Expanding Mondriaan’s Palette

a study to improve Mondriaan, a hypergraph-based matriz partitioner
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Chapter 1

Introduction

In science as well as in industry, the demand for computing power is growing. With problem size increasing
and hardware price decreasing, parallel computers are becoming readily available. In the early days, it was
tedious work to develop and optimize an algorithm for a specific parallel computer. It often happened that
once the work was done, a faster computer was available and the not-so-portable algorithm had to be de-
veloped again for the new architecture. In the late 1980s the BSP (Bulk Synchronous Parallel) model was
introduced by Valiant [32]. With this model and the matching library (BSPlib) it is possible to design and

implement portable parallel algorithms with a predictable running time.

At the heart of many of these parallel algorithms lie sparse matrix-vector multiplications. To compute a
matrix-vector product in parallel we will have to distribute the matrix and the vectors over the processors,
and these processors will have to communicate. Since communicating takes time, it seems worth the effort
to try to minimize the amount of communication. For this purpose, several graph-based models have been
proposed. Good graph partitioners exist, but the graph models do not model the communication correctly.
Hypergraph models overcome this problem, but the existing hypergraph partitioners are slower than the
graph partitioners. In this thesis, we will focus on one such hypergraph-based matrix partitioner: Mon-
driaan [33], which was developed at the Utrecht University. We will try to make some improvements and

incorporate another hypergraph based model in the existing software.

In Chapter one we will give a short, general overview of the graph and hypergraph models that have found
widespread use. We will see that many other interesting problems from entirely different fields also give rise to
a (hyper)graph partitioning problem. A few (hyper)graph partitioning algorithms are discussed, and finally
we will elaborate on the Mondriaan package. In Chapter two, we present some new strategies for improving

the current Mondriaan hypergraph partitioning algorithm and discuss experimental results. Chapter three



will present a way to incorporate another hypergraph model into Mondriaan, and results for this approach.
In Chapter four we will elaborate on the hybrid method proposed in chapter three, and present results to
compare the hybrid method with the original Mondriaan. In Chapter 5, the improvements made are tested
on PageRank matrices. Finally, we draw conclusions and make recommendations for further development of

Mondriaan.

1.1 Problem background: parallel matrix-vector multiplication

As said before, matrix-vector multiplications u = Av lie at the heart of many computing applications. If
we divide u, v, and A over P processors the parallel matrix-vector multiplication algorithm consists of four

distinct phases:

1. fan-out: each processor gathers the vector elements it needs from the other processors,
2. local: each processor multiplies its local matrix elements with its local vector elements and sums them,
3. fan-in: each processor sends the local sums to the appropriate processors,

4. final: each processor adds the received sums.

To determine how the m X n matrix A and the vectors u, v are distributed we will introduce mappings

¢:(4,5) = {0,...,P -1},
bu i —{0,...,P -1}, (1.1)
¢v:j—{0,...,P -1},

for 0<i<m, 0<j<n.

Here, matrix element a;; belongs to processor ¢(i,j) and vector elements u;, v; belong to processor ¢y (4),
¢+ (j) respectively. Please note that we let ¢(¢,7) map only non-zero elements. The parallel multiplication
algorithm, adapted from algorithm 4.5 in [3] is listed in pseudo code in algorithm 1. In an actual imple-
mentation care must be taken to assure that vector elements are sent only once to each processor. Also, a

processor should not have to sent to, or receive from itself.



Algorithm 1 Parallel Matrix-Vector Multiplication for processor s

Input: matrix A, distributed according to ¢,
vector v, distributed according to ¢.
Qutput: vector u = Av, distributed according to ¢y,.
{fan-out phase}
for all (¢,5) : j € ¢5'(s) do
sent v; to processor ¢(i, j)
end for
{local matrix-vector multiplication}
for all 7 do
uf = Djiig)eo (s) g Vi
end for
{fan-in phase}
for all (¢,5) : i € ¢3' (s) do
get ul from processor I = ¢(i, §)
end for
{final addition}
for all i € ¢3'(s) do
ui = Yo vl

end for




1.1.1 Generic matrix distributions

Now we can perform a matrix-vector multiplication with an arbritrary distribution. The next step is to find

a good distribution. A good distribution will have the following properties:

o It will minimize the number of vector elements that are to be sent in the fan-out and fan-in phases (1,

3), and,

o It will distribute the work evenly, to minimize the time necessary for the local multiplication phase

(2). We will refer to this as the load balance criterion.

We define the communication volume as the total number data words that is to be sent:
v= Y @-D+ Y (-1 (1.2)
0<i<m,g; >1 0<j<n,r; >1

where

¢ = |9, {7 }o<i<n)ls

rj =|¢({i}o<i<m, ), (1.3)

gives the number of processors owning row ¢ and column j respectively. The vector elements u; and v; are
assumed to belong to one of the processors in row i or column j respectively (i.e ¢u(i) € ¢(3,{j}to<j<n)
and ¢y (j) € ¢({ito<i<m,j)). It is clear that minimizing the number of processors per row and column will

minimize the communication volume. The load balance criterion reads:

masc |91 (s)| < (1+ 2 {eJoso<r)] (1.4

which simply states that all partitions are at most a fraction € larger than the average partition size.

If the matrix A is full (which means that there are no non-zero elements), a block distribution suffices. The

block distribution is defined as:

n

. ir Jjq
=|— =1. 1.5
oid) = | 2| +r | 2 (1.5
Here, we divide the matrix into P = ¢r blocks of equal size such that each row and column has only ¢ and

7 processors owning it, respectively. The communication volume for a block distribution is
Vobtock = m(g — 1) +n(r — 1). (1.6)

The optimal distribution is achieved for ¢ = \/*P, r = %. The block distribution satisfies the load
balance criterion, and it minimizes the communication volume. A disadvantage is that this may lead to

unbalanced communication. For methods to improve this, we refer to section 4.4 of [3].



When the matrix A is sparse, the situation is somewhat different. We denote the number of nonzero elements
of a sparse matrix as nz(A). We could, of course, still use a block distribution, but this would most likely
fail to satisfy the load balance criterion. It is not hard to assign each processor the same amount of work,
but given this restriction, we will have to minimize the communication volume. One solution is to generalize
the block distribution. We will call this the generalized block distribution. As with the block distribution,
every row and column is divided in no more than ¢ and r parts respectively. But these blocks do not have
to have the same size. Thus, the communication volume for this distribution is less than or equal to that
of the block distribution. Equality is reached when the blocks have no empty rows or columns. With the

generalized block distribution we have more freedom to obtain a good load balance.

Another solution is to use a one-dimensional distribution where we assign whole columns to processors. This
way every processor has to receive from P — 1 other processors in the fan-in phase and the communication

in the fan-out phase is zero. The communication volume for a 1D distribution is:
Vip <m(P - 1). (L.7)

The upper bound is reached if there are no empty rows in the blocks. While this upper bound is worse than

that of the generalized block distribution, it will be easier to obtain a good load balance.

Mondriaan uses the 1D distribution recursively in row and column direction to obtain a 2D partitioning,.
This way it is still relatively easy to obtain a good load balance, and the number of processors per row and
column is less than with a 1D distribution. Figure 1.1 illustrates four different distributions. Section 1.3 will

elaborate on the Mondriaan distribution.

1.1.2 (Hyper)graph models for partitioning

How do we find a good 1D distribution? In the early days, the problem was formulated as a graph parti-
tioning problem, which is known to be NP-hard [15]. This means that a polynomial time algorithm to solve
the problem cannot be found (unless P = NP), so a heuristic method must be used to find a near-optimal

solution.

For a square n x n matrix A the graph G(V, €) has |V| = n vertices and there is an edge between vertex j and
j' if there is a non-zero a;; or aj ;. The weight of vertex j is the number of non-zeros in column j. An edge
between vertices j and j' has weight two if both a; and aj ; are nonzero, else it has weight one. See figure
1.2 for an example. We can think of the partitioning of the graph as a permutation of the original matrix,
where we shift the columns belonging to one partition to one side and permute the rows correspondingly.

