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this paper to his memory.

Let � be an irreducible lattice in PSL2(R)d (d ∈ N) and z a point in the d-fold di-

rect product of the upper half-plane. We study the discrete set of componentwise

distances D(�, z) ⊂ Rd defined in (2). We prove asymptotic results on the number of

γ ∈ � such that dist(z, γ z) is contained in strips expanding in some directions and

also in expanding hypercubes. The results improve the existing error terms, [6], and

generalize the best known error term for d = 1, due to Selberg.

1 Introduction

Let H = { x + iy ∈ C : y > 0 } be the upper half-plane equipped with the hyperbolic metric

d : H × H → R and its invariant measure induced by dx dy/y2. The group of orientation

preserving isometries of this metric space is PSL2(R). Let now dbe a natural number and

consider the semisimple Lie group PSL2(R)d as acting on its corresponding symmetric
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New Lattice Point Asymptotics 1511

space Hd. We write z = (z1, . . . , zd) for the coordinates z1, . . . , zd ∈ H of a point z ∈ Hd. Let

us consider the vector-valued distance function

dist(z, u) := (dist(z1, u1), . . . , dist(zd, ud)) ∈ Rd (1)

for points z = (z1, . . . , zd), u = (u1, . . . , ud) ∈ Hd. The canonical invariant distance of z, u

is then the euclidean norm of dist(z, u). But other choices of norms (like the maximum

norm) also induce PSL2(R)d-invariant metrics on Hd.

Let � ⊂ PSL2(R)d be an irreducible lattice. A lattice in PSL2(R)d is a discrete

subgroup � ⊂ SL2(R)d of finite covolume, that is, the volume of the quotient �\Hd in the

canonical measure is finite. The lattice � ⊂ SL2(R)d is called irreducible if all projections

of � to non-trivial subproducts of PSL2(R)d are dense. A main example is the Hilbert

modular group PSL2(O) for the ring of integers O of a totally real number field F of

degree d over Q, embedded in the product PSL2(R)d by the d embeddings of F into R. The

embedded group PSL2(O) and all its subgroups of finite index are irreducible lattices in

PSL2(R)d. They are not cocompact, which means that the quotient �\Hd is not compact.

In case d ≥ 2, every irreducible lattice in PSL2(R)d that is not cocompact contains a

subgroup of finite index, which is PSL2(R)d-conjugate to a subgroup of finite index in

one of the PSL2(O). Irreducible cocompact lattices in PSL2(R)d are constructed from

quaternion algebras over totally real number fields F . In case d ≥ 2, these are up to

conjugacy, the only examples by Margulis’ arithmeticity theorem. See Section 2 for more

details.

Let � ⊂ PSL2(R)d be an irreducible lattice and let z ∈ Hd be fixed. Consider the

set of vector-valued distances

D(�, z) := { dist(z, γ z) ∈ Rd : γ ∈ � }. (2)

This clearly is an infinite discrete subset of Rd. But what more can be said? In this paper,

we shall prove results that describe the distribution of the points of D(�, z) in various

regions like strips or expanding polyhedra in Rd. (We will count the point dist(z, γ z) with

multiplicity #�z, where �z is the subgroup of � fixing z.)

To give a precise formulation of our main results, we need to discuss some as-

pects of the spectral theory of L2(�\Hd). This Hilbert space has a subspace L2,discr(�\Hd)

with an orthonormal basis {ψ�} of joint eigenvectors of the Laplace operators � j =
−y2

j ∂
2
xj

− y2
j ∂

2
yj

( j = 1, . . . d) in the factors. The corresponding multi-eigenvalues λ� have

finite multiplicities and form a discrete set in [0,∞)d. Among the eigenfunctions is the
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1512 R. W. Bruggeman et al.

constant function ψ0(z) = (
vol(�\Hd)

)−1/2 for which the eigenvalues of all � j are all

equal to 0. For � ≥ 1, one knows that λ�, j > 0 for all j = 1, . . . , d. If � is cocompact, then

L2,discr(�\Hd) is all of L2(�\Hd). Otherwise, the elements of the orthogonal complement

of L2,discr(�\Hd) can be described as sums of integrals of Eisenstein series.

We call a multi-eigenvalue λ� exceptional if 0 < λ�, j < 1/4 for some coordi-

nate j ∈ {1, . . . , d}. If d ≥ 2, there may be infinitely many exceptional eigenvalues, since

there is no bound on the other coordinates. If 0 < λ�, j < 1/4 for all j, we call λ� totally

exceptional. There are at most finitely many totally exceptional eigenvalues.

For a further discussion, we use the parametrization λ = (1/4) − τ2 by the spec-

tral parameter τ . In L2(�\Hd), all eigenvalues of local Laplace operators are in [0,∞), so

we can choose τ ∈ i[0,∞) ∪ [
0, 1/2

]
. Thus, we have τ0, j = 1/2 for all j, and Re τ�, j < 1/2

for all j.

For a congruence subgroup � of a Hilbert modular group, it has been shown

by Kim and Shahidi, [15], that Re τ�, j ≤ 1/9 for all � ≥ 1 and all j. For this situation, a

conjecture called after Selberg says that Re τ�, j = 0 for all � ≥ 1 and all j. Below we will

discuss other results concerning Re τ�, j, � ≥ 1. For the formulation of our results, we

summarize the information concerning exceptional eigenvalues in the quantity

τ̂ = τ̂ (�) := sup
�≥1 , 1≤ j≤d

Re τ�, j . (3)

This, by definition, is an element of
[
0, 1/2

]
. Since there may be infinitely many λ�, the

value 1/2 might occur in (3), although here we omit � = 0. If τ̂ < 1/2, one says that �\Hd

has a strong spectral gap. In our later arguments, we use that τ̂ < 1/2, a fact proved

in [14] by Kelmer and Sarnak for cocompact �. If � is not cocompact and d ≥ 2, then

� contains a subgroup of finite index that is conjugate to a congruence subgroup of a

Hilbert modular group SL2(O), for which the results of Kim and Shahidi, [15], imply that

τ̂ ≤ 1/9. Here we use the important fact, proved in [28] that every subgroup of finite index

in SL2(O) is a congruence subgroup.

Let now E ⊂ {1, . . . , d} be a non-empty subset and let I := { I j : j ∈ E } be a set

of bounded intervals I j := [Aj, Bj) ⊂ [0,∞). Define for T > 0

S(E, I ; T) := { (x1, . . . xd) ∈ Rd : xj ∈ I j for j ∈ E, 0 ≤ xj ≤ T for j /∈ E }. (4)

We think of S(E, I ; T) as a strip of increasing height T in Rd. Given z ∈ Hd, we introduce

the counting quantity

NE (z; T) := # { γ ∈ � : dist(z, γ z) ∈ S(E, I ; T) }. (5)
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New Lattice Point Asymptotics 1513

We show

Theorem 1.1. Let � be an irreducible lattice in PSL2(R)d, with d ≥ 2. Let E ⊂ {1, . . . , d}
be a subset with e := #E ≥ 1. Define Q := {1, . . . , d} � E and assume q := #Q ≥ 1. Let fi-

nite intervals [Aj, Bj) ⊂ [0,∞) be given for j ∈ E , and let n(z) be as defined in (19). The

quantity NE (z; T) in (5) satisfies as T → ∞:

NE (z; T) = πd 2e

vol(�\Hd)
eqT

∏
j∈E

(
cosh Bj − cosh Aj

)

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O�,E

(
n(z) exp

(
d+ 1

d+ 2
qT

))
if τ̂ ≤ q

2(d+ 2)
,

O�,E

(
n(z) exp

(
1 + 2τ̂ + e

2 + e
qT

))
if

q

2(d+ 2)
≤ τ̂ <

1

2
.

The quantity n(z) in the error term equals 1 far away from the cusps and ap-

proaches ∞ as z approaches a cusp. Indeed, for z deep in the cusp sector associated to

the cusp κ we have n(z) = � j Im g−1
κ, jzj, where gκ ∈ PSL2(R)d sends ∞ to κ.

