Two-dimensional cache-oblivious sparse matrix—vector
multiplication

A.N. Yzelman?®, Rob H. Bisseling®

% Mathematical Institute, Utrecht University, P.O. Box 80010, 8508 TA Utrecht, The Netherlands

Abstract

In earlier work, we presented a one-dimensional cache-oblivious sparse matrix—vector
(SpMV) multiplication scheme which has its roots in one-dimensional sparse matrix par-
titioning. Partitioning is often used in distributed-memory parallel computing for the
SpMV multiplication, an important kernel in many applications. A logical extension is
to move towards using a two-dimensional partitioning. In this paper, we present our re-
search in this direction, extending the one-dimensional method for cache-oblivious SpMV
multiplication to two dimensions, while still allowing only row and column permutations
on the sparse input matrix. This extension may require a generalisation of the data
structure, to a datastructure based on blocks with compressed row or column storage
within each block. Experiments performed on a set of sparse matrices show further im-
provements of the two-dimensional method compared to the one-dimensional method,
especially in those cases where the one-dimensional method already provided significant
gains. The largest gain obtained by our new reordering is almost a factor of 3 in SpMV
speed, compared to the natural matrix ordering.

Keywords: matrix—vector multiplication, sparse matrix, parallel computing, recursive
bipartitioning, two-dimensional, fine-grain, cache-oblivious
2010 MSC: 65F50, 65Y20, 05C65, 65Y04

1. Introduction

Our earlier work in [14] presents a cache-oblivious method to reorder arbitrary sparse
matrices so that performance increases during sequential sparse matrix—vector (SpMV)
multiplication y = Ax. Here, A is a sparse matrix, x the input vector, and y the output
vector. This method is based on a one-dimensional (1D) scheme for partitioning a sparse
matrix, with the goal of efficiently parallelising the SpMV multiply. Today, parallel
applications are moving towards using two-dimensional (2D) partitioning methods in
preference over 1D methods. In this paper, we show that we can use the better-quality 2D
partitioning also in sequential SpMV multiplication, in some instances gaining additional
factors over the original 1D method in terms of SpMV efficiency.

Email addresses: A.N.Yzelman@uu.nl (A.N. Yzelman), R.H.Bisseling@uu.nl (Rob H. Bisseling)

Preprint submitted to Parallel Computing 10th October 2010

The organisation of this paper is as follows: we first proceed with briefly explaining
the 1D method in Section 1.1, and presenting related work in Section 1.2, and immedi-
ately follow up with the extension to 2D in Section 2. These methods are subjected to
numerical experiments in Section 3. We draw our conclusions in Section 4.

1.1. The one-dimensional scheme

The sparsity structure of an m x n matrix A can be modelled by a hypergraph
H = (V,N) using the row-net model [2]. The columns of A are modelled by the vertices
in V, and the rows by the nets (or hyperedges) in N, where a net is a subset of the vertices.
Each net contains precisely those vertices (i.e., columns) that have a nonzero in the row
of A corresponding to the net. A partitioning of a matrix into p parts corresponds to a
partitioning of V into nonempty subsets Vy, ..., V,—1, with each pair of subsets disjoint
and U;V; = V. Given such a partitioning, the connectivity \; of a net n; in N can be
defined by

Ai = [{V5V; nni # 0},

that is, the number of parts the given net spans. Note that this model is 1D in the sense
that only the columns are partitioned, and not the rows. Such a partitioning can be
used to obtain a sequential cache-oblivious sparse matrix—vector (SpMV) multiplication
scheme [14], if the partitioning is constructed in the following iterative way.

First, the algorithm starts with a partitioning consisting of a single part, namely the
complete V. A single iteration of the partitioner then extends any given partitioning of k
parts to k + 1 parts by splitting a chosen part V; (i € [0,k — 1]) into two, yielding a new
partitioning V,...,V;. The goal of the partitioner is to obtain, after p — 1 iterations,
a final partitioning for which the load balance constraint |V;| < (1 + e)# for all
J € [0,p — 1] holds, with the following quantity minimised:

> (-1, (1)

im; EN

After each iteration that splits a subset of V into two parts, Viery and Vigne, the
hypergraph nets can be divided into three categories:

e N_: nets containing only nonzeroes from Vg,
e N: nets containing nonzeroes from both Vieg, and Vyigne (the cut nets), and
e N.: nets containing only nonzeroes from Viigns.

The key idea of the cache-oblivious SpMV multiplication is to apply row and column
permutations according to the data available after each iteration. Row permutations are
made according to the classifications of the nets corresponding to the rows of A. All rows
corresponding to nets in N, are permuted towards the bottom of the matrix, whereas
those corresponding to N_ are permuted towards the top. Other rows are left in the
middle. This defines row-wise boundaries in the matrix; the two blocks corresponding
to Nz N Vet and M. N Viight are referred to as a separator blocks. Column permutation
is done according to the vertex subset split: columns corresponding to vertices in Ve
are permuted to the left, and the others, from Viignt, to the right. Here, a single column

2

boundary appears. The resulting form of the permuted sparse matrix is called Separated
Block Diagonal (SBD).

Important is the demand that subsequent iterations do not violate any boundaries set
by earlier iterations. A row which needs to be permuted towards the top of the matrix,
moves towards its closest boundary in the upper direction. Note that this need not be
the same boundary for all rows in the same net category. A similar restriction applies
to column permutations. After p — 1 iterations of this scheme, the row and column
permutations applied to A can be written using two permutation matrices P, such
that PAQ corresponds to the permuted matrix. Note that this permutation generally
is unsymmetric. An example of a 1D partitioning and permutation according to this
scheme can be found in Figure 1(right).