The total weight of the cut edges equals the number of off-block-diagonal elements. This is unfortunately



(d) (e)

Figure 1.1: Four different distributions over four processors. (a): Block distribution, V = 39 and ¢ = 77%.
(b): Generalized block distribution, V = 43, ¢ = 12%. (c): 1D Distribution, V = 68, ¢ = 3%. (d):
Mondriaan distribution, V = 40, € = 3%. The first cut is done row-wise, the other two column-wise. (e):

Permutation of (d); we can clearly see the resemblance to a painting of a certain painter.
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Figure 1.2: Column-wise partitioned sparse matrix and its graph representation. The weights of the vertices
are given by the number of non-zeros in the columns. The total weight of the cut edges is 8, while the actual
communication volume is 5. Note that we could also use this graph to partition the matrix row-wise by

changing the vertex weights.

not exactly the communication volume we seek [19]. If there are for example two off-block diagonal elements
in the same row, they will be sent as one partial sum. In this metric however, they are counted twice. To
improve the metric, various ways for weighting the edges have been proposed [25, 18, 1, 26], which work
especially well when the degrees of the vertices do not vary too much. Still, minimizing the number of
off-block-diagonal non-zeros will help minimize the communication in the fan-in phase in some sense. We
can also apply this approach to AT for a row-wise partitioning of A. For rectangular matrices a similar
graph can also be constructed, see [20]. To partition matrices this way, good graph partitioners have been

developed, like Metis [23] and Chaco [21].

To model the communication accurately, a hypergraph model was introduced in [9]. A hypergraph H(V, N)
is a generalization of a graph. In a hypergraph an edge (often called a net or hyperedge) can connect more
than two vertices. Column j of the m X n matrix A represents a vertex v; € V, and row ¢ represents a
net n; € N. Net ¢ connects all vertices j with a;; # 0. For example, see figure 1.3. The hypergraph
has n vertices and m nets. Now, each cut actually represents one data word that is to be sent, because
communication arises when a row is divided. Minimizing the number of cuts will now minimize the true
communication volume in the fan-in phase. We will refer to this approach as the row-net hypergraph model.

Of course this approach can also be applied to A7, which we will refer to as the column-net hypergraph model.

Another hypergraph approach has been proposed in [11]. In this hypergraph model, each non-zero element
is viewed as a vertex. The nets are determined by the rows and columns. The fine-grained hypergraph

of an m x n matrix A, having nz(A) nonzero elements is defined as follows. Each vertex is connected to



Figure 1.3: Row-net hypergraph representation of the matrix from figure 1.2. The square nodes represent

nets. We see that there are 5 broken nets, which is exactly the communication volume.

all vertices in the same row by one net, and to all the vertices in the same column by another net. This
hypergraph, having m + n nets and nz(A) vertices, is significantly larger that the row-net or column-net
hypergraph. The communication in the fan-in and fan-out phases is minimized. This approach is referred
to as the fine-grained hypergraph model. For more detail on the fine-grained hypergraph model we refer to

Chapter 3.

1.2 To partition a (hyper)graph...

It turns out that (hyper)graph partitioning problems arise in many different fields. Close to home we have
fill-reducing ordering [17, 34]. Here the objective is to permute a sparse matrix to block diagonal form in
order to reduce fill-in when using direct methods on the matrix. (Hyper)graphs can be used in circuit design,
where partitioning is used to determine the wiring schemes. They can be used to model some design process,
where edges represent interdependencies between tasks [26]. In databases, relations between items can be
modeled using a (hyper)graph. Partitioning will group those items that are relevant to each other together,
which can be an aid in data mining [28]. In software engineering, the interdependencies in a software system
can be represented by a call-graph. A good partitioning of the graph is wanted to divide the software system
into manageable parts [4]. The graph partitioning problem also has some links to the graph coloring problem.
With partitioning we want to assign each vertex a ’color’ such that the number of adjacent vertices with
different colors is minimized. In graph coloring we want the opposite, we want to maximize the number of

adjacent vertices with different colors.

Over the past few decades, several methods for partitioning graphs have been proposed, and many of them

have subsequently been adapted to partition hypergraphs. In this section, we will discuss a few of them:

10



Kernighan-Lin, Spectral partitioning, multilevel and recursive bisection.

1.2.1 Kernighan-Lin

This method was introduced in [24]. The basic idea is to find an initial partitioning and to improve this
iteratively. The iterative improvement is done by moving vertices in an edge across the partition boundary.
An efficient implementation was given in [12]. This method can be adapted to partition hypergraphs in
two ways. The first is to construct a so-called clique-net graph of the hypergraph. In a clique-net graph
all vertices in a given net have an edge between them. Various ways for weighting these edges have been

proposed, see for example [25, 18, 1, 26]. The second is a direct generalization of the algorithm as in [9].

1.2.2 Spectral partitioning

With a (hyper)graph we can associate a Laplacian, which is defined below. In this method, the eigenvalues
and eigenvectors of the Laplacian of the (hyper)graph are used to partition the matrix. See, for example
[30]. The second eigenvalue of the Laplacian gives us information about the ‘algebraic connectivity’ of the
graph and the second eigenvector defines a bi-partitioning of the graph into two connected subsets [13, 14].

We will briefly present some theory that may be useful to us.

For an undirected graph without loops or multiple edges, the Laplacian £ is defined as:
L=D,-A, (1.8)

where D, is the n x n diagonal matrix with the vertex degrees v;, and A is the n x n adjacency matrix of the
graph. The matrix £ is symmetric, so its eigenvalues are real and non-negative. We denote the eigenvalues
as:

0= < A< A< ... < A1 (1.9)

It can be proven that Ag = 0 and that wo = (1,1,...,1)7 is the corresponding eigenvector. Furthermore
the multiplicity of the eigenvalue 0 gives the number of connected components of the graph. This means,
for example, that if there are two eigenvalues 0 then the graph consists of two independent parts. From a
matrix point of view this means that the adjacency matrix of this graph can be permuted to block-diagonal

form, with no off-block-diagonal entries.

To partition the graph G(V, &) into two partitions G_(V_,€_), Gy(V4+,E4), such that V =V_ UV, and
E_, &, are the internal edges of the subgraphs, we can use the second eigenvector w;. We can associate each

vertex ¢ with a vector component wy ;). If we make a partition of all the vertices for which w,(;) is positive,

11
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Figure 1.4: Two planer graphs, vibrating at their lowest eigenmode. The black lines are separators between
the positive and negative parts. We see that the partitioning of graph (b) is indeed good in terms of number

of cut edges, but it is not balanced.

and a partition of the rest then the graphs G_ and G_ are connected (see Theorem 3.3 of [14]). We can
interpret the second eigenvector as the lowest eigenmode of the graph. For a planar graph (i.e., a graph that
can be represented on a plane without crossing edges) we can visualize this as the vibration of a plane. The

idea is that the plane will vibrate around the ‘weakest’ point. See figure 1.4 for an example.

We can also use the Laplacian to derive a lower bound for the number of cut edges in terms of the second
eigenvalue. Consider a vector w such that @; € {—1,+1}, > @; =0 (i.e. W L wy). For brevity we will refer

to the space spanned by such vectors as W. Now we can calculate

W LW = Lipwab; =
i,J

ZVH' Z Lij + Z Li; — Z Lij— Z Lij= (1.10)
=

i,jEV_ i,jEV4 i€EV_,jEV, i€EVy jeV-
2AE| - 21| — 214 | +2IE \ (€~ UEL)| = 4leutl,

where Ecyy = €\ (E- U &) is the set of edges between V_ and V., and [Eqy| gives us the number of cut
edges. To minimize the number of cut edges we simply seek a W which minimizes (1.10). Now we recall that
we can calculate A;,w; by minimizing the Rayleigh quotient (see for example [16]):

wllw

Al = min ——o-. (1.11)
wlwo |lwlf3

We can relate (1.10) and (1.11) as:

T£ ~T£~
min =% < min — =2 (1.12)
wiwo W3 ~ wew [V

12



because the space spanned by w L wy is larger than W. Therefore:

)\171

> 1.1
Eeutl 2 =17, (113)

where n = |V|, gives a lower bound on the number of cut edges for a perfectly balanced bi-partition of the

graph G. Note that n must be even.