This theorem is a specialization of Theorem 5.5, where we allow somewhat more

general conditions on the components of the vector-valued distances. The E in O�,E im-

plies an implicit dependence on the intervals [Aj, Bj) with j ∈ E . In Theorem 1.1, we

have d ≥ 2 and 1 ≤ q = #Q ≤ d− 1. As explained above, τ̂ < 1/2 holds and it depends on

the relative sizes of d and q which of the error terms is applicable.

We may reformulate the theorem in terms of the volume

vol(E, I ; T) := vol
{
z′ ∈ Hd : dist(z, z′) ∈ S(e, I ; T)

}
(6)

with respect to the invariant measure on Hd. Normalizing this measure by taking

dxj dyj/y2
j in the factors we have

vol(E, I ; T) = πd2−qeqT (
1 + O(e−T )

) ∏
j∈E

(
cosh Bj − cosh Aj

)
.

Hence, the estimate in the theorem is equivalent to

N(z; T) = 2dvol(E, I ; T)

vol(�\Hd)

+

⎧⎪⎨
⎪⎩

O�,E

(
n(z) vol(E, I ; T)(d+1)/(d+2)

)
if τ̂ ≤ q

2(d+2)
,

O�,E

(
n(z) vol(E, I ; T)(1+2τ̂+e)/(2+e)

)
if q

2(d+2)
≤ τ̂ < 1

2 .

(7)
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1514 R. W. Bruggeman et al.

We shall describe now another result pertaining to the more standard lattice

point problems. We consider the asymptotic distribution of the orbit points γ z (γ ∈ �)

for a given point z ∈ X and a discontinuous group of motions � acting on a symmetric

space X. In the case when X = H is the upper half-plane, many authors have contributed

to this problem, for instance [10], [11], [12], [22], and [13]. The best result concerning error

terms is due to Selberg (see the Bombay and Göttingen lectures in [27]). It gives

#
{
γ ∈ � : dist(γ z, z) ≤ T

} = π

vol(�\H)
eT

+
∑

�

π1/2 |ψ�(z)|2 �(τ�)

�(τ� + 3/2)
e(1/2+τ�)T + O

(
e

2
3 T )

(T → ∞).
(8)

The functions ψ j form an finite orthonormal system (possibly empty) of eigenfunctions

with eigenvalue 1/4 − τ2
� of the hyperbolic Laplace operator acting on L2(�\H) with 0 <

τ� < 1/4. This result holds for all cofinite discrete subgroups of PSL2(R), cocompact or

not.

Let � now be an irreducible lattice in PSL2(R)d, with d ∈ N. For z ∈ Hd, we define

N(z; T) := #
{
γ ∈ � : max

(
dist(z, γ z)

) ≤ T
}
, (9)

where max(x) is the maximum of the absolute values of the coordinates of the vector

x ∈ Rd. We show

Theorem 1.2. Let � be an irreducible lattice in PSL2(R)d, with d ∈ N and let z ∈ Hd be

given. With τ̂ = τ̂ (�) as in (3), and with the quantity n(z) as defined in (19), the counting

function N(z; T) has the following asymptotic behavior as T → ∞:

• If 0 ≤ τ̂ (�) ≤ d
2(d+2)

(large spectral gap), then

N(z; T) = πd

vol(�\Hd)
edT + O�

(
n(z) exp

(
d+ 1

d+ 2
dT

))
. �

• If d
2(d+2)

≤ τ̂ (�) ≤ 1
2 (small spectral gap), then

N(z; T) = πd

vol(�\Hd)
edT +

∑
�≥1 , ∀ j τ�, j∈(0,1/2)

∣∣ψ�(z)
∣∣2

d∏
j=1

( √
π �(τ�, j)

�(3/2 + τ�, j)
e(1/2+τ�, j)T

)

+O�

(
n(z) exp

(
2d+ 2(d− 1)τ̂

3
T

))
.
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New Lattice Point Asymptotics 1515

Theorem 1.2 is a special case of Theorem 5.4, where we allow a more general

counting quantity than N(z; T). The function n(z) in (19) is positive on �\Hd and grows

when z approaches a cusp.

A reformulation in terms of volumes uses

vol(T) = vol
{
z′ ∈ Hd : dj(z, z′) ≤ T for all j

} = πd2−dedT (
1 + O(e−T )

)
,

and leads to

N(z; T) = 2d vol(T)

vol(�\Hd)

+ O�

(
n(z)vol(T)(d+1)/(d+2)

) (
if τ̂ small

)
,

+
( ∑

�≥1 , ∀ j τ�, j∈(0,1/2)

∣∣ψ�(z)
∣∣2(

2vol(T)/π
)∑d

j=1( 1
2 +τ�, j)/d

·
d∏

j=1

√
π �(τ�, j)

�(3/2 + τ�, j)

+ O�

(
n(z)vol(T)

1
3 (2+2τ̂−2τ̂ /d)

)) (
if τ̂ large

)
.

(10)

We note that we do not try to put one distance function on Hd, but work with

the vector of the distances in the factors. Partly, this is because in this way it is easier

to apply the spectral theory. Partly, it reflects the fact that there is not one distance

function on Hd that is preserved by the action of PSL2(R)d, but infinitely many.

For a small spectral gap, totally exceptional eigenfunctions appear explicitly in

the asymptotic estimate. Of course, some of these exceptional contributions may happen

to be absorbed by the error term. For large spectral gaps, further improvement of our

knowledge of τ̂ (�) does not improve the quality of the error term in our asymptotic

formula. This holds in particular for the congruence case, in which we know that τ̂ ≤ 1/9.

The main term is always larger than the error term, even if we would have τ̂ (�) = 1/2 (no

spectral gap).

The case d = 1 in Theorem 1.2 concerns lattice point counting for groups act-

ing on the upper half-plane. The best known error term O(e(2/3)T ) coincides with the

error term in Theorem 1.2 for d = 1. The papers [7], [1], [17], [18], and [2] treat lattice

point counting for other symmetric spaces of rank one. The situation in this paper, with

rank d, falls within the scope of [5] and [6], in which Gorodnik and Nevo consider count-

ing of lattice points over quite general families of sets in quotients of more general
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1516 R. W. Bruggeman et al.

Lie groups. Their error terms for �\Hd are weaker than those in Theorem 1.2. They get

O
[
exp

(
(5/6)T

)]
in the case d = 1 and � not cocompact, and O

{
exp

[(
(4d+ 1)/(4d+ 2)

)
dT

]}

for the Hilbert modular case and d ≥ 2, which should be compared with Selberg’s bound

O
(
(2/3)T

)
for d = 1, and with O

{
exp

[(
(d+ 1)/(d+ 2)

)
dT

]}
in Theorem 1.2 for general d.

We emphasize that the class of counting problems considered by Gorodnik and Nevo is

much larger than ours. They consider quite general families t → Gt of regions in much

more general groups than PSL2(R)d. They use an ergodic method that can be applied in

all these cases, without using more spectral information than the size of the spectral

gap.

In the proofs, we apply the spectral theory of automorphic forms. We give the

main proof in Section 5. The approach is sketched in the introduction to Section 4 and

in Sections 5.1 and 5.2. The idea is that the sums N(z; T) and NE (z; T) are replaced by

smooth approximations. This smoothness ensures that the new quantities have a spec-

tral decomposition that converges pointwise. In this spectral expansion, we single out

the terms corresponding to the constant functions and to totally exceptional eigenfunc-

tions, if these are present. These give the main terms in the asymptotic expansion. The

remaining part of the spectral decomposition is estimated using the estimate of the

spectral measure in Theorem 4.2. We use an approach similar to one in [13] that makes

explicit the dependence on the point z ∈ Hd.

For the handling of the spectral decomposition, the Selberg transform discussed

in Section 4.1 is essential. In Section 6, we prove the estimates and other facts that we

need. In the proof of the main theorems, we also use some estimates of the counting

function (Lemmas 3.1 and 3.2) obtained without the use of spectral theory. A main role

in the proofs is played by an estimate of the spectral function given in Theorem 4.2,

proved in Section 7.2.