Every subset V; corresponds to a set of consecutive matrix columns of PAQ. When
multiplying this matrix with a dense vector x, the V; thus correspond to small ranges
of this input vector. The key point is that if these ranges fit into cache, any cache
misses are incurred only on the rows that span multiple parts V;, provided the reordered
matrix is stored row-by-row such as with the well-known compressed row storage (CRS)
datastructure. In fact, when max |V;| elements from the input and output vector ezactly
fit into cache, when the rows corresponding to the cut nets are dense enough, and when
Zig-zag CRS storage (ZZ-CRS, as introduced in [14] and depicted by the dashed curve in
Figure 2, right) is used, an upper bound on the cache misses incurred is >, (A\; — 1) [14,
Section 5.2], i.e. exactly the quantity minimised by the partitioner. Applying further
iterations of the partitioner, thus further decreasing the corresponding range in the vector
x, theoretically does not harm cache efficiency; this method is therefore cache-oblivious
as it can be applied iteratively as far as possible and is then still expected to yield good
performance during SpMV multiplication.

From the hypergraph, a separator tree can be constructed during the partitioning;
this will be a useful tool during analysis in Section 2. After the first iteration, the pair
(Vi, N.), with V; the vertex set that was partitioned, becomes the root of this tree. This
root has two children, the left node which contains the vertices and nets in (Vjef;, N_),
and the right node (Vright7j\/'+). As the partitioner works recursively on Viery and Viigh,
these left and right nodes are replaced with subtrees, the roots of which are constructed
recursively in the same way as described above. The resulting tree will be binary. Usually,
depending on the partitioner, the depths of the leaf nodes differ by at most 1, so that
the tree is balanced.

1.2. Related work

Since we are now making our way into 2D techniques for improving cache locality,
other recent works become relevant, beyond those referred to in [14]. Previously, cache
locality in the input vector was improved, and the locality of the output vector was
never in question thanks to the (ZZ-)CRS ordering imposed on the nonzeroes, resulting
in linear access of the output vector. This also enabled the use of auto-tuning methods
like OSKI, introduced by Vuduc et al. [12], in conjunction with our reordering method.
A 2D method, however, tries to increase locality in the output vector as well, in the
hope that the obtained locality in both dimensions (input and output) can outperform
locality induced in only one of the dimensions. The objective is thus to minimise the
sum of cache misses within both the input and output vectors, and this entails breaking
the linear access to the output vector.

3

In dense linear algebra, the 2D approach has been successfully applied by blocking, the
process of dividing the matrix into submatrices (or a hierarchy thereof) of appropriate
sizes so that matrix operations executed in succession on these submatrices execute more
efficiently than when executed on the single larger sparse matrix [4, 10, 13]. By using
a Morton ordering (i.e., a recursive Z-like ordering) [8], the blocks can be reordered to
gain even more efficiency; additionally, the Morton ordering can also be used on high-
level blocks, while the low-level blocks still use row-major datastructures such as the
standard CRS. This gives rise to so called hybrid-Morton datastructures which, like the
method presented here, enable the use of specialised BLAS libraries on the low-level
blocks; see Lorton and Wise [7]. Similar techniques for sparse matrices include [9] for
sparse blocking into very small blocks, and [5] for using the Hilbert space-filling curve on
the nonzeroes of sparse matrices. Our method presented in the next section is much in
the same locality-enhancing spirit, even though our approach is different.

2. The two-dimensional scheme

The straightforward extension of the original scheme to 2D is natural when employing
the fine-grain model [3]. Using this model, a sparse matrix A is again modelled by a
hypergraph H = (V,N), but now such that each nonzero a;; corresponds to a vertex
in V. Each row and column is modelled by a net in N. A net contains exactly those
nonzeroes that appear in the corresponding row or column. For each net, the connectivity
A; over a partitioning Vp,...,V,—1 of V can still be defined as before. This enables us
to define cut row nets NS C N as row nets with connectivity larger than one, as well
as Vg, similar to the 1D case. Row and column permutations for p = 2 can then be
used to bring the arbitrary sparse input matrix in the form depicted in Figure 2(left),
the doubly separated block diagonal (DSBD) form. Note that there are now five different
separator blocks, namely NI N N NIV N NSO and NVI°W NN These together
form a separator cross, coloured red in Figure 2(left). An example of a matrix in DSBD
form obtained using this fine-grain scheme can be found in Figure 3(left).

This 2D scheme can be applied recursively. However, using a CRS datastructure
will result in more cache misses for p > 2 due to the column-wise separator blocks, if
the separator blocks are relatively dense; see Figure 2(right). Nonzeroes thus are better
processed block by block in a suitable order, and the datastructure used must support
this. These demands are treated separately in Section 2.1 and Section 2.3, respectively.

A separator tree can be defined in the 2D case, similar to the 1D case, but now with
nodes containing nets corresponding to both matrix rows and columns. Internal nodes
in the tree contain both cut rows and columns, corresponding to the separator crosses.
Leaf nodes correspond to the p non-separator blocks. An example of a separator tree in
the case of p = 4 is shown in Figure 4.

