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Climate archives available from deep sea and marine shelf sediments, glaciers,
lakes, and ice cores in and around Greenland allow us to place the current trends
in regional climate, ice sheet dynamics, and land surface changes in a broader
perspective. We show that, during the last decade (2000s), atmospheric and sea
surface temperatures are reaching levels last encountered millennia ago, when
northern high latitude summer insolation was higher due to a different orbital con-
figuration. Records from lake sediments in southern Greenland document major
environmental and climatic conditions during the last 10,000 years, highlighting
the role of soil dynamics in past vegetation changes, and stressing the growing
anthropogenic impacts on soil erosion during the recent decades. Furthermore,
past and present changes in atmospheric and oceanic heat advection appear
to strongly influence both regional climate and ice sheet dynamics. Projections
from climate models are investigated to quantify the magnitude and rates of
future changes in Greenland temperature, which may be faster than past abrupt
events occurring under interglacial conditions. Within one century, in response
to increasing greenhouse gas emissions, Greenland may reach temperatures last
time encountered during the last interglacial period, approximately 125,000 years
ago. We review and discuss whether analogies between the last interglacial and
future changes are reasonable, because of the different seasonal impacts of orbital
and greenhouse gas forcings. Over several decades to centuries, future Greenland
melt may act as a negative feedback, limiting regional warming albeit with global
sea level and climatic impacts. 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Kalaallit Nunaat (Greenland) is the world’s largest
island (Figure 1), with 80% of its landmass covered by
glaciers, ice caps, and the Greenland ice sheet (GrIS).
If it were to melt, this volume of ice (∼2,850,000 km3)
would correspond to approximately 7.2 m of global
sea-level rise.1 Concerns for future sea-level rise
have grown with accelerating GrIS mass loss due to
enhanced ice melting and discharge.2 This meltwater
could have strong local and global implications, as the
oceanic Atlantic Meridional Overturning Circulation
(AMOC) (associated surface currents are displayed
in Figure 1) is highly sensitive to freshwater releases
in the North Atlantic, with potential global climate
implications.3 Observations as well as regional climate
models (RCMs) specifically developed for Greenland,
show a strong recent decline in the GrIS surface mass
balance.a, 4–10

Despite its harsh Arctic environmental condi-
tions, inhabited Greenland coastal climate has been
monitored since the 18th century.13 In the last
decade, monitoring of environmental changes, includ-
ing glacier and ice-sheet mass balance, soils and
vegetation, as well as marine and terrestrial ecosystems
has intensified thanks to remote sensing techniques
and in situ research stations, including automatic
instruments. The GrIS provides exceptional archives
of past changes in regional climate and atmospheric
composition, as unveiled by deep ice-core records.14

In parallel, paleoclimate studies based on marine and
terrestrial archives have provided a wealth of climate
and environmental information.15

The Greenlandic population of approximately
56,000 inhabitants16 mainly lives in towns and
settlements along the narrow ice-free south-western
coastal margins. About 88% are Inuit, while the
rest primarily are Scandinavian (Danish) in origin.
Several waves of Paleo-Eskimo cultures have ventured
to Greenland from Canada17 during the past
4500 years,18 each culture disappearing after several
centuries (Figure 3(b)). Migrating from Alaska, the
Thule people, ancestors of the current Greenlandic
population, arrived in Greenland at the beginning of
the 12th century.19 In the late 10th century, southwest
(SW) Greenland was colonized by the Norse. They
established approximately 500 farms in the ‘green’
inner fjords, reaching a maximum population of
2000–3000 people,20 but disappeared as a community
in the late 15th century. These migrations of peoples
may have been related to past climate variability.21,22

Today, the Greenlandic economy relies heavily
on prawn, fish and seafood resources and supplies
from Denmark; hunting and fishing are the main
livelihood in the north and east sectors. The winter

coastal sea ice cover has been important for hunting,
fishing and transportation, with the exception of
the SW sector where warmer surface ocean waters
prevent sea-ice formation (Figure 2). In this sector,
relatively warm summer conditions (∼10◦C) and
more fertile soils enabled the establishment of Norse
farms in the Middle Ages and later modern sheep
farming.24 Aiming at developing sustained economical
and political autonomy from Denmark, the Greenland
Self Government encourages the development of
oil and mineral exploration, in a response to new
opportunities when sea-ice and land ice retreat.25

In coming centuries, deglaciation and further
greening (in the sense of enhanced biological produc-
tivity) of Greenland may drive a progressive shift from
a largely marine (Box 1) to terrestrial subsistence. This
will have major impacts on local ecosystems, socioeco-
nomic, and cultural aspects. Here, we review ongoing
Greenland physical environmental changes, and their
impacts on Greenland vegetation and land ice, in the
perspective of previously documented changes. We
want to explore the magnitude of projected Green-
land physical environment changes as well as their
potential local to global impacts, by comparing possi-
ble future rates of changes with past changes including
the most abrupt events.

LARGE-SCALE DRIVERS
OF GREENLAND CLIMATE CHANGE

During recent decades, Arctic warming has been two
to three times larger than the global mean near
surface air temperature (SAT) trend, albeit with a
large decadal variability.26 The retreat of Arctic sea
ice27 (Figure 2) plays a crucial role for this polar
amplification.27,28 Recent Arctic warming has been
attributed to the impact of anthropogenic greenhouse
gas emissions on climate.29

At intra and interannual time scales, the vari-
ability of Greenland SAT and precipitation is largely
driven by atmospheric heat advection, related to
the North Atlantic Oscillation (NAO),13,30 a large-
scale atmospheric mode of variability closely related
to the Northern Annular Mode or the Arctic
Oscillation31 and to North Atlantic atmospheric
blocking frequency.32 Although summer SAT is
affected by NAO,33 the magnitude of winter NAO
variability causes an interannual winter SAT vari-
ability that is three times larger than summer SAT
variability in South Greenland. The variability of
coastal SAT also appears closely related to changes
in local sea ice cover.12

Greenland meteorological data reveal a sharp
SAT rise starting in 1993, with 2001–2010 being

 2012 John Wiley & Sons, Ltd.
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BOX 1

PAST AND PRESENT SHIFTS IN
GREENLAND MARINE ECOSYSTEMS

Large research efforts have been dedicated
to the monitoring and assessing of marine
ecosystems around Greenland, a focus of the
Greenland Institute of Natural Resources.1,26