The theory can also be expanded to include hypergraphs. The Laplacian of a hypergraph is defined as [5]:
L=D,—-A"D'A. (1.14)

where D, is an n x n diagonal matrix with the vertex degrees v;, D, is an m X m diagonal matrix with the
edge sizes a;, and A is the m x n adjacency matrix corresponding to the row-net hypergraph. Note that in
the case of a graph, this definition is the same as (1.8), except for a factor 2. The Laplacian of a hypergraph
is square and symmetric. Also, \g = 0 and wo = (1,1,...,1) is the corresponding eigenvector. We define
a bi-partitioning by W in the same way as before. To derive a lower bound on the number of cut nets, we

calculate

wlLw = Zﬁmwlw] Zw v; — Zwlez al;(lll]. (1.15)

iZj

Using the fact that Lwg = 0, we can write:

ai;aij
D vi= ZZ o
4

Since w? = 1, equation (1.15) now becomes:
wTLw =3 (1 - wpy) S LW 1.16
\ 4 W—Z( wlw])z P (1.16)
ij o
As before we can split the sum, and the terms where W;w; = 1 will cancel out, leaving:
wigw=2 Y ) 4 “”“” +2 Yy YW “““” (1.17)
i€V_,jevy 1 i€V, jeEV_ 1
Unfortunately this will not give us the number of cut nets, as with graphs. However, we observe that:
+yyt
ap;ay ap; ay Q) —a, )&
Yoy v oyme. y lcal 019
i€V, jeEV_ I i€EV_,jevy 1 ! cut nets ! !

where al+ gives the number of vertices net [ has in partition V; and a3 — al+ gives the number of vertices

net [ has in partition V_. We define the weighted communication volume as:

>

cut nets /

PR
(o4 — o)y ;l )y (1.19)

13



This weighted volume does not only measure the number of cut nets, but also takes into account the imbalance
in the cut. For our purpose this is not immediately useful information. Following the same arguments as

with graphs we can write:

V> )‘an. (1.20)
We can also give a lower bound for the communication volume V (which equals the number of cut nets in
the case of a bi-partitioning) in terms of the weighted volume by observing that the weighted volume has a
maximum when all cut nets have an equal number of vertices in both partitions (i.e. ; = fay):

N 1
v<s M o < 5V maxa, (1.21)

cut nets !

RNy

We now have a lower bound for the (weighted) communication volume of a balanced bi-partitioning. An
important note to this lower bound is that the partition defined by the second eigenvector is not necessarily a
balanced partition. Moreover, using the eigenvector for partitioning minimizes the weighted communication
volume, which is the wrong metric for our purpose. Still, this theoretical insight can be put to use as we will

see later.

1.2.3 Multilevel partitioning

This technique was first proposed in [8], and is especially useful when the (hyper)graph in question is very
large. By merging ‘similar’ vertices in several iterations the size of the graph is diminished; this process is
referred to as ‘coarsening’. The coarsened graph can then be partitioned using any method. Finally, the graph
is un-coarsened by taking the vertices apart, and refined by trying to swap certain vertices. Coarsening the
graph will also give some global information about the graph. When using KL to do the initial partitioning
this is particularly beneficial since KL is known to get stuck in local minima. The Mondriaan package also

uses this technique, and Chapter 2 will elaborate on this subject.

1.2.4 Recursive bisection

As opposed to k-way partitioning, where we divide the matrix into k partitions at once, there is recursive
bisection. With this technique we repeatedly divide the matrix in two, and after log, k steps we have k
partitions. This method can also be made to work when k is not a power of two. The advantage is that
we can, for example, alternately divide the matrix row wise and column wise. This 2D partitioning is a key

feature of the Mondriaan package. We refer to section 1.3.1 for more details.

14



1.3 The Mondriaan partitioning software

The Mondriaan package [33] combines several of the above mentioned techniques to find a partitioning ¢(z, j),
¢u(%), ¢+ (j) such that the communication volume Vy is minimized and that the load balance criterion (1.2)

is satisfied. Please note that we agsume that ¢ maps only non-zero elements.

For convenience we will now view the matrix A as an index set of non-zero elements:
A={(,7):0<i<mA0<j<n Aay; #0}, for 0<s<P. (1.22)

The partitions A, can be viewed as disjoint subsets of A such that A = |Jy<,.p As. The partitions A, are

determined by ¢ as:

Ag = {(7’7.7) : ¢(7'7.7) = S}. (123)
The size of the partition can now be written as |[4;|. With V(Ao,..., Ap_1) =V, we denote the communi-
cation volume induced by the partitioning of A into Ag,..., Ap_1.

In Mondriaan, a multilevel recursive bi-partitioning algorithm is applied. The general algorithm of Mondriaan
is given in algorithm 2. Essentially Mondriaan does a recursive bi-partitioning of the matrix, where each
recursion step the optimal direction (row or column) is chosen by trying both. A key feature of Mondriaan
is the way the load balance is maintained. The allowed imbalance for each bi-partitioning is dynamically

adjusted along the way. How the bi-partitioning is done is discussed in the next section.

1.3.1 The bi-partitioning algorithm

At the heart of Mondriaan lies the bi-partitioning algorithm, which tries to split a matrix A in two parts
Ap, A; while minimizing the communication volume V' (A4y, A1) and maintaining the load balance. An im-
portant property of this bi-partitioning technique is that the partitions can be split independently. Take, for
example, a partitioning into 4 parts. To minimize the communication volume, we can minimize the volume

of the first bi-partitioning and the subsequent two bi-partitionings independently, since:
V(Ao,Al,AQ,A3) = V(AO UA,As U A3) + V(Ao,Al) + V(AQ,A3). (124)
For a proof we refer to [33]. Of course one could use any of the partitioning techniques mentioned in the

previous section for this. The bi-partitioning algorithm in Mondriaan however, uses multilevel Kernighan-Lin.

Ag explained before we can interpret the matrix A as the adjacency matrix of a hypergraph. In Mondriaan

the row-net, and column-net hypergraphs are used. In the following description we will assume the row-

15



Algorithm 2 MatrixPartition(A4,P,¢)

Input: sparse matrix A, number of partitions P and allowed imbalance e.
Output: partitions Ag,..., Ap_1 such that max, |4s] < (1 + e)'%.
if P > 1 then
maznz = (1 + 6)1%l
g=logy P
(AROW | AROW)—BiPartition(4,ROW ,e/q)
(A§OF, ACOL)=BiPartition(A4,COL,e/q)
if V(AFOW AROW) > V(A§OL, ACOL) then
(Ao, A1) = (AGOF, ACOL)
else
(Ao, A1) = (AFOV, ATOW)
end if

€ _ maznz P __
0= "T4o] 2

€ _ maznz P __
1= 774, 2

MatrixPartition(Ag,P/2,€0)

MatrixPartition(A;,P/2,€1)
else

return A

end if

16



net hypergraph, but of course it is equally applicable to the column-net hypergraph. The multilevel KL

algorithm consists of three distinct phases:

Coarsening phase: In this phase, the size of the hypergraph is diminished to speed up the computation.
This is done by pairwise merging of vertices that are ’similar’. The pairwise merging halves the number
of vertices each iteration, and it is repeated until the hypergraph is sufficiently small. Mondriaan uses
the HCM (Heavy Connectivity Matching) strategy to merge the vertices. This measures how many
nets two vertices have in common and merges two vertices with the highest overlap. From a matrix
point of view this means that we simply calculate the inner product between columns of the matrix and
merge the two vertices with the largest inner product. Of course this is just one of the many possible

similarity measures, and this is discussed in Chapter 2.

Initial bi-partitioning: When the hypergraph is small enough, a random partitioning is done and it is
improved using the Fiduccia-Matthyses [12] implementation of the KL algorithm. The process is
repeated several times using different initial random partitionings and the best is taken. Throughout

this phase the load-balance is maintained.