We end the introduction with an explanation of the level of generality that

we have chosen. The error terms in the estimates depend on the group � and the

point z ∈ Hd. The dependence on the group � is hard to make explicit in a simple way. In

the proof of Lemmas 3.1 and 3.2, we use geometrical properties of �\Hd. Furthermore,

in the introduction of Section 5.4 we use a property of the spectrum of L2(�\Hd), and in

the proof of Lemma 5.1 the size of the square integrable automorphic forms. The depen-

dence on the point z is given by the quantity n(z) in (19), which arises in a geometrical

way in the proof of Lemma 3.2. It is used in the proof in Section 7.2 of the spectral es-

timate Theorem 4.2. It also enters in the proof of Lemma 5.1, in a rough estimate of the

growth of residues of Eisenstein series. The methods in this paper would allow to count

dist(w, γ z) with w, z ∈ Hd, instead of dist(z, γ z), but then changes would be needed at all
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New Lattice Point Asymptotics 1517

these places. In the situation that � = �1 × �2 with �1, an irreducible lattice in SL2(R)d1

and �2 in SL2(R)d2 , with d1, d2 ≥ 1 and d1 + d2 = d, we may derive from the results for

�1 and �2 similar, but more complicated, results for the reducible lattice � = �1 × �2.

If �1 × �2 has finite index in �, it is harder to get information on counting quantities

for � from that for �1 × �2. Thus, to avoid many complications, in this paper we have

restricted ourselves to irreducible lattices and to the case when z = w.

2 Lie Groups and Discrete Subgroups

Let G be the Lie group PSL2(R)d for some integer d ≥ 1. The group G acts on the product

Hd of upper half-planes by fractional linear transformations in each factor. We will use

the letter j to index these factors. G leaves invariant the vector-valued distance function

dist(z, w) = (
dist j(zj, w j)

)
j∈{1,...,d}, (11)

where dist j is the hyperbolic distance in the jth factor. By
[

a
c

b
d

]
, we denote the class in

G represented by
(

a
c

b
d

)
∈ SL2(R).

We consider an irreducible lattice � ⊂ G, as described in Definition 5.20 and

Corollary 5.21 of [24]. So, for each of the genuine subproducts H of PSL2(R)d the projec-

tion � → H has dense image. In particular, �\Hd has finite volume, and the projection to

each of the factors is injective on �. (See also Corollary 5.23 in loc. cit.)

Hilbert modular groups PSL2(O) and their subgroups of finite index, mentioned

in the introduction, are examples. Cases for which �\G is compact can be derived from

quaternion algebras H over a totally real number field F for which there is a non-empty

set S of infinite places j for which the tensor product Fj ⊗F H, where Fj is the completion

of F , is a division algebra. Suppose that #S = d > 0. Let HO be an order in H. Then the

elements of reduced norm 1 in HO have as their image in
∏

j /∈S PSL2(Fj) a cocompact

discrete subgroup satisfying the assumptions above.

In the case d = 1, most of the subgroups of finite index in PSL2(Z) are not the

image of a congruence subgroup of SL2(Z). Moreover, there are many irreducible dis-

crete subgroups of PSL2(R) that are not commensurable to PSL2(Z). For d ≥ 2, Margulis

has shown that all irreducible discrete subgroups of PSL2(R)d are arithmetic, that is,

commensurable to a Hilbert modular group or to a unit group of a quaternion algebra.

(See Theorem (1.11) in Chapter IX of [20], or the discussion in Section 7 of [26].) Serre,

[28], has shown that all subgroups of finite index in SL2(O) are congruence subgroups.
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1518 R. W. Bruggeman et al.

So all non-cocompact irreducible lattices contain a conjugate of a congruence subgroup

as a subgroup of finite index.

3 A Priori Estimates

From here on, we follow the usual practice of not working directly with the hyperbolic

distance dist on H, but with

u(z, z′) = |z − z′|2
4yy′ = (

sinh 1
2dist(z, z′)

)2
,

dist(z, z′) = 2 log
(√

u(z, z′) + √
u(z, z′) + 1

)
.

(12)

For U, V ∈ [0,∞)d such that U j < Vj for all j, we consider the counting quantity

N(U, V; z) = #
{
γ ∈ � : U j ≤ u

(
(γ z) j, zj

)
< Vj for all j

}
. (13)

To relate this to the quantities N(z; T) and NE (z; T) used in the introduction, we will use

that dist ↓ 0 corresponds to u ↓ 0 in such a way that

u = dist2

4
+ O(dist4) , dist = 2

√
u+ O(u3/2), (14)

and that u → ∞ corresponds to dist → ∞ in such a way that

u = 1

4
edist + O(1) , dist = log u+ log 4 + O(u−1). (15)

We will need a starting point for the estimation of N(U, V; z). We give two esti-

mates for the counting function. The first is based on a simple volume argument. The

second is important for the dependence of our results on the geometry of �\Hd. As z ∈ Hd

approaches a cusp there are more and more γ ∈ � for which γ z is near z.
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New Lattice Point Asymptotics 1519

Lemma 3.1. For z ∈ Hd and U, V ∈ [0,∞)d such that U j < Vj for all j, we have

N(U, V; z) ��,z

∏
j

(Vj − U j + 1).

�

Proof. For w ∈ Hd and δ > 0, we put

B(w, δ) = {
v ∈ Hd : ∀ j u(w j, v j) < δ

}
.

Let z ∈ Hd be given. The subgroup �z of � fixing z is finite. See, for example,

Remark 2.14 in Chapter I of [4]. By the discontinuity of the action, there is δ > 0 such

that B(z, δ) ∩ B(γ z, δ) = ∅ for all γ ∈ � � �z. The �-invariance of u implies that B(γ1z, δ) ∩
B(γ2z, δ) = ∅ for all γ1, γ2 ∈ � for which γ1z �= γ2z.

For P , Q ∈ [0,∞)d, denote by A(P , Q) the multi-annulus

{
v ∈ Hd : ∀ j P j ≤ u

(
v j, zj

)
< Q j

}
.

The pairwise disjoint sets B(γ z, δ) with γ z ∈ �z ∩ A(U, V) are contained in a slightly

larger multi-annulus A
(
U (δ), V(δ)

)
with U (δ) j = U j − O(1) and V(δ) j = Vj + O(1).

See (12). Thus, we have

#
(
�z ∩ A(U, V)

) ≤ vol
(
A(U (δ), V(δ))

)
/vol(B(z, δ)) �δ

∏
j

(Vj − U j + 1).

(The volume computation is easiest in a distance coordinate u = u(z, i) and an angular

coordinate φ. Then dμ on H is given by 4 dudφ. See (1.17) in [13].) Since N(U, V; z) =
#�z · #

(
�z ∩ A(U, V)

)
, this proves the lemma. �

Next we aim at an estimate of N(0, V; z) when all Vj are small. In this estimate,

the dependence on z will be explicit. In order to do this, we take into account some facts

concerning the geometry of the action of � on Hd. (The approach is motivated by that in

the proof of Corollary 2.12 in [13].)
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1520 R. W. Bruggeman et al.

The assumptions on � imply that we can find a fundamental domain F that is

compact in the case of cocompact �, and is contained in a union of Siegel domains

otherwise:

F ⊂
⋃
κ

gκS(Xκ , Yκ , Vκ ),

S(Xκ , Yκ , Vκ ) = {
z : xj ∈ [−Xκ , Xκ ] for all j , y1y2 · · · yd ≥ Yκ ,

V−1
κ ≤ yj

yj+1
≤ Vκ for 1 ≤ j ≤ d− 1

}

where κ runs through a finite set of representatives κ = gκ∞ of the �-classes of cusps,

with gκ ∈ G, Xκ , Yκ > 0 and Vκ > 1. (See [4], Chapter I, Section 2.) Enlarging Yκ decreases

S(Xκ , Yκ , Vκ ). There exists A > 0 such that the gκS(Xκ , A, Vκ ) are disjoint. For each B ≥ A,

there is a compact set C B such that

F ⊂ C B ∪
⋃
κ

gκS(Xκ , B, Vκ ). (16)

We fix a fundamental domain and a disjoint decomposition of it induced by (16),

and define �-invariant functions y1, . . . , yd on H determined by the requirement that

for z ∈ F:

y j(z) =
⎧⎨
⎩

1 if � is cocompact, or if z ∈ C A,

Im(g−1
κ, j zj) if z ∈ gκS(Xκ , A, Vκ ).