While these studies are beyond the scope of this
review, we note dramatic regime shifts in the
shelf ecosystems during the early 1990s due to
freshening and stratification of the shelf waters,
which led to changes in the abundance and
seasonal cycle of phytoplankton, zooplankton,
and higher trophic-level consumer populations
such as fish and marine mammals.116,117 Such
changes in marine resources also affected
modern and past Greenlandic cultures. Two
earlier important transitions, from seal hunting
to cod fishing, then from cod fishing to
shrimp, deeply affected SW Greenland human
populations during the 20th century.118 These
economic transitions reflected large-scale shifts
in the marine ecosystems. The combination
of climate variations and fishing pressure, for
example, was dramatic for West Greenland’s cod
fishery.25,118

Living from ice fishing and hunting,
some early Greenlandic cultures (e.g., Dorset)
depended on long sea ice seasons, while other
cultures (e.g., Saqqaq) based their food source
on hunting and fishing in more open, ice-free
waters. Natural climate variations superimposed
on the long term cooling trend likely affected
prey availability and were responsible for human
migrations.18,21 The demise of the Saqqaq
culture coincided with a reduced inflow of
warmer Atlantic source waters to the coastal
regions of West Greenland,69 limiting the
availability of, e.g., harp seals. Colder conditions
and changes in ringed seal hunting may also
have influenced the disappearance of the Dorset
from Greenland.119

the warmest decade since the onset of meteorological
measurements, in the 1780s, surpassing the generally
warm 1920s–1930s by 0.2◦C.34,35 The year 2010
was exceptionally warm, with SAT at coastal stations
three standard deviations above the 1960–1990
climatological average. This warming was particularly
pronounced in West Greenland34 and associated with
a record melt over the GrIS.5 We note that it occurred
in connection with a very negative NAO during
2010 and 2011, as warm North Atlantic and Arctic

conditions damped the impact of this record low
NAO on European winters,36 but enhanced Greenland
warming in 2010.

Changes in volcanic or solar activity may also
affect the NAO.37,38 Warm decades in the Arctic
and in Greenland occurred during periods with
little volcanic forcing (1920s–1930s, 2000s–2010s),
whereas cold years marked by reduced summer melt
and runoff (e.g., 1983, 1992) followed large volcanic
eruptions.30,35,39

Greenland coastal climate is also controlled by
changes in ocean heat advection, at decadal and longer
timescales.40 Today, Greenland coastal regions are
influenced by waters of both polar and Atlantic ori-
gins (Figure 1). Depending on the strength of the
Irminger Current (Figure 1), warm Atlantic waters
may be found as far north as the northern Baffin
Bay.41 During the last two decades, sea surface tem-
peratures (SST) in the SW sector of Greenland have
risen by approximately 0.5◦C in winter and approxi-
mately 1◦C in summer,42 as the influx of Irminger Sea
Water has increased.

The NAO affects westerly winds, the Atlantic
subpolar gyre and the inflow of the Irminger Sea
Waters toward SW Greenland.43 The enhanced ocean
advection may be explained through the combined
effect of NAO and a positive phase of the Atlantic
Multi-decadal Oscillation (AMO).44 The AMO is
a 55–70 year cyclicity in Atlantic SST presumably
related to internal ocean variability43,45 and which
has been in a distinct positive phase since the mid
1990s,44,45 enhancing northward heat transport in
the North Atlantic.46

ONGOING GREENLAND
TEMPERATURE CHANGES
IN THE CONTEXT OF THE CURRENT
INTERGLACIAL PERIOD

In order to evaluate if the ongoing warming (with a
linear SAT trend of 0.16◦C/year from 1993 to 2010)
is unusual, we compare them with records of past
climate conditions.

Several continuous Greenland SAT reconstruc-
tions span the last millennia (Table 1). These recon-
structions arise from (1) alkenones from sediments
of one West Greenland lake,21 related to biologi-
cal late spring–early summer productivity and water
temperature, and offering decadal resolution; (2) air
nitrogen and argon stable isotopes from one ice core,
affected by changes in decadal changes in mean sur-
face snow temperature;47 (3) water stable isotopes
from a stack of ice cores, corrected for changes in

 2012 John Wiley & Sons, Ltd.
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FIGURE 1 | (a) Map of Greenland showing11 the ice sheet extent (white), schematized surface oceanic currents affecting Greenland climate (red
arrows, warm surface currents; dashed blue arrows, cold surface currents; EGC: East Greenland Current; WGC: West Greenland Current; B-LC:
Baffin-Labrador Current), the largest towns and settlements (yellow circles) as well as ice core drilling sites (orange circles). (b) Zoom on Greenland.

ice sheet elevation and tuned to SAT using informa-
tion from borehole temperature records, with seasonal
to bidecadal resolution.23 Different sources of uncer-
tainties may affect each record (Table 1), which show
different magnitudes of trends and decadal variability.

The lake record21 shows a positive SAT anomaly
from 4000 to 3000 years BP (before present), large
multicentennial events, with estimated water temper-
ature magnitudes from 1.5 to 5◦C, and a variance
of about 1.2◦C (not shown). It does not exhibit any
multimillennial trend. The bidecadal lake data do not
extend into the instrumental period and cannot easily
be used to compare with current changes.

The Greenland Summit GISP2 ice core (Figure 1)
gas isotope record47 produces a 1.5◦C cooling
trend along the last 4000 years, together with
multicentennial events (<2◦C), and an overall variance
of 1.0◦C (not shown). The ongoing warming (mean
level of the 2000s) estimated for GISP2 site from
automatic weather stations and coastal SAT data
appear comparable to the level of surface snow
temperature reconstructed during the 1930s-1940s

and during the warmest decades of the medieval
period, in the 1140s.47 Prior to the last millennium,
past reconstructed decadal snow temperature appears
frequently above the level of the 2000s, especially in
the earliest part of the gas-based reconstruction.

This finding does not fully concur with the com-
parison of coastal SAT changes with respect to the
SAT reconstruction based on water stable isotopes
from a number of ice cores23 (Figure 3). This latter
reconstruction shares the same multimillennial trend
(−0.4◦C per 1000 years) as the gas record. However,
it differ in the magnitude of the interdecadal variance
(0.7◦C for water-isotope derived temperature, versus
1◦C for gas-isotope derived temperature over the last
4000 years). As a result, very few decades of the last
3000 years surpass the SAT level of the last decade in
the isotope-based record.