2.1. SBD block order

Figure 5 shows various ways of ordering the DSBD blocks. The main objective is to
visit the same regions of the input and output vectors as few times as possible. Accesses
in the vertical direction correspond with write accesses on the output vector, whereas
horizontal accesses correspond with read access on the input vector. Write accesses are
potentially more expensive; the block ordering avoiding the most unnecessary irregular

4

0 05 1 15 2 25 0 05 1 1.5 2 25
nz = 37269096 x 105 nz = 37269096 x 105

Figure 1: Spy plots of the wikipedia-2006 matrix, partitioned and reordered to SBD form using the
Mondriaan software [11]. The matrix has 2983494 rows and columns, and 37269096 nonzeroes. The left
spy plot shows the highly unstructured original link matrix. This matrix appears to dense because of the
size of the nonzero markers; in fact every matrix row contains only 12.5 nonzeroes on average. The right
spy plot shows the result after 1D partitioning with p = 10 and the load-imbalance parameter ¢ = 0.1.
Empty rows and columns correspond to web pages without incoming or outgoing links, respectively.

N TOW

Nrow
C

row
N

1 1 1
Neod o el e

Figure 2: Schematic view of a 2D matrix reordering using the fine-grain model, for p = 2 (left) and p = 4
(right). The figure on the right side also includes the ZZ-CRS ordering curve.

0 05 1 1.5 2 25 0 05 1 15 2 25
nz = 37269096 < 10° nz = 37269096 % 10°
Figure 3: Spy plots of the wikipedia-2006 matrix, like Figure 1, but now using 2D partitioning. The left

picture shows the result using the fine-grain scheme with p = 8. On the right, the Mondriaan scheme
with p = 9 was used. The load imbalance parameter is set to 0.1 in both cases.

y 2
g b 0 ‘

Figure 4: Illustration of a DSBD form with p = 4, and its corresponding separator tree. The sizes of the
non-separator blocks y X x are also shown in the picture, as are the small widths of the separator cross,
given by ¢ and Z.

accesses in the vertical direction thus theoretically performs best. From the orderings in
Figure 5, this best performing block order is ZZ-CCS.

When considering the vertical separator blocks, CRS is the perfect ordering for the
nonzeroes; the width in the column direction is typically small by grace of good parti-
tioning, and so the corresponding small range from the input vector fits into cache. Since
rows are treated one after the other, access to the output vector is regular, even linear,
so cache efficiency with regards to the output vector is good as well. This changes for the
horizontal separator blocks: there, the range in the output vector is limited and would
fit into cache, but the range corresponding to the input vector is large and access is in
general completely irregular. Demanding instead that the horizontal separators blocks
use the CCS ordering for individual nonzeroes, increases performance to mirror that of
the vertical separator blocks: input vector accesses then are linear, and the output vector
accesses are limited to a small range typically fitting into cache. Note that this scheme
can also be applied on the original 1D method, thus augmenting an ordering obtained
by 1D partitioning with a 2D sparse blocking scheme.

2.2. The Mondriaan partitioning scheme

Modelling a sparse matrix as a hypergraph using the fine-grain model has as a main
drawback the increased size of the hypergraph, compared to the simpler row-net model.
This generally leads to an increased partitioning time, hopefully justified by the increased
quality of the now 2D partitioning. Another drawback is the number of separator blocks
created when using the fine-grain scheme; each block, as mentioned earlier, incurs some
overhead and therefore reducing the number of blocks while retaining a 2D partitioning
increases efficiency. A compromise exists however, which is implemented in the Mondri-
aan sparse matrix partitioner software [11]. It combines two 1D methods as follows.

Apart from the row-net model, a column-net model can also be defined, identical to
the row-net model but with the roles of rows and columns reversed: each row corresponds
to a vertex in the hypergraph, and each column to a net. A cheaper way of obtaining a
2D partitioning for p > 2, then is to use a partitioner as described in Section 1.1, with
the following modification: during each iteration, both the hypergraphs corresponding
to a row-net and column-net representation are partitioned, and the solution yielding
the lowest cost, as given by Equation (1), is chosen. In the next iteration, again both
models are tried and the best is chosen; hence splits in both dimensions (row-wise and
column-wise) are possible during partitioning, but never both during the same iteration.
We will refer to this partitioning method as the Mondriaan scheme. An example of a
DSBD partitioning obtained using this scheme is shown in Figure 3(right).

It is easily seen that every solution arising from bipartitioning a row-net or column-net
hypergraph corresponds to a very specific solution in the fine-grain hypergraph, namely
the solution in which vertices are grouped by column or row as they are partitioned. This
means that the partitioning method based on the Mondriaan scheme can be represented
by a fine-grain hypergraph throughout the partitioning method; hence the separator tree
and the permutation strategy still work as presented.

It is worthwhile to exploit the form of the 2D DSBD ordering in the special case of
bipartitioning by the row-net or column-net model. The 1D row-net model yields the
picture in Figure 2(left) with the centre block and the two vertical rectangular blocks
removed from the separator cross (this corresponds to the original SBD form in [14]).
The column-net model is similar, having instead the centre block and the two horizontal

7

(c) Separators-last block ordering (d) ZZ-CCS block ordering

Figure 5: Various possible DSBD orderings for SpMV multiplication for p = 2. The black curve in the
upper right corners of the panels is included to show the curve trajectory in an unobfuscated view.

rectangular blocks removed. As such, using the Mondriaan scheme instead of the fine-
grain scheme in full recursive bipartitioning, nearly halves the number of separator blocks,
fromp+5(p—1)=6p—>5top+2(p—1)=3p—2 blocks.

2.8. A block-based datastructure

Two datastructures will be introduced here: ICRS, and a block-based datastructure.
The first can be viewed as an alternative implementation of the more standard CRS
datastructure. This datastructure can, just as standard CRS, be integrated into a block-
based datastructure.