(17)

The product of the y j(z) measures how far up in a cusp sector the point z is

situated. Note that the y j may be discontinuous, but are bounded away from 0.

For T ∈ (0,∞)d, we put

nj(Tj, z) = max(1, y j(z)/Tj) , n(T, z) =
∏

j

nj(Tj, z). (18)

We take

n(z) = n(1, z) =
∏

j

max
(
1, y j(z)

)
, (19)

with 1 = (1, 1, . . . , 1) ∈ Rd. The quantity n(z) occurs in the error terms in the final esti-

mates in Theorems 5.4 and 5.5, describing the dependence on z ∈ Hd. It is a �-invariant

function, bounded away from zero, and tending to infinity deep in cuspidal sectors.
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New Lattice Point Asymptotics 1521

Lemma 3.2. For all sufficiently small δ1 > 0, . . . , δd > 0, we have for 0 ∈ Rd and δ = (δ j) j:

N(z; 0, δ) �� n
(
δ−1/2, z

)
,

where δ−1/2 = (δ
−1/2
j ) j. �

Proof. It suffices to consider z in a fundamental domain F chosen as indicated above.

As long as z stays in a compact region, the value of N(z; 0, δ) is at most the maximal order

of subgroups �z fixing points of F, provided we take the δ j > 0 sufficiently small. These

groups are finite, and there are only finitely many points z in a given compact region

for which �z is non-trivial. See Remark 2.14, Chapter I, [4]. This proves the lemma for

cocompact �.

For other �, we fix B > 2A. If z ∈ C B , with C B as in (16), we have N(z; 0, δ) = O�(1)

for all sufficiently small δ. Suppose now that z ∈ gκS(Xκ , B, Vκ ). If the δ j are sufficiently

small, then all γ ∈ � such that u
(
(γ z) j, zj

) ≤ δ j lie in � ∩ Pκ , where Pκ is the parabolic

subgroup fixing κ.

For the remaining computations, we can assume that κ = ∞ and gκ = 1. De-

note by N = {[
1
0

x
1

]
∈ G

}
the unipotent radical of P∞ =

{[
t
0

x
1/t

]
∈ G

}
. Elements in N� =

N ∩ � ⊂ �∞ = P∞ ∩ � have the form
[

1
0

ω
1

]
with ω running through a lattice � ⊂ Rd. The

quotient �∞/N� is represented by elements of the form
[

ε
0

α/ε
1/ε

]
, where α mod � is deter-

mined by ε, and where ε runs through a discrete subgroup of (R∗)d such that ε2� = �,

and such that the
(
log |ε1|, . . . , log |εd|) run through a lattice in the hyperplane

∑
j xj = 0

in Rd.

We need a bound for the number of γ ∈ �∞ with

u
(
ε2

j (zj + α j), zj
) = (ε2

j − 1)2y2
j + (

(ε2
j − 1)xj + α j

)2

4ε2
j y2

j

≤ δ j,

for δ j ∈ (0, 1) for all j. Hence, the following quantities have to be non-negative:

4δ jε
2
j y2

j − (ε2
j − 1)2y2

j . (20)

This implies

log
(
1 + 2δ j − 2

√
δ j + δ2

j

) ≤ 2 log |ε j| ≤ log
(
1 + 2δ j + 2

√
δ j + δ2

j

)
.
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1522 R. W. Bruggeman et al.

Since log |ε| runs through a lattice in a hyperplane in Rd, this leaves O(1) possibilities

for the choice of ε. Taking the maximum of the quantity in (20), we find for all j:

∣∣(ε2
j − 1)xj + α j

∣∣ ≤ 2
√

δ j + δ2
j yj .

Since α runs through a coset modulo the lattice �, this gives at most

O
(∏

j

(1 + √
δ j yj)

)
�

∏
j

nj(δ
−1/2
j , z)

possibilities for the choice of ω.

For z ∈ gκS(Xκ , B, Vκ ), replace yj by Im g−1
κ, jzj. Together with the bound O(1) for

z ∈ C B , we get the statement in the lemma. �

4 The Selberg Transform and Spectral Estimates

If k1, . . . , kd are bounded functions on [0,∞) with compact support, then the sum

K(z, w) =
∑
γ∈�

∏
j

kj
(
u((γ z) j, w j)

)
(21)

converges absolutely, and defines a function on (�\Hd) × (�\Hd). If we take each kj equal

to the characteristic function of the interval [U j, Vj), then

K(z, z) = N(U, V; z).

It will turn out preferable to use smooth kj, so we will take for the kj approxi-

mations of those characteristic functions. In this case, K(z, z) is only an approximation

of N(U, V; z), but its spectral expansion as an element of L2(�\Hd) converges pointwise,

and we can write

K(z, z) = Kexpl(z, z) + K ′(z, z)

for each z ∈ Hd, where Kexpl(z, z) is the contribution to the spectral expansion of a finite

number of ψ� (among them ψ0), and where K ′(z, z) is the remainder. The main idea is

that Kexpl(z, z) will yield the explicit terms in the asymptotic expansion of N(U, V; z),

and that estimates of the difference K(z, z) − N(U, V; z) and of K ′(z, z) will contribute to

the error term.
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New Lattice Point Asymptotics 1523

To carry this out, we have to see how the spectral expansion depends on the

functions kj. That leads us to a study of the Selberg transform (Section 4.1). We also

have to know what is the size of the contributions of various parts of the spectrum

(Section 4.3). In this section, we state the results that we need, and refer for most proofs

to Section 6 and Section 7.

4.1 The Selberg transform

We can do most of the work on Hd factor by factor. So we work first on H.

Functions k on [0,∞) yield kernel operators on functions f on H:

Lk f(z) =
∫

H

k(u(z, w)) f(w) dμ(w), (22)

where dμ(w) = d Re w d Im w/(Im w)2 is the invariant measure associated to the Rieman-

nian metric on H. We take k ∈ C ∞
c [0,∞). (This implies in particular that all derivatives

are well defined and continuous at u = 0.) We assume that the function f is continuous.

That suffices for the convergence in (22).

The Selberg transform associates to the function k ∈ C ∞
c [0,∞) an even holomor-

phic function h on C, given by the following three steps:

q(p) =
∫ ∞

p
k(u)

du√
u− p

, for p ≥ 0,

g(r) = 2q
(
(sinh(r/2))2

)
, for r ∈ R , (23)

h(τ ) =
∫ ∞

−∞
erτ g(r) dr , for τ ∈ C.

See, for example, [13], page 33, but note that Iwaniec uses ir as the variable in h. (See

also [25].) The relation can be described in one step:

h(τ ) =
∫

H

k(u(z, i)) y
1
2 −τ dμ(z). (24)

See (1.62’) and the proof of Theorem 1.16 in [13]. In fact, h is the spherical transform of

k. See, for example, [16], Chapter V, Section 4. We have in particular

h
( 1

2

) = 4π

∫ ∞

0
k(u) du. (25)
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1524 R. W. Bruggeman et al.

The Selberg transform has the important property that if � f = (
(1/4) − τ2

)
f ,

then

Lk f = h(τ ) f (26)

(Theorem 1.16 in [13]).