We note that the results obtained with inde-
pendent methods may result from different changes
in annual mean snow surface temperature (driving
the gas isotopes) versus precipitation-weighted con-
densation temperature (controlling water isotopes)

 2012 John Wiley & Sons, Ltd.
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FIGURE 2 | (a) Greening of the Arctic. Satellite observations of Arctic sea ice reduction (indicated by the trend in the percentage of open water)
and tundra vegetation productivity (indicated by the MNDVI, modified normalized difference vegetation index). Trends are calculated from 1982 to
2010 using a 10 km resolution, updating earlier data.12 (b) Zoom on Greenland.

(Table 1). Two main factors explain the different
findings obtained when comparing the recent warm-
ing with different ice core based reconstructions.
First, the magnitude of the recent warming appears
larger in coastal areas than at the ice sheet surface,
especially in summer when the ice sheet energy bud-
get limits summer warming. Second, the gas-based

(snow) temperature reconstruction is associated with
a larger inter-decadal variability than the isotope-
based SAT reconstruction; part of this larger variance
may be due to analytical uncertainties. All ice-
core records consistently demonstrate that the recent
warming interrupts a long term cooling trend, very
likely caused by orbitally driven changes in northern

 2012 John Wiley & Sons, Ltd.
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TABLE 1 Comparison of the Four Available Terrestrial Greenland Temperature Reconstructions Spanning the Last Millennia

Archive Proxy—Target Climate Variable
Length of the Record Temporal

Resolution Key Limitations

Ice cores Water stable isotopes (δ18O, δD)23

Precipitation weighted,
condensation temperature
controlling atmospheric
distillation

Several ice cores (DYE3, GRIP, GISP2,
NGRIP) spanning the Holocene
(seasonal resolution)48 the last glacial
period (annual to decadal resolution)49

One ice core (NGRIP) with a
continuous record back to
the last interglacial (123 ka)
(20 year resolution)14,50

At high frequency (season) : signal
to noise ratio caused by
deposition and post-deposition
processes51

Intermittency of precipitation
(seasonality)52

Changes in evaporation
conditions53,54

Changes in ice sheet elevation55

Ice cores Air isotopes (δ15N, δ40Ar)47,52

Surface snow temperature
changes, generating
temperature gradients in the
firn and affecting thermal and
gravitational diffusion of gases
in the firn

Quantification of abrupt temperature
changes in GISP2, GRIP or NGRIP ice
cores52

One continuous record
spanning the last 4 000
years with decadal
resolution47

Variability of air isotopic
composition during pore
close-off and analytical accuracy

Storage effect or fractionation
associated with clathrate
formation56

Uncertainty in accumulation rate
Uncertainty in thermal

fractionation coefficients
Increments used to model

temperature impacts
Changes in ice sheet elevation55

Ice cores Inversion of borehole temperature
profiles57,58

Low frequency variations with a loss of
resolution back in time. Detection of
decadal variations (last century),
multicentennial variations (last
millennium), millennial variations
(current interglacial) and
glacial-interglacial magnitude.

A priori hypothesis on temporal
temperature profiles

Influence of changes
in accumulation

Changes in ice sheet elevation55

Lake sediments Alkenone undersaturation in two
Greenland lake sediments21

Decadal to centennial resolution,
spanning 5600 years before present

Salinity threshold
Seasonal (spring—early summer)

temperature signal from algal
bloom

Possible influence of parameters
other than temperature
(e.g. cloudiness, nutrients) on
productivity

Lake temperature likely affected
by wind speed (mixing)

hemisphere summer insolation59 (Figure 3(a)). Water
isotope-based dataset scaled to coastal SAT (Figure 3)
indicates that the current coastal SAT (last decade)
reaches levels comparable to the mean SAT of the
mid-Holocene, 4000–6000 years ago, which coin-
cided with the first documented human settlements
in Greenland (Figure 3(b)).

Similarly, long-term trends are documented for
Arctic sea-ice. A large reduction of sea ice occurred
during the course of the last deglaciation, culminating
in the early part of the current interglacial period in the
eastern Arctic.27 Off NE Greenland, there is growing
evidence for a minimum multi-year Arctic sea ice cover

approximately 8500–6000 years ago, possibly in
response to the strong summer insolation forcing27,60

(Figure 3(a)). As summer solar insolation decreased
over the last millennia, Arctic sea ice cover increased,
reaching its maximum during the Little Ice Age. The
current retreat in sea ice cover interrupts this multimil-
lennial trend, reaching levels (in the 2000s) far beyond
those of the last 1450 years61 and last encountered
in NE Greenland about 4000 years ago at least.60

Many studies document strong regional fluctuations
and East–West gradients in sea-ice cover changes dur-
ing the current interglacial, possibly related with large
scale (NAO) atmospheric dynamics.27,60,62

 2012 John Wiley & Sons, Ltd.
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Paleoceanographic records allow to explore the
links between past Greenland temperature and ocean
advection. High resolution SST records from the
Fram Strait (west of Svalbard) indicate that the
20th century increase of the oceanic heat flux into
the Arctic Ocean is unprecedented over the last
approximately 2000 years.63 The influx of warm
Atlantic subsurface water toward SE and W Greenland
has also strengthened in recent years,64–66 but
appears to remain within the range of recent natural
SST variations. Indeed, opposite SST fluctuations
between East Greenland and the Labrador Sea are
reconstructed during the last millennia,67–70 possibly
in relationship with NAO changes.69,70 There is
evidence that, during the current interglacial, the
inflow of warm subsurface water masses enhanced
iceberg calving and discharge.71,72

IMPACTS OF CLIMATE CHANGE ON
GREENLAND GLACIERS AND ICE
SHEET

The current atmospheric and oceanic warming has
large impacts on the approximately 20,000 Greenland
Alpine and outlet glaciers. Since the early 1990s,
remote sensing methods such as altimetry and
velocity measurements from satellites and aircraft
have revealed a marked acceleration and retreat of

many outlet glaciers south of 70◦N.2,73 This increase
in solid ice discharge has accounted for about 50%
of recent GrIS mass loss.4 Despite uncertainties
in the chronologies, moraine records demonstrate
that the onset of modern glacier retreat74 occurred
between the middle of the 19th and the beginning
of the 20th century.75 A compilation of snapshots of
numerous glacier front positions documented by old
photographs, maps, or paintings reveals a period of
recession from the 1920s to the 1960s, followed by
glacier advances in the 1970s to the late 1980s.74