With the Incremental CRS (ICRS) storage scheme [6], the main idea is to store for
each nonzero, instead of its column index, the difference between its column index and
that of the previous nonzero in the row. During the SpMV multiplication, a pointer
to the input vector then needs to be incremented with the difference, an overflow of
this pointer indicating a row change. This pointer overflows such that subtracting the
number of columns n afterwards yields the starting element of the input vector for the
next row. This next row is determined by using a row increment array, similar to
the column increment array, thus replacing and avoiding consultation of the traditional
CRS array controlling which row corresponds to which range of nonzeroes. The hope
is that this alternative implementation uses less instructions for the SpMV kernel and
reduces the datastructure overhead per row; instead of looping over each, possibly empty,
row of the sparse matrix, ICRS jumps only to the nonempty rows, therefore avoiding
unnecessary overhead. This is particularly useful for the separator blocks we encounter
after 2D partitioning; there, many empty rows (columns) are found in the case of vertical
(horizontal) separator blocks. Note that on the other hand, if there are no empty rows in
A, the row increment array does not have to be stored at all (since all increments would
equal one), thus further simplifying the SpMV kernel and yielding an additional gain in
efficiency.

We propose to store each matrix block in a separate (I)CRS or (I)CCS datastructure.
Upon performing a SpMV multiplication, the multiplication routines of the separate
datastructures are called in the order defined by the block order, on the same input
and output vectors; this yields a straightforward block-based datastructure. However,
calling several multiplications in sequence this way incurs some overhead: when a switch
between blocks is made, the pointers to the input and output vectors are reset to the
location corresponding of the first nonzero of the next block, and only then the actual
SpMYV kernel is called. Hence the gain with respect to cache efficiency of using this block-
based structure must be larger than the penalty incurred by this additional overhead; if
the quality of partitioning by the fine-grain and Mondriaan schemes is similar, then the
Mondriaan scheme is expected to perform better because there are fewer blocks. Instead
of this straightforward block-based datastructure, more advanced ideas may be exploited
here, such as a scheme which also compresses index (or increment) values as presented
by Bulug et al. in [1]; although some additional effort would be required to make this
work within our scheme.

2.4. Cache performance in recursion

Let us make some simplifying assumptions:

1. the storage scheme within each sparse block on the diagonal is ICRS,
9

the storage scheme for horizontally oriented off-diagonal separator blocks is ICCS,
the storage scheme for vertically oriented off-diagonal separator blocks is ICRS,
the number of parts in the partitioning is a power of two,

the horizontal block sizes (corresponding to a part of the input vector) are equal
and are denoted by x,

the maximum of the column separator widths is Z,

the vertical block sizes (corresponding to a part of the output vector) are equal and
are denoted by y, and

8. the maximum of the row separator widths is ¥;

Uk

e

see also Figure 4(left).

We calculate cache misses by analysing the binary separator tree, starting with the
root node, which corresponds to the largest separator cross (spanning the entire sparse
matrix). The two children of the root node then correspond to the remaining two sparse
blocks the partitioner has been recurring on. We only count non-obligatory cache misses,
because the obligatory ones, related to the first time data are accessed, are the same for
all orderings. The number of non-obligatory cache misses can be expressed as a function
on the root node, which recurs on its two children, et cetera. In fact, only the height of
the nodes will be required to calculate the cache misses: for each block ordering a function
f(@) will be constructed, which gives an upper bound on the number of non-obligatory
cache misses for a node with height ¢ + 1. The height of the leaves is 0 by definition,
hence an internal node of height 1 corresponds to a subpartitioning with p = 2, which we
take as the base case f(0). See also Figure 4. Note that by the power-of-two assumption
the separator tree is complete.

A single function f cannot be used to predict the cache misses for each node in every
situation. Cache behaviour may differ between nodes as in some cases the elements in the
input vector were already processed, thus making all accesses in the horizontal direction
non-obligatory. This happens for example in Figure 5a, when the separator block with
index 3 is processed. In general, there are four different possibilities, each modelled by a
separate function:

1. fo: no previous accesses in the corresponding input and output subvector have
been made,

2. f1: the corresponding input subvector has been brought into cache before,

fo: the corresponding output subvector has been brought into cache before,

4. f3: both the corresponding input and output subvectors have been brought into
cache before.

@

If £+ 1 is the height of the root node, fo(k) will give an upper bound on the total
theoretical number of non-obligatory cache misses.

2.4.1. CRS block ordering
First, the CRS block ordering (Figure 5a) is considered. In this case, fo(0) = 2(x+2),
and f3(0) = 42 + 3% + 2y + §. The expressions f1, fo will not appear in this analysis.
The recursive upper bounds are:
foli) = foli=1) + fa(i = 1) + 2@ +y) + (2" = g+ (2" + 1),
f3(i) =2 f3(i — 1)+ 2 (@ +y) + 2 + 1)z + (27 = D)7
10

By using f3(0) — fo(0) = 2(z + y) + Z + ¥, and
(fa=fo)(i) = (fs = fo)(i — 1)+ 2(x +y + T+),
direct formulae can be obtained:

f3(1) = 2 (@ +y) + ((+ /2027 =D+ (= Y2)27 + 15+ 2'£3(0),
(fs = fo)(@) = 2" (@ +) + (271 = 1)(@ +9),
fo(i) = f3(i) = (fs = fo) ()
= (i+ 12 e a2y + (i 4+ 1271 4+ (G- 1)2 +2)7.
Hence, when using this block ordering throughout the recursion, more cache misses

occur on the input vector. This formula will enable direct comparison to other block
orderings.