Next we consider h1, . . . , hd ∈ C ∞
c [0,∞), and form the kernel function

k(z, w) =
∏

j

kj(u(zj, w j)) (27)

on Hd × Hd. Thus, we have the operator

Lk f (z) =
∫

Hd
k(z, w) f(w) dμ(w), (28)

with dμ = ∏
j dμ j the product of the invariant measures. This converges absolutely if

f is continuous on Hd. If moreover we have � j f =
(
(1/4) − τ2

j

)
f for the local Laplace

operators � j = −y2
j (∂

2/∂x2
j ) − y2

j (∂
2/∂y2

j ), then

Lk f =
(∏

j

hj(τ j)

)
f, (29)

where hj is the Selberg transform of hj.

By Lemma 3.1, the sum

K(z, w) :=
∑
γ∈�

k(γ z, w) (30)

converges absolutely, and defines a function in C ∞(
(�\Hd) × (�\Hd)

)
that satisfies

K(z, w) = Oz(1). (31)

The boundedness of K(z, w) is uniform for z varying in compact sets. If f is square

integrable on �\Hd for the invariant measure dμ, then

Kk f (z) =
∫

�\Hd
K(z, w) f(w) dμ(w) (32)
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New Lattice Point Asymptotics 1525

converges absolutely, and defines an operator

Kk : L2(�\Hd) −→ C ∞(�\Hd),

where f → Kk f(z) is continuous on L2(�\Hd) for each z ∈ Hd.

4.2 Spectral decomposition

A consequence of the irreducibility assumption for the lattice � is that the spectral the-

ory L2(�\Hd) is well known. The Hilbert space L2(�\Hd) = L2(�\Hd, dμ) has a spectral

decomposition in terms of automorphic forms. In the cocompact case, each element can

be written in L2-sense as

∑
�≥0

a� ψ�, (33)

where the ψ� form a complete orthonormal system in L2(�\Hd) of simultaneous eigen-

functions of the � j:

� jψ� = ( 1
4 − τ2

�, j

)
ψ�, (34)

with τ�, j ∈ i[0,∞) ∪ (0, 1/2]. Among these eigenfunctions we choose ψ0 = 1/
√

vol(�\Hd),

a constant function; hence τ0, j = 1/2 for all j. For each � ≥ 1, we know that τ�, j ∈ i[0,∞) ∪
(0, 1/2). The a� form a sequence in the Hilbert space �2.

If � has cusps, there is a subspace L2,discr(�\Hd) with the same structure as in

the cocompact case. It always contains the constant function ψ0. If d = 1, there may

be finitely many � ≥ 1 for which ψ� is a residue of an Eisenstein series and at most

countably many ψ� that are cusp forms. The orthogonal complement L2,cont(�\Hd) is a

sum of direct integrals. Elements of this space can be written in L2-sense in the form

∑
κ

2cκ

∑
μ∈Lκ

∫ ∞

0
bκ,μ(t) E(κ; it, iμ) dt. (35)

Here κ runs over representatives of the finitely many cuspidal �-orbits, the cκ are pos-

itive constants, Lκ is a lattice in the hyperplane
∑

j xj = 0 in Rd, and E(κ; s, iμ) is an

Eisenstein series, satisfying

� j E(κ; s, iμ) = ( 1
4 − (s + iμ j)

2)
E(κ; s, iμ)
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1526 R. W. Bruggeman et al.

for each j. For f ∈ L2(�\Hd), we have a� = ( f, ψ�). If f is bounded and sufficiently

smooth, then bμ,κ is given by integration against E(κ; it, iμ).

The quantity τ̂ (�) = sup�≥1, 1≤ j≤d Re τ�, j in (3) is related to the quantity p(�\G) ∈
[2,∞) in [14], with G = PSL2(R)d, by

p(�\G) ≥ 1
1
2 − τ̂

or equivalently τ ≤ 1

2
− 1

p(�\G)
. (36)

So τ̂ = 1/2 would imply p(�\G) = ∞ (no strong spectral gap), and p(�\G) = 2 implies

τ̂ = 0 (no exceptional eigenvalues at all). We have to be careful to use inequalities in (36).

Kelmer and Sarnak take all irreducible representations of G = PSL2(R)d in L2,discr(�\G)

into account. Such a representation is visible in L2,discr(�\Hd) only if all d components

of the representation have a non-trivial PSO(2)-invariant vector. We recall that in the

congruence case (including all non-cocompact � if d ≥ 2) we have τ̂ (�) ≤ 1/9. For all

cocompact �, we have τ̂ (�) < 1/2.

We return to the kernel function K in (30). By (29) and the invariance of the kernel

k(z, w), we have for fixed z ∈ Hd:

∫

�\Hd
K(z, w) ψ�(w) dμ(w) =

∫

Hd
k(z, w) ψ�(w) dμ(w) = h(τ�)ψ�(z),

with

h(τ ) =
∏

j

hj(τ j). (37)

Therefore, the scalar product of K(z, ·) with ψ� makes sense. If � is not cocom-

pact, we find in a similar way that the coefficients bκ,μ(t) in (35) are given by∏
j hj(it + iμ j) E(κ; it, iμ). Thus, we obtain the spectral expansion of K(z, ·) ∈ L2(�\Hd):

K(z, ·) =
∑

�

h(τ�) ψ�(z) ψ�

+
∑
κ

2cκ

∑
μ∈Lκ

∫ ∞

0
h(it + iμ) E(κ; it, iμ; z) E(κ; it, iμ) dt. (38)

In the cocompact case, we understand the sum over κ to be absent.

This spectral expansion converges in the Hilbert space L2(�\Hd). To use it to

investigate the counting function N(U, V; z) in the way indicated in the introduction of

this section, we need it to make sense pointwise.
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New Lattice Point Asymptotics 1527

Theorem 4.1. Let f ∈ C 2d(�\Hd) be bounded, and suppose that the derivatives

�
a1
1 �

a2
2 · · · �ad

d f are bounded for all choices of aj ∈ {0, 1, 2}. Then the spectral expansion

of f converges absolutely and uniformly on compacta.

In particular, if the kj in (27) are in C ∞
c [0,∞) for all j, then the expansion

K(z, w) =
∑

�

h(τ�) ψ�(z) ψ�(w)

+
∑
κ

2cκ

∑
μ∈Lκ

∫ ∞

0
h(it + iμ) E(κ; it, iμ; z) E(κ; it, iμ;w) dt (39)

converges absolutely for each choice z, w ∈ Hd. �

This result is more or less standard. We will sketch a proof in Section 7.1.

4.3 Spectral measure

As indicated in the introduction of this section, we will need to know how the various

parts of the spectral set

(
iR ∪ (

0,
1

2

])d

contribute to the spectral expansion of K(z, z). We write iR instead of i[0,∞), since in

the term in the spectral expansion (39) corresponding to the continuous spectrum there

are quantities i
(
t + μ j

)
, which in some cases are in i(−∞, 0).

For X ∈ [1,∞)d, we put

Y(X) =
∏

j

((
0,

1

2

] ∪ i(−X j, X j)

)
, (40)

and define

S(X; z, w) =
∑

� , t�∈Y(X)

ψ�(z)ψ�(w)

+
∑
κ

2cκ

∑
μ∈Lκ

∫

t≥0 , (t+μ j) j∈Y(X)

E(κ; it, iμ; z) E(κ; it, iμ;w) dt.

This is a smooth function on (�\Hd) × (�\Hd). (The sum over � is finite. The region of

integration is finite for all (κ, μ), and empty for almost all (κ, μ).)
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1528 R. W. Bruggeman et al.

The following estimate of the spectral function S(X; z, z) will play an important

role in Section 5 in the proof of our main results:

Theorem 4.2. For X ∈ [1,∞)d and z ∈ Hd:

S(X; z, z) �� X2
1 X2

d · · · X2
d n(X, z). �

The quantity n(X, z) has been defined in (19). It makes explicit the dependence of the

spectral measure on the point z ∈ H. This constitutes a difference with [2], where we used

a result of Hörmander to estimate the spectral measure uniformly for z in compact sets,

obtaining an asymptotic formula for the lattice point counting function on symmetric

spaces of rank one that was uniform for z varying in compact sets only.

We prove Theorem 4.2 in Section 7.2. The proof uses the a priori estimate of the

lattice point counting function in Lemma 3.2.