The widespread retreat of marine terminating outlet
glaciers since the 1990s suggests a common forcing
and occurs at a rate that is one order of magnitude
larger than previously documented.76–79 There is new
evidence for large fluctuations in the length of the
Ilulissat Sermeq Kujalleq (Jakobshavn Isbrae glacier)
during the current interglacial, with a smaller than
present extent between 8,000 and 7,000 years BP.77

The Helheim Glacier (south-east Greenland) currently
shows melting rates that presumably surpass those of
the past approximately 4000 years.79

From 1990 to 2010, the GrIS has lost approx-
imately 2750 Gt (Gigatons) of ice, with a significant
acceleration in the rate of mass loss2 (Figure 4). The
different contributions to GrIS mass loss are quanti-
fied using satellite gravimetry measurements together
with ice velocity from feature tracking and regional
climate modeling of precipitation and runoff.4 Since
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and J. Wahr.
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about 2000 AD, accelerating summer melt and ice-
berg discharges are not compensated by refreezing or
enhanced accumulation, and in 2010, record summer
surface melt led to a GrIS total mass loss of 500 Gt
(∼1.4 mm of global sea level rise)5 (Figure 4).

Ice flow dynamics govern iceberg discharge, and
induce a direct elevation feedback with the subsequent
thinning of the ice margins. Ice flow dynamics is
directly affected by enhanced surface run-off: surface
melt-water can contribute (1) to a weakening of the
lateral margins of fast flowing glaciers by filling the
crevasses,80 and (2) penetrate the ice sheet through
crevasses and moulins, increasing basal lubrication
and enhancing basal sliding of the ice over its
bedrock.81 The relationship between water supply
and ice-flow velocities is, however, not linear. With
sufficient water supply and basal water pressure above
a threshold, an efficient drainage system can develop
by opening channels, resulting in reduced basal
lubrication and thereby limiting basal sliding.81,82 For
land terminating glaciers, this effect is responsible
for the observed diurnal and seasonal variations of
velocities.83 However, the striking recent acceleration
and retreat of numerous Greenland marine terminated
glaciers have likely been triggered by ocean warming
and processes happening at the terminus73: dragging
on the side of narrow fjords, floating ice tongues
exert a backforce retaining fast marine terminated
glaciers such as Jakobshavn Isbrae, Helheim, or
Kangerlussuaq glaciers78,84 (Figure 1). The retreat
of the calving fronts, likely triggered by enhanced
basal melting, reduces this backforce and induces
an acceleration and a subsequent thinning of the
glaciers.73 This process can be effective for Greenland
as long as glaciers terminate in the ocean, and are
grounded below sea level. Ninety percent of the
GrIS ice discharge is controlled by such tidewater
glaciers.65

The effect of ocean water on these tidewa-
ter glaciers is also believed to be linked to water
temperature. Concurrent with increased surface melt-
ing since the late 1990s, hydrographic measurements
have shown a pulse increase in the temperature of
subsurface waters surrounding Greenland.64 Subsur-
face warm Atlantic waters enter Greenland’s fjords
to replace the out-flowing surface glacier meltwater.85

A direct pathway connects the North Atlantic open
ocean with southeast Greenland glacier fjords,66 sug-
gesting that a change in the prevailing water masses
in the North Atlantic may impact the GrIS mar-
gins within one year.64,66 There is also evidence of
changes in ocean currents influencing glacier melting
and iceberg production through the last few thousand
years.71,72

PRESENT AND FUTURE CHANGES
IN GREENLAND PERMAFROST
Retreating sea ice, glaciers, snow cover,1,26 and
warmer coastal conditions affect all Arctic soil
ecosystems with underlying permafrost, representing
approximately 25% of the northern hemisphere land
area and containing almost half of the global soil
carbon.86 Observations of northwest Greenland soil
organic carbon suggest that such carbon reservoirs
may be underestimated by at least a factor of five.87 On
a global scale, soil-permafrost ecosystems are subject
to dramatic changes including glacial retreat, coastal
erosion and permafrost thawing.88

At the Zackenberg research station, Northeast
Greenland, the maximum thickness of the active
layer has increased by approximately 1 cm/year since
1996,89 as a result of increasing SAT, changes in
snow cover and an earlier start of the growing
season (Figure 5).90 The spatial variability and timing
of actual permafrost warming and thawing is only
recently being addressed for Greenland,91,92 and
therefore cannot be placed in a longer perspective.

A critical uncertainty is the heat production
from increased microbial metabolism in soils and the
accelerated decomposition.93 This has been shown to
be significant in Greenlandic organic-rich soils89 and
has implications for future permafrost degradation
rates.90

Greenland warming also impacts the terres-
trial carbon and nitrogen balance, with interplays
between microtopography, biota, hydrology, and
permafrost.89,94 Observations from the Zackenberg
monitoring station has revealed both spring and
autumn bursts in CO2 and CH4, caused by physi-
cal release of the entrapped gas rather than enhanced
microbial productions.95,96 Permafrost thawing also
has impacts on waste piles (kitchen midden),97 houses
and infrastructures in settled areas.

Projections for the active layer and permafrost
thawing in Greenland are few, but is has been
suggested that permafrost degradation in high Arc-
tic tundra areas in Greenland may reach approxi-
mately 10–35 cm over the next 70 years (Figure 5(a))
and even higher in dry and more coarse-grained
sediments.90,91 As a result, increasing permafrost
thawing may in the future contribute with a CO2
production equivalent to 50% of the present soil
respiration.90 However, the potential compensation
by plant carbon fixation remains uncertain. Per-
mafrost degradation is nevertheless expected to
enhance runoff to lowlands, where the associ-
ated water level changes and nutrients inputs may
have critical effects on methane and nitrous oxide
production.89 Permafrost layers may also be markedly
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FIGURE 5 | (a) Observed and projected permafrost degradation in Zackenberg 1900–2080 based on down-scaled climate model (HIRHAM RCM)
data. Projections are given for two vegetation types: wetland (brown), heath (green), and two scenarios: a 2◦C global warming over 100 years (filled
symbols) and 2.4◦C over 60 years (open symbols). Running means over 10 years are shown as solid lines. (b) Active layer and permafrost total soil
organic carbon observed for two vegetation types, wetlands (open symbols) and heath (filled symbols),89 and (c) Ammonium concentrations in melt
water, for two vegetation types, wetlands (open symbols) and heath (filled symbols).89

richer than the active layer with respect to nitrogen
(Figure 5(c)). Thawing permafrost layers may there-
fore enhance the potential for a greening of Greenland
in a warmer climate, and future changes in permafrost
could have large impacts on coastal erosion, the car-
bon budget, vegetation, and infrastructures.

