A medium-grain method for fast 2D bipartitioning of sparse matrices

Daniel M. Pelt (CWI, Amsterdam)
Rob H. Bisseling (Utrecht University)

IPDPS 2014
Sparse matrix-vector multiplication

- Matrix-vector multiplications are everywhere:
 - Linear systems, web search, simulations, ...
- Often, these problems are sparse
- However, they are becoming huge:
 - Millions of rows, columns, and nonzeros
- Efficient parallel sparse matrix-vector multiplication methods are needed!

\[
\begin{bmatrix}
\cos 90^\circ & \sin 90^\circ \\
-\sin 90^\circ & \cos 90^\circ \\
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\end{bmatrix} = \begin{bmatrix}
\theta \\
\frac{\pi}{2} \\
\end{bmatrix}
\]

Source: http://www.xkcd.com
Parallel sparse matrix-vector multiplication

- Approach: distribute elements of A, u, and v over different processors
- Compute $u = Av$ in four phases:
 1. Fan-out: Communicate values of v
 2. Multiplication: Perform local multiplication
 3. Fan-in: Communicate partial sums
 4. Summation: Calculate u

- Distribute work evenly \leftrightarrow Minimize communication
Sparse matrix partitioning

- **Partition** an $m \times n$ matrix A with N nonzeros into p parts A_i
- Even work distribution is usually enforced by a load balance constraint ε:
 \[
 \max_i |A_i| \leq (1 + \varepsilon) \frac{N}{p} \tag{1}
 \]
- The **communication volume** of a single row/column of A is:
 \[
 C_i = \lambda_i - 1 \tag{2}
 \]
 λ_i: number of parts that own a nonzero in that row/column
- The sum of C_i’s is an attainable lower bound on the total number of elements that need to be communicated
Hypergraph partitioning

- Sparse matrix partitioning is equivalent to hypergraph partitioning
- A hypergraph is a generalization of a graph
 - Consists of vertices and hyperedges (nets)
- Partition vertices into p parts, such that the hyperedge cut is minimized

Source: http://tinyurl.com/lls25e7
Introduction

Hypergraph partitioning

- Sparse matrix partitioning is equivalent to hypergraph partitioning
- Several standard models exist:
 - Row-net: each column of A becomes a vertex, each row a net
 - Col-net: each row of A becomes a vertex, each column a net
 - Fine-grain: each nonzero of A becomes a vertex, and each row and column a net
- 1D RN/CN models are efficient, but can be restrictive
- 2D fine-grain is general, but large
A medium-grain method for fast 2D bipartitioning of sparse matrices

Introduction

Hypergraph partitioning

- Most popular hypergraph partitioners use:
 - A multilevel coarsen & refine scheme
 - The Kernighan-Lin Fiduccia-Mattheyses method (KLFM) to refine
- During coarsening, reduce matrix size, but keep global structure
- Partition the smallest matrix using a (simple) method
- During each step of uncoarsening, refine the partitioning
Medium-grain method

- We propose a method that combines both standard models
- **Groups** of nonzeros in a single row or column become vertices
- The corresponding hypergraph has at most \(m + n \) vertices and \(m + n \) nets

<table>
<thead>
<tr>
<th></th>
<th>RN/CN</th>
<th>FG</th>
<th>MG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertices</td>
<td>rows/cols</td>
<td>nonzeros</td>
<td>groups</td>
</tr>
<tr>
<td>Small</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>General</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
A medium-grain method for fast 2D bipartitioning of sparse matrices

Method

Medium-grain method

1. **Split** A into two parts: A^c and A^r

 $A = A^r + A^c$

2. **Form a combined** $(m + n) \times (m + n)$ **matrix** B:

 $$B = \begin{bmatrix}
 I_n & (A^r)^T \\
 A^c & I_m
 \end{bmatrix} \tag{3}$$

3. **Apply the row-net model** to B

4. **Translate** partitioned B back to partitioned A
Medium-grain method

Method
The diagonal ensures that the comvol of A is identical to B

- Diagonal nonzeros of B are dummies
 - They are not included in the load balance equation
- If a row/column of B only includes the diagonal, it can be removed
 - This is common, so the number of vertices and nets will usually be $< m + n$
Initial split algorithm