2.4.2. Zig-zag CCS block ordering
This order corresponds to the ordering shown in Figure 5d. Analysing this form, all

four functions fy,..., f3 are required as follows.
fo(0) = 2, fo@) = fili = 1) + foli = 1) + 2 (x + y) + (2" = DZ + (2' + 1),
f1(0) = 2(z +§) + 7, [G) = Al =1)+ f3(i - 1) + 2 e + 27y + 27 - 1) + (2 + 1)7,
f2(0) = 2y + 37, fo(i) = foli = 1) + fa(i = 1) + 2'z + 2y + (2 = DT + (27 +)7,
[200)=2(x+y) +3+375, f3(i)=2-f3(i — 1)+ 2" (@ +y)+ (2 - D)z + (27T + D)7
Note that:

(fs = fo)(i) = (2fs = fa— f1)(i = 1) + 2°(z + y + &+ §),

(fs = f)(GE) = (fs — f1)(i = 1)+ 2'(y + §),

(fs = f2)(@) = (fs — fo) (i — 1) + 2 (z +).

A direct formula for f3 can be obtained:
f3(i) = 27 @+ y) + ((i = Y2)2 T + 1)Z + ((i+ Y2)2 T — 1)§ + 27 f3(0)
= (i + 12z +y) + (@27 + D)@ + ((i +2)2 — 1)g,
and similarly for the above difference formulae,
(fs = f)(@) = @ =2)(y+9) + (fs = f1)(0)
= 2ty 4 (2 1)y,

(fs = f2)(@) = @7 =2)(x +3) + (fs — f2)(0)
=2y + (27 — 1)7,

(fs = fo) (@) = 2" (z +y) + (2! = 1)(@ + §).

This leads us to the following final form:

fo(i) = f3()) = (fs = fo) (@) =2 F (@ +y) + (i = D2+ 27 + (i + 127G (2)
11

The difference in non-obligatory number of cache misses between the CRS block
order and the ZZ-CCS block order is given by 2%z 4 (2042 — 2)7 + (2 — 2¢+2)§; hence
asymptotically, the ZZ-CCS block order is more efficient than the CRS block order when
T + 2% > 2y; assuming T = g, we can conclude ZZ-CCS always is preferable to the CRS
block order.

The expected cache misses for the ACRS and the Separators-last block ordering can
be obtained in similar fashion; for brevity, only the final forms are given below:

facrs(i) = (i + Y2)2 e + 2 (y + 3) + ((i — 127 + 2)g,
fSepLast(i) = (Z + 1/2)2i+1x + (7' + 1)2i+1y + ((Z - 1)2i+1 + 2)5: =+ ((Z - 1/2)2i+1 + l)g

If the partitioning works well, meaning that & < = (and § < y), then the ZZ-CCS
block order is superior to the ACRS block order, which in turn is better than the CRS
block order. The separators-last block order is in between the ACRS and CRS block
orders, with regards to expected performance.

3. Experimental results

Experiments have been performed on a supercomputer, called Huygens, which con-
sists of 104 nodes each containing 16 dual-core IBM Power6+ processors. For all ex-
periments, one node was reserved to perform the sequential SpMV multiplications (on
a single core) without interference from other processes. The Power6+ processor has a
speed of 4.7GHz per core, an L1 cache of 64kB (data) per core, an L2 cache of 4MB
semi-shared between the cores, and an L3 cache of 32MB per processor. This means that
an SpMV multiplication on a matrix with m + n = 8192 would fit entirely into the L1
cache, assuming the vector entries are stored in double precision. The same applies with
m + n = 524288 for the L2 cache and m + n = 4194304 for the L3 cache.

For the matrix reordering by 2D methods, the recently released Mondriaan 3.01 sparse
matrix partitioning software! [11] was used. The original 1D method also employed Mon-
driaan, but used an earlier test version of Mondriaan 3.0; the current one is potentially
faster, depending on the precise options given, and generates partitionings of slightly
better quality. Mondriaan now natively supports SBD and DSBD permutation of matri-
ces. Three datasets have been constructed using the Mondriaan partitioner beforehand;
the matrices in Table 1 were partitioned using a 1D (row-net) scheme, the 2D Mondriaan
scheme, and the 2D fine-grain scheme. These are the same matrices we used in our pre-
vious work [14], with the addition of a 2006 version of the wikipedia link matrix. In all
cases, the partitioner load-imbalance parameter was taken to be ¢ = 0.1, and the default
options were used (except those that specify the hypergraph model and permutation
type). The smaller matrices have been partitioned for p = 2-7, 10, 50, 100, whereas the
larger matrices were partitioned for p = 2-10. The construction times required for the
smaller matrices are of the order of a couple of minutes; e.g., the most time-consuming
partitioning, that of the matrix s3dkt3m2 in 2D by the fine-grain model with p = 100,
takes 8 minutes. This time typically decreases by more than a factor of two when parti-
tioning in 1D mode, e.g. taking 3 minutes for s3dkt3m2 with p = 100. The Mondriaan

L Available at: http://www.math.uu.nl/people/bisseling/Mondriaan/
12

scheme results in partitioning times usually between these two, although in the particular
case of s3dkt3m2, it is actually faster with 1 minute.