PAST CHANGES IN GREENLAND
VEGETATION: IMPACTS OF CLIMATE
AND AGRICULTURE

The recent growth of agriculture in Greenland repre-
sents the second attempt to introduce such activities.
During the medieval period (986–1450), Norse farm-
ers have settled South Greenland, developing livestock
farming. Beyond recent changes documented from
historical archives, sedimentary records provide infor-
mation on the past natural variability of Greenlandic
vegetation. During earlier interglacial periods, high
pollen influx and specific pollen assemblages from
marine sediments depict dense vegetation mostly com-
posed of shrubs and/or conifer trees.98 During the very
long interglacial stage occurring about 400,000 years
ago (Marine Isotopic Stage 11),99 a spectacular devel-
opment of spruce forest was very likely associated
with a strong ice sheet retreat.98,99

The warmer conditions encountered about
8000 years ago (Figure 3(b)) left imprints in South
Greenland lake sediments, in which pollen assem-
blages—an open tundra with Juniper—reflect dry
conditions in the early Holocene.100,101 Increasing
moisture and soil development in the mid-Holocene
allowed the development of dwarf birch (Betula

glandulosa) and white birch (Betula pubescens)100

(Figure 6(a), A–C). The cooling trend of the last mil-
lennia was associated with a fall in pollen fluxes, about
2000 years ago.100

A millennium ago, the Norse colonists lived as
pastoral farmers, fishermen, and hunters. Changes
in precipitation and wind regime may have influ-
enced their agriculture.22,104 However, archaeological
evidence indicates that the Norse in fact adapted
very well to new conditions and that the depen-
dence on the marine mammals increased105 when the
climate deteriorated and made herding and pastoral
farming more and more difficult.106 Paleoecological
records support these archaeological data.107–110 For
instance, analyses of Lake Igaliku sediments, near
the Norse Garðar, show that that Norse agropas-
toralism induced landscape modifications, causing an
increase in the non-indigenous plant taxa (e.g., Rumex
acetosa/acetosella), as shown in Figure 6(C,D in a)
and (b), at the expense of white birch.111 Reflect-
ing soil erosion, the sediment flux also increased
sharply, synchronously with vegetation changes, until
it reached its maximum at approximately 1180 AD,
at more than two times its baseline levels.100,102 At
the beginning of the 14th century, erosion and grazing
pressure sharply decreased, suggesting a reduction
in the sheep herds at the beginning of the Little
Ice Age.

Besides subsisting on local resources, the Norse
settlements also depended on imports from Europe.
Colder conditions and increasing sea-ice cover resulted
in more treacherous navigation between Greenland
and Europe, ultimately breaking off contacts in the
later part of the 1400s.112 In the 12th century,
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FIGURE 6 | (a) Schematic representation of environmental changes recorded by the Igaliku lake sediments100,102,103: (A) water quality estimated
from diatom assemblages, (B) soil erosion rates estimated from the minerogenic and organic inputs into the lake and controlled by a set of
geophysical, geochemical, and ecological parameters including magnetic susceptibility, titanium content, bulk organic matter geochemistry, and
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apophytes (Rumex acetosa—Taraxacum sp) on a medieval archeological site in south Greenland (source: E. Gauthier, 2007).

the Inuit19 brought new technologies (kayaks and
dog-sledges) and spread across Greenland. Their abil-
ity to hunt or fish a variety of terrestrial and marine
animal species equipped them to adapt to environ-
mental change. Adaptation is also part of today’s
Greenlandic society, making it responsive and ready
to take advantage of the greening of Greenland25 by
expanding agricultural activities.

Since 1920 AD, modern sheep farming and veg-
etable cultures have been developing in the relatively
warm, sheltered inner fjords of south Greenland that
first enticed Norse settlers to the region. Recent agri-
cultural activities had a much larger impact than
four centuries of Norse agriculture. Until 1976, tra-
ditional sheep grazing used practices similar to those
of the Norse, and sheep were left to graze openly

in winter.24 Pollen and coprophilous fungi spores
indicate disturbance levels that parallel those of Norse
grazing pressure.111 However, after dramatic impacts
of cold spring conditions in 1966, 1971 and 1975,24

farming methods switched to winter feeding, more
intensive practices of hay production, mechanization,
and fertilizer usage. Since 1976 (Figure 6), nitrogen
isotopes and diatom microfossils document a marked
shift in the lake Igaliku ecosystem consistent with
nutrient enrichment from agricultural sources as well
as warmer summer SAT.100,102 Current ecological
conditions and soil erosion in the Igaliku region are
thus unprecedented in the context of at least the last
1500 years. Given projected Greenland SAT and the
anticipated growth of the farming sector, even greater
landscape changes must be expected in the future.
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CURRENT CHANGES IN GREENLAND
VEGETATION

Changes in tundra gross primary production since
approximately 1982 have been quantified using
combined measurements from different sensors and
satellites12 (Figure 2). Biweekly measurements of Arc-
tic Normalized Difference Vegetation Index (NDVI,
calculated from spectral reflectance measurements at
the visible and near-infrared wavelengths) at 12 km
spatial resolution are used to estimate peak vegeta-
tion photosynthetic capacity (an indicator of tundra
biomass) as well as gross primary production, combin-
ing the length of the growing season and phenological
variations.12 The data depict a consistent increase
in tundra photosynthetic activity in areas of land
warming12 and sea ice decline (Figure 2). Such trends
are detected in SW Greenland, and in areas with
retreating glaciers, where rapid vegetation growth
occurs on recently exposed landscapes. In the vicin-
ity of Baffin Bay and Davidson Strait, the region of
increasing open water conditions in northwest Green-
land is characterized by increasing trends in summer
land SAT increase and in time-integrated NDVI which
are among the most pronounced in the entire Artic
realm (Figure 2).

Complex species interactions determine the
response of ecosystems to Arctic warming, changes
in plant phenology, snow and ice depth, and nutrient
availability.113 In southeast Greenland, a detailed
comparison of vegetation taxa114 showed only minor
changes between 1968 and 2007; species composition
change was most pronounced in snowbed and mire
habitats, likely caused by changes in snow cover and
soil moisture linked with higher SAT.