Un-coarsening /refinement phase: Now it is time to take the merged vertices apart, which is referred to
as un-coarsening. This is done in several levels, doubling the number of vertices at each level. After
each level several KL passes are performed to try to improve the partitioning. This is referred to as

refining.

1.3.2 Vector partitioning

For parallel matrix-vector multiplication u = Av, we also need to partition the vectors u and v. Basically, a
vector element u; is assigned to any of the processors owning matrix row ¢ and a vector element v; is assigned
to any of the processors owning matrix column j. Randomly picking any of the processors in a row or col-

umn may result in an unbalanced distribution of the vectors. Recently, this problem has been addressed in [2].

In some special cases we would like both vectors to have the same distribution. This happens when we want
to add or multiply the vectors with each other, or in a repeated matrix-vector multiplication (e.g. the power
method). To accommodate this, the vectors are partitioned according to the matrix diagonal. When needed,
dummy diagonal elements are added to the matrix. This can induce extra communication, since it may
happen that a vector element is assigned to a processor that is not owning a non-zero in the corresponding

row and/or column.
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Chapter 2

Improvements of the coarsening phase

In this chapter we will discuss a few variants of the inner product measure that can be used to merge vertices
in the coarsening phase. The goal is to find one that works better than the one currently used in Mondriaan.
We do not strive for completeness but we try a few variants that are intuitively appealing, and we try
to explain why they do, or do not work. Apart from scaling the inner product, we will also try different
matching orders. First, we will give a brief overview of the coarsening algorithm. Several ways of scaling the
inner product will be discussed and we will present a graphical way of comparing them, based on [22]. This
will give us some idea of how the different scalings behave. Some theoretical justification for the scaling will

also be sought. Subsequently, we will discuss experimental results.

2.1 Inner product matching

We will discuss the algorithm from a matrix point of view. Recall that the columns of the matrix A define
the vertices, and that the rows define the nets, where each net ¢ connects all vertices j for which a;; # 0. We
will denote the degree of vertex j by v;, and the size of net ¢ by a;. Each vertex has a weight equal to the
number of non-zeros in the corresponding column. The weight is used for load balancing. To measure the
similarity of matrix columns we essentially use the inner product, although other measures have also been

proposed (see for example [28, 6]).

So, to merge the vertices we essentially have to calculate ATA and merge the vertices that have the highest
inner product. But, since it is quite expensive to calculate ATA, we would like to speed up the computation.
To achieve this Mondriaan uses a greedy algorithm. The vertices are visited in a certain order, and then
the inner product with the current vertex, or candidate, and all other unmatched vertices is calculated. The

vertex that gave the highest inner product is merged with the candidate. A vertex that has been merged
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Figure 2.1: Example of the A”A matrix for a matrix A with 10 vertices that are all connected (i.e. ATA is a
full matrix). The visiting order is the natural order of the rows. The elements denoted by z are calculated
entries, the encircled entries indicate a match between the corresponding vertices. Fach time a match is
made, a row and a column are eliminated from the computation. Using the greedy algorithm cuts the
computation cost from %n(n — 1) inner product calculations to in(n — 4) inner product calculations when
ATA is a full matrix. In the case that ATA is not a full matrix, zero entries are not calculated and the gain

may be less.
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will not be visited again, thus cutting the computation time. See figure 2.1 for an example. We will refer
to a pair of merged vertices as a cluster. The weight of a cluster is the sum of the weights of the vertices
in it, i.e., the sum of the number of non-zeros in the columns. Once all vertices have have been merged we
have a hypergraph whose number of vertices is roughly half that of the original hypergraph. We can apply
the procedure again on the coarsened hypergraph, until the number of vertices is sufficiently small. The

coarsening algorithm is presented in algorithm 3.

Algorithm 3 Coarsen Hypergraph

Input: Hypergraph Ho(Vo, No) with |Vo| = n vertices and |ANp| = m nets
Output: Coarsened Hypergraph Hy,(Vi, N}), with [Vi| <AllowedNrVertices vertices and |[Ng| = m nets
k=0
Whotal = ) _; Wi
while |Vj| > AllowedNrVertices do
while V; # () do
pick candidate v; from Vj according to matching order
Vi = Vi \ vi
for all j € V; do
IP; = M (v;,v;)
end for
find jmax 8.t IP; .,
if IP;, . # 0 then

>IP; Vjand w; +wj; . < 0.2wieta1

v = merge(v;, V). )
Wy = Wi + Wy,
Vir1 = Vi1 U
Vi = Vi \ Vjnan
end if
end while
k=k+1

end while

We will restrict ourselves to varying the visiting order of the candidates, and scaling the inner product.
Other parameters, such as the number of vertices to merge per pass (2 vertices), the allowed weight of a
cluster (20% of the total weight) and the preferred size of the coarsened hypergraph (200 vertices), are taken
to be Mondriaan default values (stated in brackets). The visiting order is simply one of random’, ’increasing
weight’, ’decreasing weight’ or 'natural’. With the increasing weight order, we will first find a match for the

heaviest vertex. Natural order is the order as determined by the matrix. We will discuss the various scalings
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Figure 2.2: The boldfaced columns are in the same cluster. The possible external connections are extra
connections the cluster might have w.r.t its vertices. The HCM measure does not measure these external
connections. The cosine measure measures all possible external connections, the min measure measures only

the 1 connection and the max measure measures the 1 connections.

we have applied to the inner product below.

2.1.1 Column Scaling

Here we will consider a column-wise scaling. The idea of this scaling is to measure not only connections in
a cluster, but also the possible external connections. It is clear that we would not like a cluster with more

connections outside the cluster than inside it. See figure 2.2 for a schematic depiction of the situation.

The general formula, for the column-scaled inner product between column j and j’ is:

1 m—1
y i/ _= .. ..
M(5,5') = w7 ; Gijigr - (2.1)

Note that we interpret A as the adjacency matrix, so its elements are either one or zero. The different choices

of w(g,7") are discussed below.

HCM

Here we simply take the inner product between two matrix columns, thus measuring the overlap. It is clear
that this overlap should be as high as possible to ensure that the number of connections in the cluster is
maximized. The number of connections outside the cluster is not taken into account. The weighting factor
is thus simply:

w(,g') = 1. (2.2)
A disadvantage of the HCM measure is that a perfect match cannot be discerned. The maximum value

depends on the smallest degree, but as seen in figure 2.3, this maximum is not unique.
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Figure 2.3: Shown is the plane spanned by the two vectors that are to be matched, and the contour plot of
the HCM measure applied to the drawn vector and any other vector in the plane. The length of a vector
gives the number of non-zeros in the corresponding columns. The overlap is given by the projection on the
z axis. A difference in angle and/or length means that there are possible external connections. Red is the
maximum, which depends on the the degree v; of the candidate vertex. This measure does not distinguish

between matches with the same overlap and a different number of external connections.

Cosine

In the HCM measure we do not take the degrees of the vertices in account. To see why this could be desirable
we look at an example. Let a.; = (1,1,0,1,1,0)7, a.; = (1,1,0,0,0,0)” and a.;» = (1,1,1,0,0,1)7. Now
Mucm (4, 7") = Muem (4, 3") = 2, but a cluster of j, 5" may have external connections, whereas a cluster of
j,7' does not. This motivates us to take the degree of the vertices into account. One way of doing this is by

normalizing the inner product as:
Weosine (Ja]l) = VjVy. (2.3)

This measure reflects the external connections that j, 7" may have: M osine(4,7') = \% > Meosine(5,5") = %
This measure also gives the cosine of the angle the two vectors make, hence the name. Another advantage
is that we have an upper bound for the measure, where the maximum is reached for a perfect match (i.e.
the columns are identical). In figure 2.4 a contour-plot for this measure is depicted. This measure is widely
used in information retrieval, where the columns represent documents and the non-zero elements are terms.