The partitioning time for the larger matrices using the fine-grain scheme measures
itself in hours: stanford with p = 10 takes about 2 hours, while wikipedia-2005 takes
about 7 hours and wikipedia-2006 23 hours. In 1D, running times decrease by more
than an order of magnitude, e.g., to 4 minutes for stanford, half an hour for wikipedia-
2005, and one hour for wikipedia-2006 with p = 10. The Mondriaan scheme, again with
p = 10, runs in 5 minutes for stanford, 7 hours for wikipedia-2005, and 21 hours for
wikipedia-2006.

The SpMV multiplication software? was compiled by the IBM XL compiler on Huy-
gens, using auto-tuning for the Power6+4 processor with full optimisation enabled®. The
software has been written such that it reads text files containing information on the SBD
reordered matrix (whether 1D or 2D), as well as information on the corresponding sep-
arator tree; thus, any partitioner capable of delivering this output can be used. Several
multiplications are done: a minimum of N = 900 for the smaller matrices, and a min-
imum of N = 100 for the larger matrices, to obtain an accurate average running time.
To ensure the results are valid, v/N SpMV multiplications were executed and timed as
a whole so as not to disrupt the runs too often with the timers. This was repeated v N
times to obtain a better estimate of the mean and a running estimate of the variance.
This variance was always a few orders of magnitude smaller than the mean.

In our experiments, we compare the following nine combinations of datastructures
and partitioning schemes:

CRS
ICRS (Row-net Mondriaan Fine-grain)
Block-based

Here, the CRS and ICRS datastructures correspond with plain implementations, not
making use of any kind of sparse blocking based on the separator blocks. Although here
indicated as a single datastructure, ‘block-based’ actually refers to several datastructures,
each with a different block order, including those depicted in Figure 5. These block-based
datastructures use ICRS on the diagonal blocks, ICCS on the vertical separator blocks,
and ICRS on the horizontal separator blocks. Any other combination of datastructures
(non-incremental, or ICRS and ICCS switched) results in uncompetitive strategies. Of
the partitioning schemes, note that the row-net scheme corresponds to a 1D partitioning,
and the Mondriaan and fine-grain schemes correspond to 2D partitioning. The original
1D method as introduced in [14] corresponds to CRS or ICRS combined with the row-net
partitioning scheme. For the full 2D method, various block orders have been tested with
the block-based datastructure. The CRS and ICRS datastructures combined with 2D
partitioning have been included since they do not incur any overhead with increasing
p at all; and thus can potentially overtake the block-ordered datastructures, especially
when there are few nonzeroes in the vertical separator blocks.

For each dataset, the best timing and its corresponding number of parts p is reported
in Table 2 for the smaller matrices, and Table 3 for the larger matrices. The best

2 Available at: http://www.math.uu.nl/people/yzelman/software/
3 Compiler flags: -O8 -q64 -qarch=auto -qtune=auto -DNDEBUG

13

corresponding datastructure is also reported. As in [14], most structured matrices are
hardly, or even negatively, affected by the reordering scheme, both with 1D and 2D
partitioning. Among the two exceptions is the nug30 matrix, in which the 1D scheme
gains 9 percent and the Mondriaan scheme 7 percent; the fine-grain scheme and the 1D
scheme with blocking do not perform well. The second structured exception is s3dkt3m2,
which gains about 6 percent when using the 1D blocking scheme or the Mondriaan
scheme. The original scheme and the fine-grain scheme are the less efficient schemes for
this matrix.

The unstructured matrices all have gains larger than 10 percent, with again the
Mondriaan scheme working best, only being surpassed once by the original 1D method on
the structured s3dkt3m2 matrix. The fine-grain scheme is less efficient, and is sometimes
being surpassed by the 1D method using blocking. It is notable that the Mondriaan
scheme performs better with the block datastructure only four out of the seven times,
and that in two of those cases the number of parts is quite large (50 and 100). The
same holds for the fine-grain scheme. In general, the Zig-zag block orders seem most
efficient, scoring fastest in four out of eight cases. The runner-up is ACRS with two out
of eight, as expected from the analysis, but with a smaller margin. Also as expected,
the CRS block order never is the most efficient block order in any of the experiments.
Most noteworthy is the gain found on the tbdlinux matrix; a 63 percent gain, almost a
factor of three speedup, obtained with the Mondriaan scheme and the ACRS block order.
The runner-up datastructures ACCS, Separators-last and the Zig-zag block orders attain
about 50 percent; significantly less than ACRS.

Tests on the larger matrices, shown in Table 3, display a more pronounced gain
for the 2D methods. The matrices where the 1D partitioning was not effective in our
previous work [14], namely stanford_berkeley and cagel4, perform only slightly better
in 2D, and the gains (stanford_berkeley, 8 percent) or losses (cagel4, also 8 percent)
remain limited. When partitioning did work in the original experiments, however, the
2D partitioning works even better, with the top gain observed with wikipedia-2006: 62
percent (Mondriaan scheme) versus the original gain of 45 percent. For the largest
matrices from our whole test set, the fine-grain scheme outperforms the 1D methods,
and in turn the Mondriaan-scheme dominates all other schemes; this was also the case
for the smaller matrices. The 1D scheme with blocking usually outperforms the original
1D scheme except on cagel4.

When using the Mondriaan scheme on the larger matrices, in the 4 out of 5 cases
where partitioning was successful, the CRS datastructure outperforms all block-based
datastructures. When using the fine-grain scheme, we observe the opposite. This indi-
cates that the number of separator blocks became large enough to profit from the block
ordering, while loss of efficiency caused by the overhead in the block datastructures did
not yet surface, with the values for p used here. This was also confirmed by some of
the positive results on the smaller dataset with large p which employed the Adapted
and Zig-zag block block datastructures. No clear preference for a specific block order
surfaced. Combined with the results on tbdlinux, this choice is suspected to be highly
matrix (and partitioning) dependent.