The recent warming has also affected agricul-
tural activities. The Greenlandic production of sheep
and lamb has reached its highest and most stable
levels in the 2000s, with more than 20,000 animals
slaughtered annually.24 The local production of pota-
toes (∼70 t/year) has been steadily increasing.115

PROJECTED FUTURE GREENLAND
CLIMATE CHANGES IN THE LIGHT
OF PREVIOUS CHANGES

Coupled climate model projections have been ana-
lyzed for SW Greenland. In CMIP3 (Climate Mod-
elling Intercomparison Project, Phase 3) simulations,
the SRES A1B scenario corresponds to a prescribed
increase in CO2 concentrations, reaching 720 ppmv
in year 2100. This scenario induces a median SW
Greenland SAT warming of 3.3 ± 1.3◦C.120,121 Global
simulations have recently been refined with RCMs4,5

to better assess regional impacts, with a focus on the
GrIS surface mass balance.1 When forced by atmo-
spheric reanalyses, the MAR regional model reliably
simulates the magnitude of coastal SW Greenland
SAT variability from 1958 to 2001 (Figure 3(c)). Pro-
jection scenarios were built using RCMs forced by the
outputs of ECHAM5 climate model, representative of
the average global climate model projections.121 The
calculation based on MAR (Figure 3(c)) shows a SW
coastal Greenland SAT warming trend of 4.7◦C per
century, amplified compared to the ECHAM5 trend
(+3.5◦C per century) by the snow albedo feedback.
MAR depicts a 1-month (+30%) increase in the length
of the SW Greenland growing season, corresponding
to a 60% increase in the positive degree days with
rather stable precipitation amounts. A very high reso-
lution case study conducted with the HIRHAM RCM
for the Kangerlussuaq area (Figures 1 and 2) leads to
similar results.122

Recently, new projections have been conducted
under new greenhouse emission scenarios, and using
the coupled ocean–atmosphere models from CMIP5
(Coupled Model Intercomparison Project, Phase 5)
database that will be used in the fifth assessment report
of the Intergovernmental Panel on Climate Change.
Given the spread within available simulations, it is
likely (50% confidence) that the rate of SAT change
may exceed 2.5◦C per century (RCP4.5 scenario) and
5.5◦C per century (RCP8.5 scenario) (Figure 7(b)).
These rates of changes can be compared with past
natural changes documented by ice cores.

Indeed, past Greenland climate was marked by
numerous abrupt climate fluctuations, the most sig-
nificant being the glacial Dansgaard–Oeschger (DO)
events, characterized by an abrupt warming with an
amplitude reaching up to 16◦C within a few decades
to centuries (Table 2), and a more gradual return to
colder conditions. These 25 DO events14 had a global
impact123 including monsoon shifts124 and variations
in atmospheric greenhouse gas concentrations. As sug-
gested by different pieces of information, including the
bipolar seesaw,52,125,126 these instabilities are believed
to be linked to changes in AMOC,127 possibly in
response to massive freshwater release from glacial
ice sheets.128 Some rapid events are also documented
under interglacial conditions. For instance, the begin-
ning of the current interglacial period is marked by
a sub-centennial cooling event, around 8200 years
ago, likely caused by the impact on Lake Agassiz
on North Atlantic ocean currents,129 followed by
a progressive recovery130,131 (Figure 3(b)). The last
interglacial period may also have been punctuated
by cold spells, possibly linked to inputs of ice sheet
meltwater.132–134
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FIGURE 7 | (a) Probabilistic estimate of the rate of SAT change over
the course of stadial–interstadial events, with a duration longer than
60 years. Data are represented as a probability density function (%) as a
function of the rate of SAT change (◦C per 100 years), calculated from
the published uncertainties on event duration and magnitude (see
Table 2). Color codes reflect the CO2 concentration (as an indicator of
the back ground climate) during events (from blue, concentrations
between 200 and 215 ppmv; orange, 220–230 ppmv; brown, 230–240
ppmv; and red, 240–260 ppmv). The black line displays the mean
probability density, calculated from the 11 studied events). There is a
tendency for having slower rates of temperature rise (DO20, DO22,
DO23, DO25, BA) under ‘warm climate’ background. DO 22 appears to
be very close to a ‘mean’ event. (b) Rates of changes for future climate
in RCP4.5 and RCP8.5 projections. Simulations from 13 models or
model versions have been considered (NorESM1-M, MRI-CGCM3,
MPI-ESM-LR, MIROC-ESM, MIROC-ESM-CHEM, MIROC, IPSL-CM5A-LR,
inmcm4, HadGEM2-ES, CSIRO-Mk3, CNRM-CM5, CCSM4, CanESM2,
and HadGEM2-ES). Results are displayed in terms of cumulative
frequencies within the 13 models.

An investigation of the rates of SAT changes
must take into account uncertainties in the dura-
tion of DO events and on the magnitude of abrupt
warming (Table 2). A probabilistic approach has been
conducted on 11 documented events (here, limiting

the investigated events to those lasting more than
60 years), showing that their median warming rate
is approximately 5◦C/century. We also note that
several abrupt events occurring under a warm climate
background (e.g., glacial inception, last deglaciation)
tend to have smaller rates of temperature changes
(Figure 7(a)), up to approximately 2.5◦C per century
during the first DO event, DO25,50 and the recovery
from the cold event, 8200 years ago131 (Figures 3(b)
and 7(a)). In business-as-usual scenarios (RCP8.5),
Greenland warming may therefore be more abrupt
during the 21st century than these past abrupt warm-
ing events occurring under interglacial conditions.

Climate projections suggest that, by the end of
the 21st century, Greenland climate may be ∼5◦C
warmer than during the last decades (1970–2000),
reaching conditions comparable with those previ-
ously encountered during past warm interglacial
periods.143,144 During the Last Interglacial period
(Eemian), ca. 130,000–115,000 years ago, the orbital
configuration resulted in strongly enhanced northern
hemisphere summer insolation (Figure 3(a)). Paleocli-
mate data depict large scale Arctic warming,145,146

with Greenland temperatures approximately 5◦C
above pre-industrial levels,14,15,147 reduced sea-ice
extent around Greenland.27,148 Climate models show
that the response to changes in orbital forcing are
characterized by a large mid-to high latitude summer
warming, with year-round impacts linked with sea-ice
retreat. This contrasts with the impacts of increased
greenhouse gas concentrations, leading to larger win-
ter warming. However, the two types of forcings
produce similar magnitudes of summer warming, and
similar magnitudes of sea ice, cloud or water vapor
feedbacks.144

Systematic model-data comparisons for the Last
Interglacial period therefore offer the potential to
assess the realism of the multicentennial ‘equilibrium
response’ of climate models in a context relevant for
the magnitude of future changes. Albeit occurring
in a different context, past centennial abrupt events
offer a complementary approach to test the ‘transient
response’ of climate models.