For more on the use of similarity measures in information retrieval, see [27].
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Figure 2.4: Contour plot of the cosine measure. Here, the maximum value of the measure is one. This
maximum is reached only if the vectors are identical. Every possible external connection results in a lower

value.
Min

A variation on the Cosine measure is the Min measure. This measure prefers clusters where column j is
a subset of column j’, thus generating no external connections. Please note that this measure minimizes
the number of possible external connections w.r.t the vertex with the largest degree. Possible external

connections w.r.t the vertex with the smallest degree are not measured. The weighing factor is:

Wmin (4, j') = min{v;,v; }. (2.4)

Max

Now it seems natural to also define the Max measure. This measures possible external connections w.r.t the
smallest vertex. The maximum value is one, which is achieved only if the vertices are identical, as with the
cosine measure. The main difference with the cosine measure is the way the possible external connections
are measured. See figure 2.6.

Wmax (4, §') = max{v;,v; }. (2.5)
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05 1

Figure 2.5: Contour plot of the min measure. The maximum value is one, which is achieved for any vertex
that is a subset of the largest vertex (i.e there are no extra connections w.r.t the largest vertex). Here, only

external connections w.r.t the largest vertex result in a lower value.

05

Figure 2.6: Contour plot of the max measure. The maximum value is one, which is achieved if both vertices
are identical. The main difference with the cosine measure is the exact way in which the possible external

connections are measured.
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2.1.2 Row scaling

The previous measures only took possible external connections in account. But the exact number of external
connections depends on the number of vertices in each net of the cluster (i.e., the number of non-zeros in

the rows of the cluster). To scale with the exact number of external connections we apply row-wise scaling:

m—1
Gii Qi
M(5,5") Z f’a’ (2.6)

If f is a monotonically increasing function, this puts extra weight on rows with only a few non-zeros. If
there are for example only two non-zeros in one row, it is good to match these because then this row will

not generate communication any more. We have investigated two different choices for f:
fiin(@i) = o, (2.7)

fexp(ag) = 2% (2.8)

Now remember that we can also see the matching as consisting of two (simultaneous) optimization problems;
maximize the number of connections within a cluster, minimize the number of connections outside the cluster.
The number of connections outside the cluster is simply the sum of the net degrees of the cluster. We achieve
the simultaneous optimization by maximizing the number of internal connections divided by the number of

external connections:

Z Qi Q40 Q(Jajl) = Z Q. (29)

i:0;;70Va; ;1 £0

M(j,5") =

2.2 Some theoretical considerations

We are looking for a coarsening algorithm that will merge vertices that ‘belong’ in the same partition. In
the previous sections we have proposed a method that uses an inner product measure to decide whether two
vertices belong in the same partition. But can we also find a solid theoretical justification for this? The

answer is yes.

We saw in section 1.2.2 that we can use the Laplacian of the hypergraph to partition the graph. We have to
find a W, w; € {-1,-1}, > w; =0 that minimizes W7 LW. Vertices j, j' for which @;%; > 0 belong to
the same partition. Of course, we could explicitly calculate W and merge vertices for which @;w; > 0, but
this would be too expensive and would make the coarsening unnecessary since we already know the optimal

partitioning. Still, we can use the Laplacian to find a theoretical justification.
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We can explicitly write (1.15) as:

~ ap;ay; ap;ay;
E Eijwiwj = E v; — E E b Lha. R E E b b RS
- - ay [0%]
ij i

,jev_ 1 ,jeEVyL 1
ap; s ap;arq
> oyuem, oy 210)
. - (27 . - ay
i€EV_,jevy 1 i€V ,jeV_ 1

It is clear that to minimize the sum, the partial sums over ¢,5 € V_ and ¢, 5 € V; will have to be maximized.
To achieve this we simply make sure that vertices 4,j with the highest }_, % are merged. This sum is a
row scaled inner product like the one proposed previously, with f(a) = a. Because we are using a greedy
matching algorithm, we will have to find a matching order such that vertices with a potentially large term in
the sum get to pick a match first. Vertices with large degrees and small net degrees would have to go first.
We choose to sort the vertices only by their degrees, but it would also be possible to let vertices in small
nets go first.

However, minimizing the Laplacian minimizes the wrong metric, namely the scaled communication volume.

So, it remains to be seen if this will really give us better results.

2.3 Results

To compare the different similarity measures we have tested them on 18 matrices. Of course such a test
set is quite arbritrary, but care has been taken to include matrices from different applications, like Markov
chains, linear programming, finite differences, information retrieval, etc. In table 2.1 the matrices are listed.
The test set contains the 15 matrices that are used in [33]. The parameters of the experiments are listed in
table 2.2. We have compared the communication volume for partitioning into P = 2,4, 8,16, 32, 64 parts to
the original Mondriaan results. All results are averages over 50 runs. Averages over all matrices for every P
are presented, to see if certain methods work better for certain values of P. Averages over all matrices over
all values of P are also presented. These are a bit crude, and a lot of information is lost in it. However, we
are not tailoring Mondriaan to work well for a particular class of matrices, so a good method will have to
perform well on average and not just for a few matrices. Please note that the averages are calculated over

the scaled results.
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# | matrix m n nnz | application Struct. symm.
1 | impcol_b 59 59 317 | Chemical engineering n
2 | west0381 381 381 2157 | Chemical engineering n
3 | well1850 1850 712 8758 | Geophysical surveying n
4 | 4£f1001 6071 | 12230 35632 | Linear programming n
5 | gemat11 4929 4929 33185 | Power flow optimization | n
6 | gemat1l 4929 | 10595 47369 | Power flow optimization | n
7 | memplus 17758 | 17758 99147 | Circuit simulation n
8 | cagell 11397 | 11397 | 150645 | DNA electrophoresis y
9 | hyp_200_2_1 | 40000 | 40000 | 200000 | Laplacian operation y

10 | onetone2 36057 | 36057 | 227628 | Circuit simulation n

11 | cre_b 9648 | 77137 | 260785 | Linear programming n

12 | tbdmatlab 19859 5979 | 430171 | Information retrieval n

13 | finanb12 74752 | 74752 | 596992 | Portfolio optimization y

14 | 1hr34 35152 | 35152 | 764014 | Chemical engineering n

15 | nug30 52260 | 379350 | 1567800 | Linear programming n

16 | bcsstk32 44609 | 44609 | 2014701 | Structural engineering y

17 | bcsstk30 28924 | 28924 | 2043492 | Structural engineering y

18 | tbdlinux 112757 | 20167 | 2157675 | Information retrieval n

Table 2.1: Test matrices. All matrices except 1, 3 and 6 are taken from the test of [33]
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# Matching order Row-scaling Match. id. first
decr. rnd. incr. nat. | lin. exp. sum

1 | e

2 °

3 °

4 °

5 ) °

6 ) °

7 |e °

8 ) °

9 . ®

10 . °

11 . °

12 . ®

13 . °

14 . ®

15 ° °

16 . °

17 . °

Table 2.2: Experiment settings. All experiments are done with the no, cosine, min and max column-scaling.