5 Proof of the Lattice Points Theorems

This section is the heart of this paper, where we carry out the plan sketched in the in-

troduction of Section 4. We consider the asymptotic behavior of the quantity N(U, V; z)

defined in (13), with U, V ∈ [0,∞)d, U j < Vj for all j. In Theorem 5.4, which is slightly

more general than Theorem 1.2 in the introduction, all Vj tend to ∞, whereas in Theo-

rem 5.5, generalization of Theorem 1.1, some intervals [U j, Vj) stay fixed. For most of the

section, we handle the proofs simultaneously.

5.1 The main parameters

We partition the set {1, . . . , d} into two disjoint subsets Q and E , with the requirement

that Q is non-empty.

For each j ∈ Q, we let Vj be a large parameter, tending to ∞, and choose U j =
α jVj for a fixed α j ∈ [0, 1). (This choice may depend on the place j ∈ Q.) The simplest

is to take all Vj with j ∈ Q equal to each other. We wish also to include the case that

Vj = Taj with positive exponent aj, where T tends to infinity. However, we do not let the

Vj run apart too much, by fixing a parameter q̂ satisfying

q̂ ≥ #Q , and requiring min
j∈Q

Vq̂
j =

∏
j∈Q

Vj . (41)
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New Lattice Point Asymptotics 1529

Table 1 Overview of the parameters in Section 5

Main parameters

Q a non-empty subset of {1, . . . , d}
E the complement {1, . . . , d} � Q

Vj j ∈ Q Vj → ∞ ,

j ∈ E Vj > 0 fixed

α j j ∈ Q 0 ≤ α j < 1

U j j ∈ Q U j = α jVj

j ∈ E U j ∈ [0, Vj) fixed

q̂ q̂ ≥ #Q fixed , q̂ log Vmin = ∑
j∈Q log Vj

Vmin Vmin = min j∈Q Vj ≥ 2

Auxiliary parameters

ϑ ϑ ∈ (0, 1)

YE YE ∈ (0, 1] , YE ↓ 0

Yj j ∈ Q Yj = Vϑ
j ≤ 1

2 (Vj − U j) , Yj ≥ 1 , Yj → ∞
j ∈ E Yj = YE ↓ 0

c 0 < c < 1
2 , if τ̂ > 0 then c < τ̂

Thus, if all Vj with j ∈ Q are equal to each other, then q̂ = #Q. For each j ∈ E , we keep

the non-empty interval [U j, Vj) fixed.

These are the parameters used in Theorems 5.4 and 5.5. They constitute the

“main parameters” in Table 1.

5.2 Test functions and auxiliary parameters

In the introduction of Section 4, we have sketched our plan to prove the main results

in Sections 5.7 and 5.8. We take the approximations hj ∈ C ∞
c (0,∞) of the characteristic

functions [U j, Vj) in the following way:

0 ≤ k ≤ 1 , k(l)
j = Ol(Y

l) for l ∈ N,

kj = 1 on

⎧
⎨
⎩

[U j + Yj, Vj − Yj] if U j > 0,

[0, Vj − Yj] if U j = 0,

kj = 0 on

⎧⎨
⎩

[0,U j − Yj] ∪ [Vj + Yj,∞) if U j > 0,

[Vj + Yj,∞) if U j = 0.

(42)
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1530 R. W. Bruggeman et al.

U j>0

0 U j Y j U j+Y j V j Y j V j+Y j

U j=0

0 V j Y j V j+Y j

   

The parameters Yj control how quickly kj changes from 0 to 1 and back. We require

Yj ≤ Vj − U j

2
. (43)

If one fixes a smooth function ω ∈ C ∞(R) that increases from 0 to 1 on an inter-

val contained in (−1, 1), then, in the case U j > 0, we take hj(u) = ω
(
(u− U j)u/Yj

)
on

[U j − Yj,U j + Yj] satisfies on this interval the condition on the derivatives, and goes

from 0 to 1. On [Vj − Yj, Vj + Yj], we proceed similarly. This gives a choice such that

kj = 0 outside [U j − Yj, Vj + Yj]. We take kj = 1 on [U j + Yj, Vj − Yj]. If U j = 0, we pro-

ceed similarly.

The Yj are new parameters. They play a role in the proof, not in the theorems. At

the end of the proof we try to choose them optimally. To avoid having to keep track of

too many auxiliary parameters, we assume from the start that Yj = Vϑ
j for j ∈ Q, with

ϑ ∈ (0, 1) a single auxiliary parameter. So the Yj are large parameters for j ∈ Q. (The

conditions on Yj = Vϑ
j in (43) imply lower bounds for the Vj, depending on ϑ .)

We let the Yj with j ∈ E tend to zero. It seems that we do not loose much if we

take all these parameters equal to a quantity YE tending to 0, for which we require that

2YE ≤ Vj − U j for all j ∈ E , and 2YE ≤ U j for all j ∈ E with U j > 0.

The estimates of Selberg transforms in Section 6 depend on a small positive

parameter c ∈ (
0, 1/2

)
. In Lemma 6.3 c), there is also a small positive parameter δ. We

choose δ such that δ < U j for all j ∈ E with U j > 0. The dependence on δ of the implicit

constants in the estimates is absorbed in the dependence of the choice of the intervals

[U j, Vj] with j ∈ E . The positive constant c will turn up in exponents in some estimates.

We take c < τ̂ if τ̂ > 0. (We recall that τ̂ measures the spectral gap, which is maximal if

τ̂ = 0.)

If α j > 0 for some j ∈ Q, we assume that U j = α jVj > δ. This implies an addi-

tional assumption on the lower bound of Vj.
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New Lattice Point Asymptotics 1531

5.3 Terms in the asymptotic formula

With the test functions in (42), we form the �-invariant kernel

K(z, w) =
∑
γ∈�

k
(
u(z, w)

)
, k(u) =

∏
j

kj(uj), (44)

as indicated in the introduction of Section 4. The diagonal value K(z, z) gives an approx-

imation of N(U, V; z). By h(τ ) = ∏
j hj(τ j), we denote the product of the Selberg trans-

forms of the kj.

From the absolutely convergent spectral decomposition in (39), we single out

Kexpl(z, z) := h(τ0)
1

vol(�\Hd)
+

∑

�≥1 , ∀ j 0<τ�, j<
1
2

h(τ�)
∣∣ψ�(z)

∣∣2. (45)

Here we have made the choice to take not only the contribution of the constant functions,

but also all of the terms corresponding to totally exceptional eigenvalues. This term

Kexpl(z, z) will lead to the explicit term in our asymptotic expansions.

As the explicit term in the final results, we use

E(U, V; z) =
∑

�≥0 , ∀ j τ�, j∈(0, 1
2 ]

∣∣ψ�(z)
∣∣2 ∏

j∈E

η(U j, Vj; τ�, j)

·
∏
j∈Q

√
π 21+2τ�, j �(τ�, j)

�
( 3

2 + τ�, j
) (

V
1
2 +τ�, j
j − U

1
2 +τ�, j
j

)
,

(46)

where

η(a, b; τ) =
∫

z∈H , a≤u(z,i)<b
y

1
2 +τ dμ(z) (47)

is the Selberg transform of the characteristic function of [a, b). So we will need to esti-

mate the difference between E(U, V; z) and Kexpl(z, z). We note that there might not exist

totally exceptional eigenvalues for the group �. In that case, E(U, V; z) is equal to the

term for � = 0:

1

vol(�\Hd)
(4π)d

∏
j

(
Vj − U j

)
. (48)

(See (92) in Lemma 6.1.)
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1532 R. W. Bruggeman et al.

Table 2 Overview of the error term estimates

N(U, V; z) = E(U, V; z) + O
(
Err1 + Err2 + Err3

)

Err1 estimate of
∑

n∈Nd Kn(z, z) in Section 5.5

Err2 estimate of Kexpl(z, z) − E(U, V; z) in Section 5.4

Err3 estimate of N(U, V; z) − K(z, z) in Section 5.6

The remaining part of the spectral decomposition is split up according to subsets

Z(n) of the space of spectral parameters. For n ∈ Nd, we put

Z(n) =
{
τ ∈ (

i[0,∞) ∪ (0,
1

2
)
)d :

τ j ∈ i[−nj, 1 − nj] ∪ i[nj − 1, nj) if nj > 1,

τ j ∈ (0,
1

2
) ∪ i(−1, 1) if nj = 1

}
.