PROJECTED FUTURE GREENLAND ICE
SHEET AND GLACIER CHANGES

Future climate change is among other areas expected
to impact coastal sea ice cover, extreme events,
river runoff and its potential for hydroelectricity
production.26 The large impact of external natu-
ral forcings and internal variability of the ocean
and atmospheric circulations (e.g., AMO and NAO)
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TABLE 2 Summary of the Timing, Magnitude (from Gas Thermal Diffusion) (K) and Duration (years) (from Water Stable Isotopes) of
Stadial–Interstadial Transitions from Greenland Ice Cores52

Event Ice core (age scale)
Start of

warming
End of

warming
Duration

(uncertainty)
Temperature change

(uncertainty) References

End of Younger Dryas GISP2 (GISP2) 11,590 11,540 70(20)1 10(4)1 136

Preboreal oscillation GISP2 (GISP2) 11,270 40(20)1 4(1.5)1 56

Bolling Allerod GISP2(GISP2) 14,820 14,600 220(20) 9(3)
16(–)

139
137

DO3 NGRIP(GICC05) 27,720 27,540 180(20) —

DO4 NGRIP(GICC05) 28,920 28,800 120(20) —

DO5 NGRIP(GICC05) 32,540 32,480 60(20) —

DO6 NGRIP(GICC05) 33,900 33,680 220(20) —

DO7 NGRIP(GICC05) 35,520 35,440 80(20) —

DO8 NGRIP(GICC05) 38,240 38,200 40(20) 11(3) 140

DO9 NGRIP(GICC05) 40,180 40,140 40(20) 9(3) 140

DO10 NGRIP(GICC05) 41,500 41,440 60(20) 11.5(3) 140

DO11 NGRIP(GICC05) 43,220 43,160 60(20) 15(3) 140

DO12 NGRIP(GICC05)
GRIP (GICC05)

46,860 46,840 20(20) 12.5(3)
12(2.5)

140
138

DO13 NGRIP(GICC05) 49,120 49,020 100(20) 8(3) 140

DO14 NGRIP(GICC05) 54,240 54,200 40(20) 12(2.5) 140

DO15 NGRIP(GICC05) 55,840 55,740 100(20) 10(3) 140

DO16 NGRIP(GICC05) 58,060 58,040 20(20) 9(3) 140

DO17 NGRIP(GICC05) 59,100 59,060 40(20) 12(3) 140

DO18 NGRIP(ss09sea) 66,383 66,207 176(50) 11(2.5) 141

DO19 NGRIP(ss09sea)
GRIP

74,582 74,405 177(50) 16(2.5)
16(−)

141
142

DO20 NGRIP(EDC3) 74,336 74,149 187(50) 11(2.5) 141

DO21 NGRIP(EDC3) 83,685 83,585 100(50) 12(2.5) 141

DO22 NGRIP(EDC3) 89,510 89,424 86(50) 5(2.5) 141

DO23 NGRIP(EDC3) 101,981 101,852 129(50) 10(2.5) 141

DO24 NGRIP(EDC3) 106,978 106,698 280(50) 16(2.5) 141

DO25 NGRIP(EDC3) 112,470 112,305 165(50) 3(2.5) 50

DO stands for Dansgaard–Oeschger stadial-interstadial transition. Events for which either no temperature estimate is available, or with durations likely shorter
than 60 years (and therefore associated with uncertainties of 1/3 or more on the duration) were not used to estimate centennial trends. These short-lived or
poorly characterized events are depicted in italics. GICC05 refers to the most recent Greenland counted age scale.49,135

1The method used to determine the amplitude of the temperature change at the end of the Younger Dryas (YD)136 is based on a static firn heat diffusion model
with temperature forcing as a step function. The method developed for the Preboreal Oscillation (PBO)56 is more sophisticated and is based on yearly annual
incrementation of temperature to fit the δ15N profile as well as a complete firnification and heat diffusion model.137 This latter approach has the disadvantage
that small errors in the temperature increment are cumulative. In order to be coherent with the following amplitudes of temperature changes on NorthGRIP that
have been performed using the firnification and heat diffusion model.137 forced by different temperature scenario inspired from the ice core δ18O profile,138 we
have checked the values obtained on the YD and the PBO with this method. For the end of the YD, our results confirm earlier results136; even with variations by
a factor of 4 of the rate of temperature increase at that period, the amplitude of the temperature increase remains between 6 and 14◦C. For the PBO, the δ15N
and δ40Ar data can be well reproduced by an increase in 4◦C in 20 years or 5◦C in 80 years. Considering analytical uncertainties, we estimate its temperature
increase to be 4 ± 2.5◦C in 20–80 years.

on Greenland climate calls for a careful interpreta-
tion of projections.1 Links between climate forcings,
large-scale modes of variability, and local extreme
events remain to be better detailed.

Recent studies have investigated the possible
future evolution of the GrIS. Climate projections have

been used to quantify the changes in the surface mass
balance,121 while empirical approaches have been
deployed to estimate the potential range of the ice
sheet response149,150 which is starting to be described
in new generations of GrIS models.151 Most studies
predict increasing GrIS mass loss, an acceleration of
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fast flowing glaciers,152 and a potential contribution
to sea level rise of several tens of centimeters by 2100.1

The projected future Greenland ice sheet retreat
may also be compared with the evidence for
major mass loss during the Last Interglacial period,
characterized by a global sea level >6 m higher than
today.153 Large uncertainties remain on the magnitude
of Last Interglacial GrIS mass loss, which could have
contributed at least 1.5 m of sea level rise, with large
uncertainties on the magnitude, location and rates
of changes.154–156 New information from the NEEM
ice core data is expected to provide observational
constraints on the ice sheet topography changes during
the Last Interglacial.157 Orbitally driven changes in
summer insolation may have directly contributed to
about half of the GrIS mass loss (the other half being
caused by orbitally driven changes in SAT), limiting
the analogy with future changes.158