The sum row-scaling is the scaling from equation (2.9)
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Figure 2.7: Results of the original Mondriaan program for P = 2,4,8,16,32,64 and € = 0.03. The default

settings of Mondriaan v1.02 are used.

matrix P
# 2 4 8 16 32 64
1 26 75 126 169 209 252
2 52 172 397 681 1113 1463
3 33 91 178 314 656 2158
4 601 | 1504 | 2582 3746 4954 6247
5 49 128 253 454 818 1653
6 139 241 386 737 1247 2232
7| 2415 | 4562 | 5847 7704 9198 | 11145
8| 2291 | 5022 | 7875 | 11194 | 14814 | 19162
9 800 | 1469 | 2018 2720 3691 5089
10 438 | 1503 | 2294 3148 4435 6343
11 907 | 1898 | 3066 4600 6565 9280
12 | 5004 | 10774 | 17764 | 28021 | 39525 | 52413
13 606 | 1042 | 1363 1735 2359 9309
14 695 | 1542 | 2222 3761 6668 | 10020
15 | 28590 | 58547 | 93929 | 130953 | 173984 | 221687
16 | 1528 | 2365 | 4928 8281 | 12946 | 19547
17 602 | 1836 | 4151 8372 | 14508 | 23339
18 | 15772 | 30411 | 49177 | 73140 | 106323 | 147114

Table 2.3: Results of the original Mondriaan program. The true communication volume is listed.
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Figure 2.8: Results of experiment 1. The matching order is decreasing weight. The cosine, min and max
column-scalings are applied (no scaling is the default for Mondriaan v1.02). The results are normalized w.r.t
the Mondriaan v1.02 results. The partitioning is done for P = 2,4,8,16,32,64 and ¢ = 0.03. The average
over 50 runs is calculated over all matrices for every P separately and over all matrices, over all P. It is

striking that the min measure works particularly well on matrices 13 and 14.
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Figure 2.9: Results of experiment 2. The matching order is random. It seems that random order works

better than decreasing, on average. Again, matrices 13 and 14 do extremely well.
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Figure 2.10: Results of experiment 3. The matching order is increasing. This order does even better than

random order on average. The cosine measure does best with this order. Matrices 13 and 14 stand out.
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Figure 2.11: Results of experiment 4. The matching order is natural. It seems that the natural order is not

particularly beneficial on average.
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Figure 2.12: The same settings as in experiment 1, but here the identical vertices are matched before any
other matching is done. The results are a bit worse, and this is probably because there are less levels in the

coarsening phase.
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Figure 2.13: Results of experiment 6. The matching order is decreasing, and linear row scaling is applied.

This scaling works well, and combines well with column scaling.
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Figure 2.14: Results of experiment 7. The matching order is decreasing, and exponential row scaling is

applied. This row scaling does not work as well as the linear row scaling.
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Figure 2.15: Results of experiment 8. The matching order is decreasing, and sum row scaling is applied.

This row scaling does not work as well as the linear row scaling.
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Figure 2.16: Results of experiment 9. The matching order is random, and linear row scaling is applied.
On average this works a little better than the linear row scaling with decreasing weight. This is not very

surprising, since we already saw that random order was beneficial.
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Figure 2.17: Results of experiment 10. The matching order is random, and exponential row scaling is applied.
The results are worse than those of the linear scaling. It seems that matching order also affects the row

scaling.
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Figure 2.18: Results of experiment 11. The matching order is random, and sum row scaling is applied. The

results are a little better than the decreasing weight version (experiment 8).
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Figure 2.19: Results of experiment 12. The matching order is increasing, and linear row scaling is applied.
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44



2
15
B
N
5 1 T
E
S 05 HW
0
i 2 3 4 5 9 10 11 12 13 14 15 16 17 18
Matrix
(none)
o
> 151
B
N
5 1 = TRER
E
205 ’:mﬂ
0
i 2 3 4 5 9 10 11 12 13 14 15 16 17 18
Matrix
(cosine)
2
Z1s
8
g 1 T S = = T
E
o il WWWWWWMMWW Il
N2 s 4 5 o6 7 9 10 11 12 13 14 15 16 17 18
Matrix
(min)
o
> 151
B
N
g 1
E
So5 ﬂﬂ
0
i 2 3 4 5 9 10 11 12 13 14 15 16 17 18
Matrix
(max)
o
>
831'5_
o
o
&
B
N
: HH HH
E
o
2
HH.SQWG | [0.88957 ]
1T ||
none cosine min
(average)

Figure 2.22: Results of experiment 15. The matching order is natural, and linear row scaling is applied.
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Figure 2.23: Results of experiment 16. The matching order is natural, and exponential row scaling is applied.
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Figure 2.24: Results of experiment 17. The matching order is natural, and sum row scaling is applied.

47



2.4 Conclusion

We have seen that with column scaling and different matching orders an average reduction in communication
volume of up to 11 % (up to 90 % for certain matrices) w.r.t to Mondriaan v1.02 is achieved. The row wise
scaling also reduced the average communication volume is some cases, but the reduction is small compared
to that of the column scaling. Certain matrices in our test set gave relatively much better results than others.
We saw a reduction in communication volume for matrices 13 and 14 with most experiments, while matrix
6 often gave worse results. We did not find a scaling that gave better results for all matrices, although some
came very close. In figure 2.25 all the averages are depicted. The best average results where achieved with:
decreasing weight order, min column scaling, linear row scaling (experiment 6) and natural weight order,
min/cosine column scaling, linear row scaling (experiment 15). All three gave an 11 % reduction on average.

From these experiments we would advise to use one of these as new default values.

It is difficult to conclude from these experiments whether these scalings and matching orders are good for
general coarsening algorithms. Here, we have not distilled the effect of just the coarsening on the overall
quality of the partition. The refinement process is also of considerable influence, and we can we can never
be entirely sure that the refinement did a good job thanks to, or despite of the coarsening. More elaborate
experiments would be needed, measuring the quality of the coarsening. This could be done for example by
seeing the coarsened graph as a partitioning of the original graph. The number of partitions would then be
the number of vertices in the coarsened graph. The communication volume of this partitioning would be a
good measure for the quality of the coarsening. To investigate the effect of the matching order, one could

compare the results of the greedy algorithm to those where the full A”A is used for the coarsening.

Another interesting experiment would be to continue with coarsening until the hypergraph is small enough
to solve the optimal partitioning exactly. This would be expected to be better because of the increased
number of levels, but also because there is no danger of getting stuck in a local minimum with KL. We have

the optimal solution in the coarsest level, and we need only to maintain this during the refinement.

But, since the goal was to improve Mondriaan, and not to build a new partitioner from scratch, all these

experiments are outside the scope of this thesis.
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decreasing weight order, min column scaling, linear row scaling (experiment 6) and natural weight order,

min/cosine column scaling, linear row scaling (experiment 15).
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Chapter 3

A fine-grained approach to

partitioning

The Mondriaan package uses row- and column-net hypergraphs proposed in [9] to partition the matrix.
Another hypergraph model was proposed in [11]. This is the so-called fine-grained hypergraph, where each
non-zero is interpreted as a vertex, and the nets are defined by the rows and columns of the matrix. In exper-
iments it has been shown that this approach could reduce the communication volume up to 50% compared
to 1D partitioning. However, the partitioning was also considerably slower (up to 7 times as slow). Our goal
here is twofold. First we would like to incorporate the fine-grained approach into the recursive bisection that
is used in the Mondriaan package. Second, we would like to speed up the fine-grained partitioning. We will
begin with pin-pointing the bottleneck in the fine-grained approach, and propose a solution to the problem.

We will also discuss various ways to incorporate the fine-grained approach into Mondriaan.

3.1 The fine-grained approach

Given an m X n matrix A, having nnz(A) non-zeros, a fine-grained hypergraph is defined as follows: Each
non-zero a;; represents a vertex, which is connected to all other vertices in row ¢ by one net, and to all other
vertices in column j by another net. This hypergraph has nz(A) vertices and m + n nets. Note that this
hypergraph is considerably larger than the row-net or column-net hypergraphs. However, it has some nice
structural properties. To visualize these we will introduce a matrix F4 associated with A. We drop the
subscript from F4 if no confusion is possible. This matrix F is a sparse (m + n) X nnz(A) matrix whose
row-net hypergraph is the fine-grained hypergraph of A. More specifically: Each column of F represents a

non-zero a;; of A. In this column of F there are 2 non-zeros: one at row i and one at row m + j. Thus, they
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Figure 3.1: Matrix and its F matrix. The row-net hypergraph of the F matrix is the fine-grained hypergraph
of the original matrix. The row-nets of the fine-grained hypergraph are the top 10 rows of the F matrix and

the column-nets are the lower 10 rows. This ordering is of course arbitrary.

indicate the row and column of a;;. There can be no identical columns in F, since this would mean that the
corresponding elements of A would be the same. This means that the inner product between two columns
is either one or zero. Because of these special properties, the inner product matching is useless in the first
stage. It just takes up a lot of time calculating ones. We will see if we can also find bounds for the inner

product later stages.