(49)

For n ∈ Nd, n �= 1 = (1, 1, . . . , 1), we define

Kn(z, z) =
∑

�≥1 , τ�∈Z(n)

h(τ�)
∣∣ψ�(z)

∣∣2

+
∑
κ

2cκ

∑
μ∈Lκ

∫

t≥0 , i(t+μ)∈Z(n)

h(it + iμ)
∣∣E(κ; it, iμ; z)

∣∣2 dt.
(50)

For n = 1, we modify the term from the discrete spectrum by requiring not only τ� ∈ Z(1),
but also τ�, j ∈ i[0,∞) for some j. (The totally exceptional terms go into E(U, V; z).) With

these definitions, we have

K(z, z) − Kexpl(z, z) =
∑

n∈Nd

Kn(z, z). (51)

It will be hard work to estimate this sum.

Finally, we also will have to estimate the difference between K(z, z) and the

counting quantity N(U, V; z). Table 2 gives an overview of the estimates to be carried out.

5.4 The explicit term

The explicit term E(U, V; z) in (46) is a finite sum. Each of its terms contains as a factor,

for j ∈ E , the Selberg transform η(U j, Vj; τ�, j) of the characteristic function of [U j, Vj),

and, for j ∈ Q, the approximation of this Selberg transform given in (94) in Lemma 6.1.

That approximation is uniform on intervals [c, 1/2] for each c > 0. Here we want to apply

it with τ equal to the coordinates τ�, j of the totally exceptional eigenvalues. These coor-

dinates form a finite subset of (0, 1/2). We take c ∈ (0, 1/2) smaller than the minimum of
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New Lattice Point Asymptotics 1533

these finitely many τ�, j, and then apply (94) uniformly. Thus, this parameter c depends

on the group �, and will lead to an implicit dependence of the error terms on �.

Lemma 5.1. The explicit term satisfies for all U j, Vj with j ∈ Q, for all ϑ ∈ (0, 1) and all

sufficiently small values of the steepness parameter YE , under the conditions in Table 1,

for each z ∈ H, the estimate

E(U, V; z) − Kexpl(z, z) ��,E,α n(z)
(
Vϑ−1

min + YE
) ∏

j∈Q

Vj . (52)

The factor n(z) has been defined in (19). The implicit constant depends on the group �,

the U j, Vj with j ∈ E , and the quotients α j = U j/Vj with j ∈ Q. �

Proof. For each of the finitely many τ = τ� occurring in E(U, V; z) and Kexpl(z, z), we have

by Lemma 6.3 a):

∏
j

η(U j, Vj; τ j) −
∏

j

hj(τ j)

�
∑

j

∣∣η(U j, Vj; τ j) − hj(τ j)
∣∣ ∑

l �= j

(∣∣η(U j, Vj; τ j)
∣∣ + ∣∣hj(τ j)

∣∣).
(53)

We apply Lemmas 6.1 and 6.2 with c ∈ (
0, 1/2

)
chosen so that c < τ�, j for all j for all �

occurring in the explicit term. We find, uniformly for c ≤ τ j ≤ 1/2:

j ∈ Q : η(U j, Vj; τ j) − hj(τ j) �c,α YjV
τ j− 1

2
j = V

τ j+ϑ− 1
2

j Lemma 6.2 c),

η(U j, Vj; τ j) �c V
τ j+ 1

2
j (94),

j ∈ E : η(U j, Vj; τ j) − hj(τ j) �E Yj = YE Lemma 6.2 c),

η(U j, Vj; τ j) �E 1.

This implies that hj(τ j) �c V
τ j+(1/2)

j + V
τ j−(1/2)

j � V
τ j+(1/2)

j for j ∈ Q and hj(τ j) �E 1 +
YE � 1 for j ∈ E . Note that we leave implicit the influence of the fixed quantities U j and

Vj with j ∈ E , but keep explicit the parameter Yj ≤ (Vj − U j)/2. The difference in (53) is

estimated by the following quantity, uniformly in the τ = τ� under consideration:

��,E,α

∑
j∈Q

V
τ j+ϑ− 1

2
j ·

∏
l∈Q�{ j}

V
τl+ 1

2
l · O(1) +

∑
j∈E

YE ·
∏
l∈Q

V
τl+ 1

2
l · O(1)

�
(∑

j∈Q

Vϑ−1
j + YE

) ∏
l∈Q

V
τl+ 1

2
l � (

Vϑ−1
min + YE

) ∏
j∈Q

Vj,
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1534 R. W. Bruggeman et al.

where we have used τ j ≤ 1/2 in the last step.

We still have to estimate the finitely many ψ�(z). If ψ� is a cusp form or if

� = 0, then |ψ�(z)| = O�(1). If ψ�, with � ≥ 1, arises from a residue of an Eisenstein se-

ries, it satisfies ψ�(gκz) = O(N(y)(1/2)−ρ�) as N(y) = ∏
j yj → ∞ for all cusps κ, for some

ρ� ∈ (0, 1/2). Hence, |ψ�(z)| � n(z)1/2. Since the explicit term and Ke(z, z) run over finitely

many �, this estimate can be used uniformly, thus giving the lemma. Note that here arises

another implicit dependence of the error terms on the group �. �

5.5 Sum over the spectrum

We turn to the estimation of
∑

n∈Nd Kn(z, z), as defined in (50), with the given modification

for n = 1. We will use that

Kn(z, z) ≤ M(n) Sn, (54)

where, with Z(n) as defined in (49)

M(n) = sup
τ∈Z(n)

|h(τ )|, (55)

Sn =
∑

�≥1 , τ�∈Z(n)

∣∣ψ�(z)
∣∣2 (56)

+
∑
κ

2cκ

∑
μ∈Lκ

∫

t≥0 ,
(
i(t+μ j)

)
j
∈Z(n)

∣∣E(κ; it, iμ; z)
∣∣2 dt.

Lemma 5.2. For each sufficiently small c ∈ (
0, 1/2

)
, the quantity M(n) has for each n ∈

Nd and each l ∈ Nd an estimate

M(n) �E,l,c,α

∏
j

fl j , j(nj),

where for all l ∈ N

fl, j(1) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

V
τ̂+ 1

2
j if j ∈ Q and τ̂ > 0,

V
c+ 1

2
j if j ∈ Q and τ̂ = 0,

1 if j ∈ E,

fl, j(n) =
⎧⎨
⎩

n−l− 1
2 Y1−l

j V
l− 1

2
j if j ∈ Q and n ≥ 2,

n−l− 1
2 Y1−l

E if j ∈ E and n ≥ 2.

(57)
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New Lattice Point Asymptotics 1535

This estimate holds under the same conditions as the previous lemma. The implicit con-

stant depends also on the choice of the l j and of c.

If E = ∅ and τ̂ > 0, we have the slightly better estimate

M(1) �c Vc−τ̂
min

∏
j

fl j , j(1). (58)
�

We recall that τ̂ ∈ [
0, 1/2

]
is the supremum of the real parts Re τ�, j, � ≥ 1, of the

spectral parameters. It measures the spectral gap.

Proof. If τ̂ > 0, we take c ∈ (0, τ̂ ). We use the estimates in Section 6 of the Selberg trans-

forms hj of the kj with this value.

If n = 1, we have to consider τ j ∈ (0, τ̂ ) ∪ i[−1, 1]. For τ ∈ [
c, 1/2

)
, which can occur

only if τ̂ > 0, we use Lemma 6.2 c) and (94) in Lemma 6.1 to get

hj(τ j) �c V
τ j+ 1

2
j + Yj m,

with

m = max(V
τ j− 1

2
j ,U

− 1
2

j ) if U j > 0 , m = max(V
− 1

2
j , V

τ j− 1
2

j ) if U j = 0.