GrIS melt has likely affected AMOC during the
Last Interglacial period.159 During glacial periods,
major reorganizations in AMOC associated with
DO events may also have been driven by massive
meltwater inputs, provided by glacial ice sheet
instabilities52,128 (Figure 3). These past abrupt AMOC
changes had well documented global impacts, notably
migrations of the inter-tropical convergence zone
associated with a cooling of the North Atlantic
region,3,160,161 which in turn influenced regional
climate around Greenland. Sensitivity studies have
been conducted to investigate the response of AMOC
and climate to future GrIS meltwater fluxes, with
varying results.3,162–164 Differences may arise from the
prescribed melting rates165 and from the sensitivity
of the AMOC in each climate model to both CO2
increase and freshwater perturbations. For instance, a
large weakening of the AMOC in response to global
warming and enhanced North Atlantic precipitation
may hide a weakening due to ice sheet melting. The
sensitivity of AMOC to freshwater can be highly
nonlinear,166 due to the potential existence of a
bifurcation point for the AMOC dynamics identified
in simple ocean circulation models.167 These studies
show that the AMOC may significantly weaken for a
Greenland melting rate above 0.1 Sv (106 m3/second)
in 2100, a pacing not incompatible with estimates
of GrIS mass loss acceleration.2 By limiting the
warming around Greenland, a weakened AMOC
may act as a negative feedback for the GrIS mass
loss, but induce major reorganizations in the tropical
Atlantic atmospheric circulation and precipitation
distribution (Figure 8). Altogether, both the past
and future magnitude and pacing of GrIS melting
and the feedbacks between melt and AMOC remain
uncertain.

CONCLUSIONS

Climate projections suggest that, by the end of the
21st century, Greenland climate may be comparable
with conditions previously encountered during last
interglacial period, which was also marked by a
significant (but not complete) GrIS mass loss. We
have highlighted that, in response to increases in
atmospheric greenhouse gas concentrations, projected
SAT changes may occur at a rate comparable or
higher than past abrupt warmings occurring under
interglacial conditions (e.g., 8.2 ka event, DO 25).

Despite different drivers of past and future cli-
mate changes, past climates offer case studies against
which the ability of climate models to resolve past
variations with magnitudes or rates of changes rel-
evant for future changes may be assessed. Some
initial comparisons suggest that climate models may
underestimate Greenland warming during the Last
Interglacial, possibly due to the lack of changes in ice
sheet and land surface (northern hemisphere vegeta-
tion) feedbacks.144 Simulations of past abrupt events,
in response to prescribed freshwater forcing, also seem
to underestimate both the magnitude and rate of stadi-
al–interstadial transitions in Greenland.169 However,
this conclusion must be taken with caution, due to
uncertainties in the initial state of the climate system,
and numerical experiment set-up that do not account
for all the feedback processes at play such as changes
in vegetation and dust. Cross investigations of past
and future simulations conducted with the same mod-
els will be possible using the CMIP5 (Climate Model
Intercomparison Project) model output database,
which should be able to address this issue in more
details.

Paleoclimate records moreover highlight the
large inter-annual, decadal, and centennial variabil-
ity of Greenland SAT, related to large-scale changes
in atmospheric and oceanic dynamics, and possibly
driven by external forcings (orbital, solar, and volcanic
forcing). So far, very few detection–attribution studies
have been conducted for this area.29 The emergence
of ensemble multi-millennia transient simulations with
climate models opens the possibility to further inves-
tigate and possibly quantify the relative importance of
internal variability and of the deterministic response
of Greenland climate to external forcings.

Past climate variability and current climate
change have had and still have large impacts on
marine and terrestrial ecosystems around Greenland,
with consequences for resources and human societies.
There is evidence of past vulnerability (cod stocks)
but also of resilience (limited impacts of Norse agri-
culture) of ecosystems to human pressures. With a
cultural heritage of ‘being prepared for surprises’,25
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FIGURE 8 | Illustration of the impact of a large GrIS meltwater flux (>0.1 Sv) on global climate projections using the IPSL CM4 model.3 SAT (top)
and precipitation (bottom) changes for 2× CO2 (averaged over years 450–500)168 with respect to the preindustrial control simulation when including
(right) or not (left) the impact of GrIS meltwater flux. A strong reduction in the AMOC induces a reduced warming in the north Atlantic but enhanced
warming in the southern hemisphere tropical Atlantic, resulting in a southward shift of the Inter tropical Convergence Zone. Such a migration may
have strong impacts on tropical precipitation distributions. This type of behavior has been found in a multi-model ensemble for modern conditions
and appears to be robust under global warming conditions.161

Greenlanders face opportunities and threats linked
to the deglaciation and greening (enhanced biological
productivity) of Greenland. Perception studies170 and
combined use of traditional knowledge and climate
model projections are needed to assess the impacts of
climate change on coastal areas.

Adaptation to climate change requires improved
investigations of local impacts, including changes of
Greenland regional climate variability and likelihood
of extreme events. Agronomical models can be used
to quantify the potential impacts of a longer growing
season on terrestrial vegetation and the potential

for new types of cultures, including the needs
for irrigation, as previously used by the Norse.171

Changes in permafrost potentially have large impacts
on coastal erosion, the carbon budget, vegetation,
and infrastructures. Long term monitoring efforts
need to be maintained and expanded. This will assist
monitoring of the changes but also enhance capability
to assess and improve the models used for predictions.

The response of the GrIS to warming is of
global strategic interest, not only for sea level
but also for its potential impacts on the AMOC,
atmospheric circulation and precipitation. A better
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understanding of the ocean–atmosphere–cryosphere
interactions is needed to enhance our understand-
ing of the feedback mechanisms at play and thereby
reduce uncertainties in projections. The key processes
affecting the GrIS dynamics (impact of surface water
production on basal lubrication, and retreat of the
calving fronts of floating ice tongues) are located at
the margin of the ice sheet and have typical spatial
scales of a few kilometers. Small-scale glaciological
models start to resolve this type of processes, but
their inclusion in GrIS models remains a challenge,
addressed by ongoing international projects aiming at
better constraining sea level rise from melting land

ice in the 21st century. A precise documentation of
past changes in Greenland ice sheet mass balance,
especially during the Last Interglacial, is needed to
benchmark this new generation of ice sheet models.

NOTE
aThe surface mass balance of an ice sheet is defined
as the balance between the mass input by accumula-
tion and the mass loss by ablation due to sublimation
and runoff, therefore not taking ice flow and iceberg
calving into account.
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