3.1.1 Speeding up the matching stage

A straight forward way to cut the computation costs is to use random matching, where we match each vertex
with a randomly picked adjacent vertex. In the first matching stage the inner products are either one or
zero, so random matching is just as good as inner product matching. In later stages this random matching

may not be so good, but because the vertex connections are rather sparse we may just get away with it.

When calculating the inner products, it is likely that there are several vertices that give the highest inner-
product with the candidate. Since we assume that each of these vertices is as good as the other, we consider
stopping the calculation as soon as such a vertex is found. All we have to do is find an upper bound on
the inner product during the coarsening. As mentioned before, the maximal inner product is one in the first

level. Now, each vertex has either two row nets and one column net or two column nets and one row net.
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Thus, the maximal inner product in the second level is two. After a few stages, the maximum inner product
is the degree of the vertex. to determine if the maximum inner product of a given vertex is its degree, we
count the number of basis vertices (i.e., a vertex with one row net and one column net) needed to create the
given vertex. If this is at least twice the number of basis vertices in the given vertex, than it is possible that
an identical vertex has been made. In counting, we assume that each basis vertex only adds one extra row
or column net to the given vertex. This way the number of basis vertices needed to create a vertex with n,
row nets and n, column nets is n,. x n.. If the number of basis vertices in a given vertex is less than twice
this number than we assume the maximum inner product is max{n,,n.}. We will refer to this method as

the ’ip1’ method.

We also consider an alternating direction matching scheme. In the first stage we match each vertex with
a vertex in the same row-net. Each vertex now has one row-net and two column-nets. The next stage we
match vertices that have the same two columns nets. Each vertex now has two row- and two column-nets.
By alternating, we keep the maximum inner product small. Also, the clusters will be more 2D in nature.

We will refer to this method as the ’ip2’ method.

3.1.2 Results

To measure the speed-up, the CPU times are measured of the different methods. The averages are calculated
over 5 runs, and scaled with the time for the ip method. A profile is also given to determine the fraction
of time spent on coarsening, initial partitioning, refinement and the rest. These are depicted in figure 3.2.
The ipl method is almost always faster then the normal inner product method, especially for the larger
matrices where the coarsening takes up most of the time. For the smaller matrices, the partitioning and
refinement take up most of the time, so no speed-up is expected there. Random matching, on the other
hand, is sometimes considerably slower. We observe that with random matching, much more time was spent
on the refinement phase. This is probably due to the fact that the matching itself was poor. It could be
that for larger matrices, random matching is faster, because the coarsening overhead for the ipl method is

still considerable.

In figure 3.3 the scaled communication volumes for the fine-grained approach is depicted. The results are
averages over 20 runs, scaled with the original Mondriaan results. The fine-grained approach does not always

give better results than the 2D Mondriaan approach. The ip and ipl methods work best on average.
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Figure 3.3: Results with the fine-grained hypergraph method. Inner product matching works better than
random matching, on average. The ipl matching works just as good as inner product matching, while being
faster. Alternating direction matching does not work so well on average, although it actually works better

then ip for some matrices (matrices 3, 6).
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Figure 3.4: Hybrid partitioning of a matrix into four parts, V = 41,e = 0.03. The first split is done row-wise,

the second row-wise (bottom) and fine-grained (top).
3.2 A hybrid method

Just as the original Mondriaan algorithm combined row-wise and column-wise partitioning, we would like to
incorporate the fine-grained approach into the Mondriaan package, and combine the row-net, column-net and
fine-grained hypergraph models. As we have seen, the fine-grained approach is not always an improvement.
For successful incorporation we will need a metric to decide whether to use the fine-grained, the row- or

column-net hypergraph model for a single bi-partitioning. See figure 3.4 for an example of such a distribution.

The original Mondriaan package has several ways of deciding between row- and column decomposition. The
best, and most expensive, is to try both. Simply alternating the directions has also been tried, but the results
where poor. A third option is to use the matrix dimensions as a criterion. Based on the communication
volume for dense 1D bi-partitioning, we would choose row-wise partitioning if m > n and column-wise
partitioning otherwise. It seems that fine-grained partitioning works best for square matrices. Based on this

observation, a simple criterion to choose between row, column, or fine-grained partitioning arises.

ifm>dn — row-wise partitioning
ifn>dém — column-wise partitioning

else — fine-grained partitioning

We have tested taking the best of three partitionings (row, column and fine-grained), and the above criterion

for various values of 4.
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3.2.1 Results

In figure 3.5 the results of the hybrid methods are depicted. The ’best’ hybrid method successfully combine
the three hypergraph models.In most cases, the communication volumes are lower than or equal to those of
the original Mondriaan algorithm. For some matrices the communication volumes are a bit higher. In these
cases, the later bi-partitionings suffered from an earlier choice to do a fine-grained partitioning. Using the

matrix dimension as a criterion to choose is not very beneficial on average.
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Figure 3.6: Permutations of partitioned matrices with P = 2. The permuted matrix should be as close to
block diagonal form as possible. The area between the dotted lines generate communication. (a) is a row
partitioning, (b) is a column partitioning and (c) is a fine-grained partitioning. It is clear that there is much

more freedom with the fine-grained approach to obtain a good partitioning.

3.3 Conclusion

We have seen that the fine-grained approach yields better results for some matrices, and much worse for
others. In theory, the fine-grained approach should always give better results, since the solution space is
larger. In figure 3.6 we see an example of a fine-grained partitioning, and how the extra freedom can be
interpreted. Also, the fine-grained hypergraphs are much larger, so there are more refinement levels. This
may also explain why the results with the fine-grained approach are sometimes better. It may well be that a
fine-grained partitioning is in fact a row or column wise partitioning. To investigate this, we look at matrices
1 (figure 3.7), 7 (figure 3.8), and 8 (figure 3.9). The fine-grained method gave much better results than the
2D Mondriaan approach with these.

We conclude that in some cases the partitioner was able to benefit from the extra freedom the fine-grained
approach has. The gains where not purely due to the extra refinement levels. In some cases, however, the

communication volumes where much higher with the fine-grained method.
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Chapter 4

Comparing different 2D partitioning

strategies

To partition a matrix, two different, hypergraph-based, 2D partitioning strategies have recently been pro-
posed [33, 11]. The Mondriaan package uses the 1D hypergraph model, and chooses the best split direction
in each bi-section. The fine-grained hypergraph model is a more general way to obtain a 2D partitioning.
Both methods have been shown to work better than 1D hypergraph based partitioning. In Chapter 3, we
saw that in some cases the 2D Mondriaan strategy gave better results than the fine-grained strategy and vice
versa. In this chapter, we want to perform a thorough comparison of the two 2D partitioning methods and
the hybrid method, proposed in Chapter 3. To do this we use the Mondriaan package, and a modified version
of Mondriaan that uses PaToH [10] to do the actual hypergraph partitioning. We do this, because it may
well be that the Mondriaan hypergraph partitioner favors row/columnnet hypergraphs. By using another
hypergraph partitioner we hope to remove any possible bias, and be able to draw more general conclusions

on the methods involved.

4.1 Results

In figures 4.1 and 4.2, the results of the experiments are presented. The results are scaled with the original
Mondriaan results. We have already seen that the fine-grained method was not always an improvement.
This is confirmed by the experiments using PaToH. The hybrid method works best with both partitioners,
although the gain w.r.t the 2D Mondriaan approach is much smaller for PaToH.
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Figure 4.1: Results of the three different 2D partitioning methods, using Mondriaan’s own hypergraph
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for the fine-grained hypergraph. The results are scaled with the original Mondriaan.
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4.2 Conclusions

We sought to compare two different 2D partitioning methods; 2D Mondriaan and fine-grained. Both methods
have been shown to give much lower communication volumes than 1D partitioning [33, 9]. In our experi-
ments, we see that fine-grained is not always better than 2D Mondriaan. When using PaToH as a hypergraph
partitioner, the fine-grained method gave communication volumes equal to, or higher than the 2D Mondri-
aan method. With the hybrid method the fine-grained approach was rarely chosen. Using Mondriaan’s own
partitioner, the hybrid method did prove an improvement, but the average communication volume was still
higher than that of PaToH. Apparently Mondriaan’s hypergraph partitioner does, in some cases, benefit
from the extra freedom that the fine-grained hypergraph gives. An important factor here is probably the

higher number of levels in the coarsening phase.

