sb to (s + 1)b− 1 do

if xi > maxval s then
maxval s := xi;

yi := maxval s;

for t := s + 1 to p− 1 do . Superstep (1)
put maxval s in P (t);

maxval := −∞; . Superstep (2)
for t = 0 to s− 1 do

if maxval t > maxval then
maxval := maxval t;

for i := sb to (s + 1)b− 1 do
yi := max(yi,maxval);

(b) The cost of superstep (0) is n
p

because 1 comparison is performed

for every local element. The cost of superstep (1) is (p − 1)g
because P (0) sends p− 1 data and other processors send less, and
P (p− 1) receives p− 1 data, and others receive less. The cost of
superstep (2) is p − 1 + n

p
because of at most p − 1 comparisons

for computing maxval , and n
p

comparisons (taking a max) for the
corrections. The total cost is thus

T =
2n

p
+ p− 1 + (p− 1)g + 3l.

3. (a) We choose the square cyclic distribution, because the four sub-
matrices of A will have exactly the same distribution. Here we
use the fact that n,M are powers of two, so n mod M = 0 and
the submatrices fit with the distribution. Also n > M so the
case n = M is excluded, where submatrices would be on differ-
ent subsets of the processors. Now submatrices can be added or
subtracted without any communication.

(b) The parallel computation of B becomes:

2



for all i : 0 ≤ i < n/2 ∧ i mod M = s do
for all j : 0 ≤ j < n/2 ∧ j mod M = t do

bij := aij + an/2+i,n/2+j;
bi,n/2+j := an/2+1,j − ai,n/2+j;
bn/2+i,j := an/2+1,j + ai,n/2+j;
bn/2+i,n/2+j := aij − an/2+i,n/2+j;

(c) The BSP cost is n2

p
+ l, because every processor computes n2

p
ele-

ments of B, each requiring one flop. No communication is needed.
The computation of B resembles part of the Strassen algorithm
for matrix multiplication, which similarly benefits from a square
cyclic distribution in the parallel case.

4. (a) The matrix update for P (s, t) becomes:

for all j : k + 1 ≤ j < n ∧ j mod M = t do
for all i : j ≤ i < n ∧ i mod M = s do

aij := aij − aikajk;

(b) First we consider the sequential case. For LU decomposition, the
number of elements that are updated is (n−k−1)2 = m2, where we
write m = n− k− 1. These are all the elements in the lower right
hand corner. For Cholesky decomposition, we only update the
(m2−m)/2 elements below the main diagonal and the m elements
on the diagonal. So together, (m2 + m)/2 ≈ m/2 elements. We
save about a factor of 2 in flops. In the parallel case, all processors
have about an equal share of the matrix elements. This also holds
for the Cholesky decomposition, since the lower triangular part is
spread nearly evenly over the processors. Therefore, in the parallel
case we also save about a factor of 2 in flops.

(c) To update matrix element aij, we need two elements from col-
umn k, namely aik and ajk. If we send aik to both processor
row P (i mod M, ∗) and processor column P (∗, i mod M), every
processor obtains the information it needs.

We want to use a two-phase broadcast to make this efficient. First
we spread the elements from column k, for instance by sending aik
from P (i mod M,k mod M) to P (i mod M, (i div M) mod M).
Then we send the elements to their final destination.

3



(d) In LU decomposition, we spread column k and row k in the first
phase, costing about 2 m

M
g. For Cholesky decomposition, we only

need to spread column k, costing m
M
g.

In LU decomposition, each processor then has about m
p

values of
column k which need to be sent in the second phase to M − 1
processors, and the same for row k, at a total cost of

2
m

p
· (M − 1)g ≈ 2

m

M
g.

For Cholesky decomposition, each processor has about m
p

values
of column k, which need to be sent in the second phase to 2M − 1
processors, at a total cost of

m

p
· (2M − 1)g ≈ 2

m

M
g.

The total communication cost for the superstep is then 4 m
M
g for

LU decomposition and 3 m
M
g for Cholesky decomposition. There-

fore, we save about 25% in communication cost.

4