Noteworthy is that ICRS does not always outperform CRS; this only happened on
either smaller matrices or when many empty rows (or columns) were encountered, such as
in separator blocks. On larger matrices, CRS consistently outperforms ICRS, even after
repeated partitioning. With the block-based datastructures, ICRS did perform better

14

Name Rows Columns Nonzeroes Symmetry, origin

fidap037 3565 3565 67591 S struct. symm., FEM
memplus 17758 17758 126150 S struct. symm., chip design
rhpentium 25187 25187 258265 U chip design

1hr34 35152 35152 764014 S chemical process
nug30 52260 379350 1567800 S quadratic assignment
s3dkt3m2 90449 90449 1921955 S symm., FEM
tbdlinux 112757 21067 2157675 U term-by-document
stanford 281903 281903 2312497 U link matrix
stanford-berkeley 683446 683446 7583376 U link matrix
wikipedia-20051105 1634989 1634989 19753078 U link matrix

cageld 1505785 1505785 27130349 S struct. symm., DNA
wikipedia-20060925 2983494 2983494 37269096 U link matrix

Table 1: The matrices used in our experiments. The matrices are grouped into two sets by relative size,
where the first set fits into the L2 cache, and the second does not. An S (U) indicates that the matrix
is considered structured (unstructured).

than CRS when used within the smaller non-separator blocks.

4. Conclusions and future work

The cache-oblivious sparse matrix—vector multiplication scheme in [14] has been ex-
tended to fully utilise 2D partitioning, using the fine-grain model for a hypergraph parti-
tioning of sparse matrices. Alternatively, also the Mondriaan scheme for partitioning can
be used, which combines two different 1D partitioning schemes to obtain a 2D partition-
ing in recursion. Generalising the permutation scheme from 1D to 2D showed that the
usual datastructures for sparse matrices can be suboptimal in terms of cache efficiency
when the separator blocks are dense enough. To alleviate this, we propose to process the
nonzeroes block-by-block, each block having its own datastructure storing the nonzeroes
in CRS or CCS order, thus using a sequence of datastructures to store a single matrix.
This can be seen as a form of sparse blocking. The incremental implementation of CRS
and CCS should always be preferred when used as such a ‘sub-datastructure’. This type
of blocking can and has also been introduced into our previous 1D scheme from [14].

Experiments were performed on an IBM Power6+ machine, and the results for the
smaller matrices, where the input and output vector fit into L2 cache showed definitive
improvement over the original method, especially on the unstructured matrices. This
tendency is also observed in the case of the larger matrices; the improved 1D method,
utilising sparse blocking on a 1D reordered matrix, improved on the original scheme in
a more pronounced manner than on the smaller matrices. However, in both cases, all
methods are dominated by the Mondriaan scheme; for the larger matrices without the
need for sparse blocking.

The 2D method presented here still uses only row and column permutations, permut-
ing an input matrix A to PAQ, with which the multiplications are carried out. This
is unchanged from the original method. It is also still possible to combine this method
with auto-tuning (cache-aware) software such as OSKI [12] to increase the SpMV mul-
tiplication speed further; this software can be applied to optimise the separate block

15

Matrix Natural 1D [14] 1D & Blocking 2D Mondriaan 2D Fine-grain
fidap037 0.1167 0.113% (100) 0.117 (2) 0.113% (50) 0.113% (100)
memplus 0.3081 0.305% (4) 0.326 (2) 0.3002 (2) 0.3072 (3)
rhpentium 0.9132 0.6452 (50) 0.877 (100) 0.515% (100) 0.6352 (50)
Thr34 13662 1.3622 (5) 1.373 (2) 1.3363 (3) 1.3613 (5)
nug30 53500 4.846% (3) 5.355 (6) 4.943' (3) 5.2397 (3)
s3dkt3m2 7.8061 7.8471 (3) 7.285 (2) 7.269% (3) 7.503% (3)
tbdlinux ~ 6.428' 6.086% (10) 5.027 (4) 2.362° (50) 5.4333 (100)
1: Using the CRS datastructure

2: Using the Incremental CRS datastructure

3: Using the Zig-zag CRS block datastructure

4: Using the Zig-zag CCS block datastructure

5: Using the Adapted CRS block datastructure

6: Using the Adapted CCS block datastructure

7: Using the Separators-last block datastructure

Table 2: Time of an SpMV multiplication on the naturally ordered matrices, as well as on reordered
matrices, both in 1D and 2D, for the group of smaller matrices. Time is measured in milliseconds, and
only the best average running times from p = 2-7, 10, 50, 100 are given, followed by the number of parts
p (between parentheses) used to obtain the fastest SpMV. Footnotes indicate which datastructure was
employed. The ‘1D & Blocking’ category always uses the CRS block datastructure.

Matrix Natural 1D [14] 1D & Blocking 2D Mondriaan 2D Fine-grain
stanford 18.991 0.921(10) 9.52(9) 9.35T (8) 9.737 (10)
stanford_berkeley ~ 20.932 20.10% (4) 19.26 (9) 19.185 (4) 19.417 (9)
cagel4 69.361 75.47% (2) 76.48 (2) 74.372 (2) 75.132 (2)
wikipedia-2005 248.63! 154.93! (10) 142.32(9) 115.56! (8) 124.18° (8)
wikipedia-2006 688.421 378301 (9) 302.35 (9) 256.431 (9) 267.474 (8)

Table 3: Time of an SpMV multiplication on the naturally ordered matrices, as well as on reordered
matrices, both in 1D and 2D, for the group of larger matrices. Time is measured in milliseconds, and
only the best average running times from p = 2-10 are given, together with the number of parts p
resulting in the fastest SpMV. Footnotes indicate the exact datastructure used, as given in Table 2.