We have shown here that it is possible to obtain communication volumes with the 2D Mondriaan method
that are equal to, or lower than those of the fine-grained method. However, the results depend strongly
on the hypergraph partitioner used. So, it is possible that when using a hypergraph partitioner tailored
for fine-grained hypergraphs, the fine-grained method will give better results. Because the solution space is
much larger with the fine-grained model, better results can be obtained in theory. But it seems that the
hypergraph partitioners tested here cannot always handle this extra freedom well, and get stuck in a local

minimum.
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Chapter 5

Test case: partitioning PageRank

matrices

In recent years a lot of effort has been made to develop better and faster search engines for the web. A very
successful and widely used method to find relevant pages is the PageRank metric [29], which is at the heart of
the Google search engine. Basically, a Markov chain is constructed from the webgraph and a user-centered
model. The webgraph represents the link structure of the world wide web. The power method (see, for
example [16]) is then used to get the largest eigenvector of this Markov matrix. Because these webgraphs
can be enormous, a parallel PageRank algorithm is needed. Such a parallel algorithm is proposed in [7]. It
is no surprise that this algorithm is dominated by parallel matrix-vector multiplications. So, partitioning
these very large PageRank matrices is an important application for matrix partitioners like Mondriaan. In
this chapter we would like to test the improvements made to Mondriaan in this thesis on two PageRank
matrices, and compare the results with earlier results on these particular PageRank matrices from [7], where
the authors use the parallel hypergraph partitioner Parkway [31] with the fine-grained hypergraph model.

The characteristics of the PageRank matrices used are listed in table 5.1. The results are listed in table 5.2

Matrix m n nz
Stanford 281903 | 281903 | 2594228
Stanford_Berkeley | 683446 | 683446 | 8262087

Table 5.1: Properties of the PageRank matrices.
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Stanford

P 2 4 8 16 32 64
Parkway 1D n.a. 13849 34221 74137 n.a. n.a.
Parkway 2D n.a. 1399 2285 4307 n.a. n.a.
Mon. none 1223(1032)  2770(2205) 4015(3309) 7171(5840) 10557(9630) 17171(16305)
Mon. min 709(628) 1941(1629) 3214(3024) 6928(6650) 10406(9365) 16676(16265)
Mon. cosine 731(475)  1752(1373)  3673(3030) 6029(5784) 9651(9072) 16463(15670)
Mon. min/lin 526(526) 1579(1470)  3753(3469) 6194(5716) 9905(9469) 16820(16389)
Mon. cosine/lin 726(425) 1528(1201) 3196(2946) 6658(6052) 10027(9079) 17011(16792)
Mon. none/lin | 1306(1001) 1881(1475)  3540(2895) 7333(6704) 11030(10169) 17978(17625)
Stanford Berkeley
P 2 4 8 16 32 64
Parkway 1D n.a. 6648 45132 147590 n.a. n.a.
Parkway 2D n.a. 2081 3479 7302 n.a. n.a.
Mon. none 769(642) 1852(1569) 5269(3483) 11292(10142) 19577(18132) 31873(28758)
Mon. min 1028(1027) 2539(2162) 4245(3753)  10797(9661) 17496(16502) 29215(27464)
Mon. cosine 746(590) 2143(1749) 4088(3519) 9604(9174) 16416(14866) 27891(26749)
Mon. none/lin 760(565) 2720(1942) 5096(3620) 10893(10350) 18300(18131) 29718(29003)
Mon. min/lin 664(649) 2722(2182) 5264(3557) 9424(8146) 15239(14408) 25201(24305)
Mon. cosine/lin 704(338) 2176(1324) 4081(2676) 10313(9115) 15941(15358) 27143(26561)

Table 5.2: Results of Parkway and Mondriaan. The Mondriaan results are averages over 5 runs; the best of

the 5 runs are stated in brackets. The Parkway results are averages over 10 runs. The best averages and the

best bests are boldfaced. The distributions for the input and output vectors are the same, and the allowed

load imbalance is € = 0.05.
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5.1 Conclusion

We have seen that Parkway fine-grained and 2D Mondriaan both give much lower communication volumes
than the 1D row decomposition. Moreover, the improvements are of the same order of magnitude. Potentially,
the Mondriaan decomposition is much faster than the fine-grained decomposition, and requires much less
memory because the hypergraphs involved are roughly a factor 10 smaller. Assuming that the coarsening
phase takes is the overhead, this could speed up the partitioning by a factor 100. The column and row
scaling is also beneficial in this case, although it is not always an improvement. For better comparison we

would need more runs, but we where limited in time to obtain these.
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Chapter 6

Conclusions and future work

6.1 Spectral graph theory

Since very little is known about exact solutions of the partitioning problems, it is hard to know how good a
given hypergraph partitioner really is. It would be nice to have lower bounds on the communication volume,
for example. We have seen that we can derive some lower bounds, using spectral graph theory, but these
where lower bounds on the scaled communication volume. It may be possible to formulate the Laplacian of

the hypergraph in a different way, to obtain a lower bound on the communication volume.

Minimizing w” £w minimizes the scaled communication volume. We have seen that we can derive some

theoretical justification for the linear row scaling from this. Further investigation could yield more ideas.

6.2 Inner product matching

We have seen that various ways of scaling the inner product do give better results. We did not isolate the
effect of the coarsening, so our experiments are not solid evidence that these are indeed the best possible.
In our experiments, the matching order was determined by the weight of the vertices, and not by the degree
of the vertices. At first, by error, we also used the weight to scale the inner product. Although the results
were practically the same as those of the degree scaled experiments, it is intuitively not ’'right’ to use the
weight for scaling. For a match of two identical vertices, the weight will be twice the degree, and for poor
matches the weight will be nearly the vertex degree. This holds for all vertices, so the order should not
change too much. We expect therefore, that the order will not change to much and the results will be
roughly the same when using the degree to determine the matching order.

Thorough experiments with different matching strategies have also been done in [6]. Most of the strategies

71



are based on constructing a clique-net graph of the hypergraph, and some of them are actually inner-product

a2—a

matching in disguise. One of these in particular (RHM) is a row-scaled inner product, with f(a) = %=

The inner product matching, however, is intuitively easier to understand, and deals with the hypergraph

directly, without having to construct a clique-net graph.

6.3 The fine-grained hypergraph model

The fine-grained hypergraph model is the most generic formulation of the matrix partitioning problem. In
theory, partitioning the fine-grained hypergraph should give the best results, since row or column partitioning
is simply fine-grained partitioning with constraints, imposed by the rows or columns. The problem is that
it proves difficult for the hypergraph partitioners to deal with this extra freedom. Somehow, there is not
enough ’global’ information available, and the partitioner gets stuck in a local minimum. Restricting the
non-zeros in the rows or columns to stick together is one way of providing such global information. In row or
column partitioning these constraints are hard; it is just not possible to take rows or columns apart. Maybe
these hard constraints could be turned into soft constraints, by allowing rows or columns to break up if
the gain is high enough. Another variant would be to keep rows or columns together during the coarsening

phase, and to let them free during the refinement.

6.4 Partitioning PageRank matrices

It has been shown that different 2D hypergraph partitioning methods (fine-grained and Mondriaan) can
decrease the communication overhead for the parallel PageRank algorithm tremendously compared to 1D
partitioning. Because the row/column hypergraphs are much smaller than the fine-grained hypergraphs,
the 2D Mondriaan approach is potentially much faster. The nature of the PageRank algorithm makes it
necessary to distribute the input and output vectors equally. Since the matrix is not symmetric, this is an
extra constraint on the partitioning. If it were possible to modify the algorithm so that it could efficiently

deal with unequally distributed input and output vectors the overhead could be reduced even further.
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