- We need an algorithm to place each nonzero a_{ij} in either A^c or A^r.
- Empirically, we found that the following heuristic approach works very well:
 - Place nonzero a_{ij} in A^r if row i contains less nonzeros than column j.
 - Place nonzero a_{ij} in A^c if row i contains more nonzeros than column j.
 - All ties go to either A^r or A^c, depending on matrix dimensions.
- Intuition: small rows/columns have a higher probability of being uncut in the best partitioning.
Example of medium-grain on gd97_b
Iterative refinement

- After bipartitioning a matrix with any method, we can create a different initial split:
 - Place nonzeros assigned to part 0 in A^c, and the others in A^r
 - Or vice-versa
- Then, perform a quick KLFM refinement on B (using the row-net model), and iterate
- The result is a fast procedure for improving a given bipartitioning, based on the medium-grain method
A medium-grain method for fast 2D bipartitioning of sparse matrices

Method

Iterative refinement
Experiment

- All matrices of the University of Florida sparse matrix collection\(^1\) with \(500 \leq N \leq 5,000,000\) nonzeros:
 - 582 rectangular
 - 1007 structurally symmetric
 - 675 square unsymmetric

- Compare average comvol and partitioning time of 10 runs of:
 - Localbest: try row-net and col-net, take the best
 - Fine-grain
 - Medium-grain
 - All with and without iterative refinement

- Using the Mondriaan software package\(^2\)
 - With internal and PaToH\(^3\) as hypergraph partitioner

\(^1\)http://www.cise.ufl.edu/research/sparse/matrices/
\(^2\)http://www.staff.science.uu.nl/~bisse101/Mondriaan/
\(^3\)http://bmi.osu.edu/~umit/software.html#patoh
Results

Comvol, all matrices, $p = 2$, Mondriaan

![Diagram showing the communication volume relative to the best for different test cases and methods.](image-url)
Partitioning time, all matrices, $p = 2$, Mondriaan

![Graph showing partitioning time relative to best for different methods.](image-url)
Results

Partitioning time and comvol, $p = 2$, Mondriaan

<table>
<thead>
<tr>
<th>Comvol</th>
<th>LB</th>
<th>LB+IR</th>
<th>MG</th>
<th>MG+IR</th>
<th>FG</th>
<th>FG+IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec</td>
<td>1.00</td>
<td>0.94</td>
<td>1.02</td>
<td>0.96</td>
<td>1.28</td>
<td>1.11</td>
</tr>
<tr>
<td>Sym</td>
<td>1.00</td>
<td>0.75</td>
<td>0.80</td>
<td>0.67</td>
<td>0.88</td>
<td>0.69</td>
</tr>
<tr>
<td>Sqr</td>
<td>1.00</td>
<td>0.77</td>
<td>0.68</td>
<td>0.62</td>
<td>0.76</td>
<td>0.66</td>
</tr>
<tr>
<td>All</td>
<td>1.00</td>
<td>0.80</td>
<td>0.81</td>
<td>0.73</td>
<td>0.93</td>
<td>0.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>LB</th>
<th>LB+IR</th>
<th>MG</th>
<th>MG+IR</th>
<th>FG</th>
<th>FG+IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec</td>
<td>1.00</td>
<td>1.05</td>
<td>0.53</td>
<td>0.60</td>
<td>1.08</td>
<td>1.18</td>
</tr>
<tr>
<td>Sym</td>
<td>1.00</td>
<td>1.14</td>
<td>0.64</td>
<td>0.79</td>
<td>1.55</td>
<td>1.70</td>
</tr>
<tr>
<td>Sqr</td>
<td>1.00</td>
<td>1.08</td>
<td>0.66</td>
<td>0.75</td>
<td>1.23</td>
<td>1.32</td>
</tr>
<tr>
<td>All</td>
<td>1.00</td>
<td>1.10</td>
<td>0.62</td>
<td>0.72</td>
<td>1.32</td>
<td>1.43</td>
</tr>
</tbody>
</table>
Comvol, all matrices, $p = 64$, PaToH
Conclusions

- The medium-grain method creates 2D bipartitionings of sparse matrices
- Iterative refinement can be applied after any bipartitioning
- Results show that, compared to popular methods, MG+IR:
 - produces partitionings with the lowest communication volume
 - is the fastest at producing them
- Iterative refinement significantly improves the quality of all methods, at a small increase of partitioning time
- Open source implementation in version 4.0 of Mondriaan4
- For more information and/or questions: D.M.Pelt@cwi.nl

4http://www.staff.science.uu.nl/~bisse101/Mondriaan/