16

datastructures. Other research into sparse blocking, such as found in [1], may be inte-
grated as well. This method can also still be implemented using other partitioners than
Mondriaan, such as, e.g., PaToH [2], although modifications may be required to extract
an SBD permutation and separator tree, or to perform partitioning according to the
Mondriaan scheme.

A major difference with our earlier work is the use of sparse blocking. When used,
as the number of blocks increases, the overhead of having several datastructures backing
the permuted sparse matrix increases. This overhead is linear in p, and this means that
taking p — oo does eventually harm efficiency, when using sparse blocking, thus posing a
theoretical limit to the cache-oblivious nature of the reordering. Sparse blocking in this
way, was not found to be absolutely necessary to obtain greater speedups when using the
Mondriaan partitioning scheme.

Various items for future research can be readily identified:

e The block-based datastructure presented here is very basic, and a more advanced
datastructure might be introduced to lower overhead with increasing p, and thus
gain even more efficiency.

e The results indicate that the efficiency of specific block orders is matrix-dependent.
As the analysis already revealed differences between locality (and thus sizes) of
blocks in the row and column direction, this can perhaps lead to an efficient heuristic
when to choose which block order. This block order does not even have to be
constant in the recursion, and may require information on the density of separator
blocks.

e The difference in performance between standard CRS and ICRS seems dependent
on, amongst others, the matrix structure and size; it warrants future research to
find the precise dependencies. Again this can lead to an efficient heuristic for
adaptively choosing a datastructure, also within a simple or advanced block-based
datastructure.

e The speed of building up the datasets, although already greatly improved when
compared to the results in the original paper [14], can still be increased. In partic-
ular, the preparation times with the Mondriaan scheme can still be large.

Acknowledgements

We like to thank the SARA supercomputer centre in Amsterdam and the Netherlands
National Computer Facilities foundation (NCF) for computation time and help with
access to the Huygens computer.

References

[1] A.Burug, J. T. FINEMAN, M. FRriGo, J. R. GILBERT, AND C. E. LEISERSON, Parallel sparse matriz-
vector and matriz-transpose-vector multiplication using compressed sparse blocks, in SPAA ’09:
Proceedings of the twenty-first annual symposium on Parallelism in algorithms and architectures,
New York, NY, USA, 2009, ACM, pp. 233-244.

2] U. V. CATALYUREK AND C. AYKANAT, Hypergraph-partitioning-based decomposition for parallel
sparse-matriz vector multiplication, IEEE Trans. Parallel Distrib. Systems, 10 (1999), pp. 673-693.

17

3]

(4]

(5]
[6]
(7]
(8]

(9]

(10]

(11]
(12]
(13]

(14]

, A fine-grain hypergraph model for 2D decomposition of sparse matrices, in Proceedings 8th
International Workshop on Solving Irregularly Structured Problems in Parallel, IEEE Press, Los
Alamitos, CA, 2001, p. 118.

K. GoTo AND R. VAN DE GELIN, On reducing TLB misses in matrix multiplication, Tech. Rep. TR-
2002-55, University of Texas at Austin, Department of Computer Sciences, 2002. FLAME Working
Note #9.

G. HAASE AND M. LIEBMANN, A Hilbert-order multiplication scheme for unstructured sparse matri-
ces, International Journal of Parallel, Emergent and Distributed Systems, 22 (2007), pp. 213-220.
J. KOSTER, Parallel templates for numerical linear algebra, a high-performance computation library,
Master’s thesis, Utrecht University, Department of Mathematics, July 2002.

K. P. LorTON AND D. S. WISE, Analyzing block locality in Morton-order and Morton-hybrid ma-
trices, SIGARCH Comput. Archit. News, 35 (2007), pp. 6-12.

G. MORTON, A computer oriented geodetic data base and a mew technique in file sequencing, tech.
rep., IBM, Ottawa, Canada, March 1966.

R. NisutaLA, R. W. Vubpuc, J. W. DEMMEL, AND K. A. YELICK, When cache blocking of sparse
matriz vector multiply works and why, Appl. Algebra Engrg. Comm. Comput., 18 (2007), pp. 297—
311.

V. VALSALAM AND A. SKJELLUM, A framework for high-performance matrixz multiplication based
on hierarchical abstractions, algorithms and optimized low-level kernels, Concurrency and Compu-
tation: Practice and Experience, 14 (2002), pp. 805-839.

B. VASTENHOUW AND R. H. BISSELING, A two-dimensional data distribution method for parallel
sparse matriz-vector multiplication, SIAM Rev., 47 (2005), pp. 67-95.

R. Vubuc, J. W. DEMMEL, AND K. A. YELICK, OSKI: A library of automatically tuned sparse
matriz kernels, J. Phys. Conf. Series, 16 (2005), pp. 521-530.

R. C. WHALEY, A. PETITET, AND J. J. DONGARRA, Automated empirical optimizations of software
and the ATLAS project, Parallel Comput., 27 (2001), pp. 3-35.

A. N. YZELMAN AND R. H. BISSELING, Cache-oblivious sparse matriz—vector multiplication by using
sparse matriz partitioning methods, SIAM Journal on Scientific Computing, 31 (2009), pp. 3128—
3154.

18