If j ∈ Q, we get a bound by Oα(V
τ j+(1/2)

j ) = Oα(V τ̂+(1/2)
j ). For j ∈ E , the dependence on U j

and Vj is left implicit, so we can use the bound 1. If |τ j| ≤ c, Lemma 6.3 b) gives the bound

Oc(V
c+(1/2)
j ) for j ∈ Q, and Oc,E if j ∈ E . For τ j ∈ iR, c ≤ |τ j| ≤ 1, we use Lemma 6.3 c) with

l = 1. For j ∈ E , we take care to choose the δ in Lemma 6.3 such that U j ≥ δ if U j > 0. We

use that k′ � Y−1 to find O(V1/2
j ) if j ∈ Q and O(1) if j ∈ E .

If n ≥ 2, we use Lemma 6.3 c) and the condition k(l)
j = O(Y−l) to obtain the bounds

by fl, j(n).

In the case of M(1), we have the additional information that τ j ∈ i[−1, 1] for at

least one j. If E = ∅, this leads to the estimate in (58). �

The problem with Sn in (56) is that we do not have a direct estimate for it. All we

have is Theorem 4.2, which gives

∑

m∈Nd , ∀ j mj≤nj

Sm �� n(n, z)
∏

j

n2
j =

∏
j

max(n2
j, y j(z) nj). (59)
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1536 R. W. Bruggeman et al.

(See (18) for n(n, z).) So we need to carry out a d-dimensional partial summation.

Lemma 5.3. Let z ∈ H. For c ∈ (
0, 1/2

)
as in the previous lemma, we have if τ̂ > 0

∑

n∈Nd

Kn(z, z) ��,E,c,α n(z) ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y
− 1

2 #E
E

∏
j∈Q V

1− 1
2 ϑ

j if ϑ ≤ 1 − 2τ̂ ,

Y
− 1

2 #E
E

∏
j∈Q V

τ̂+ 1
2

j if ϑ ≥ 1 − 2τ̂

and E �= ∅,

V
1
2 −τ̂− ϑ

2
min

∏d
j=1 V

τ̂+ 1
2

j if 1 − 2τ̂ ≤ ϑ ≤ 1 − 2c

and E = ∅,

Vc−τ̂
min

∏d
j=1 V

τ̂+ 1
2

j if ϑ ≥ 1 − 2c

and E = ∅,

(60)

and if τ̂ = 0

∑

n∈Nd

Kn(z, z) ��,E,c,α n(z) ·
⎧⎨
⎩

Y
− 1

2 #E
E

∏
j∈Q V

1− 1
2 ϑ

j if ϑ ≤ 1 − 2c,

Y
− 1

2 #E
E

∏
j∈Q V

c+ 1
2

j if ϑ ≥ 1 − 2c.
(61)

These estimates hold under the conditions in Lemma 5.1. The implicit constants depend

also on the value of c. �

Proof. We use that
∑

n Kn(z, z) ≤ ∑
n M(n) Sn . Lemma 5.2 gives an estimate of M(n).

∑

n∈Nd, n�=1

Kn(z, z) �E,L ,c,α

∑

n∈Nd, n�=1

Sn P (n), (62)

where P (n) is a bound given by Lemma 5.2, for some choice of the l j. We choose the l j

from a finite set L of values, which influences the implicit constant in the estimate, but

will not depend on other choices.

We have Sn = ∑
H⊂{1,...,d}(−1)#H S(Y(n− 1H ); z, z), where 1H ∈ Nd

≥0 has coordinate

1 if j ∈ H and coordinate 0 otherwise. We understand that S(Y(m); z, z) is zero if one of

the coordinates of mvanishes. Thus, we obtain

∑

n∈Nd, n�=1

Sn P (n) =
∑

m∈Nd

S
(
Y(m); z, z

) ∑
H⊂{1,...,d}

(−1)#H P (m+ 1H ). (63)
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New Lattice Point Asymptotics 1537

We’ll handle the exceptional estimate for M(1) in Lemma 5.2 later, and first consider the

sum TF over those m∈ Nd that satisfy mj ≥ 2 if and only if j ∈ F , where F runs over the

non-empty subsets of {1, . . . , q}.

TF =
∑

m∈Nd, mj≥2⇔ j∈F

S
(
Y(m); z, z

) ∏
j

(
fl, j(mj) − fl, j(mj + 1)

)
. (64)

In the fl, j(mj), we take l = 3 if mj > Aj and l = 1 if 1 ≤ mj ≤ Aj, with

Aj = Vj/Yj = V1−ϑ
j if j ∈ Q , Aj = Y−1

j = Y−1
E if j ∈ E . (65)

The Aj are large quantities with the choices made before. For mj = 1, the choice of l

in (57) does not matter. In this way, the set of values of l is finite.

In Lemma 5.2, we see that the differences fl, j(mj) − fl, j(mj + 1) are non-negative,

except possibly for mj = [Aj] if j ∈ F , and for mj = 1 if j �∈ F . In those cases, we use∣∣ fl, j(mj) − fl, j(mj + 1)
∣∣ ≤ fl, j(mj) + fl, j(mj + 1). Thus, we obtain (64):

TF �
∑

m∈Nd, mj≥2⇔ j∈F

S
(
Y(m); z, z

) ∏
j

dj(mj),

for j ∈ Q : dj(mj) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V
max(τ̂ ,c)+ 1

2
j if mj = 1,

m
− 5

2
j V

1
2
j if 2 ≤ mj ≤ Aj − 1,

Y
3
2
j V−1

j if Aj − 1 < mj ≤ Aj,

m
− 9

2
j Y−2

j V
5
2
j if mj > Aj ;

for j �∈ E : dk(mj) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if mj = 1,

m
− 5

2
j if 2 ≤ mj ≤ Aj − 1,

Y
3
2
E if Aj − 1 < mj ≤ Aj,

m
− 9

2
j Y−2

E if mj > Aj.

(66)

Now we have an expression with non-negative quantities, and obtain with Theorem 4.2:

TF ��

∑

m∈Nd, mj≥2⇔ j∈F

∏
j

max
(
m2

j, y j(z) mj
)

dj(mj)

=
∏
j∈F

( ∑
mj≥2

max
(
m2

j, y j(z) mj
)

dj(mj)

)
·

∏
j �∈F

y j(z) dj(1).

(67)
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1538 R. W. Bruggeman et al.

If y j(z) ≥ Aj, then the sum in the factor for j ∈ Q ∩ F in the estimate is split

according to 2 ≤ mj ≤ Aj − 1, mj ≈ Aj, Aj < mj ≤ y j(z), and mj > y j(z). This leads to an

estimate by

y j(z)V
1
2
j + y j(z)Y

1
2
j + y j(z)A

− 5
2

j Y2
j V

5
2
j + y j(z)

− 3
2 Y−2

j V
5
2
j � y j(z)V

1
2
j + V

1− ϑ
2

j .

In the last step, we have used that y j(z)−(3/2) ≤ V−(3/2)(1−ϑ)
j .

If y j(z) < Aj, we split the sum according to 2 ≤ mj ≤ y j(z), y j(z) < mj ≤ Aj − 1,

Aj − a < mj ≤ Aj, and mj > Aj, to obtain the estimate

y j(z)V
1
2
j + A

1
2
j V

1
2
j + A2

jY
3
2
j Vj + A

− 3
2

j Y−2
j V

5
2
j � y j(z)V

1
2
j + V

1− ϑ
2

j .

Thus, both cases lead to the same estimate.

For j ∈ E ∩ F , we find similarly the estimate

y j(z) + Y
− 1

2
E ,

both for y j(z) larger and smaller than Aj. Taking into account the factors dj(1) for j �∈ F ,

we arrive at

TF ��

∏
j∈F∩Q

(
y j(z)V

1
2
j + V

1− ϑ
2

j

) ∏
j∈F∩E

(
y j(z) + Y

− 1
2

E

)

·
∏

j∈Q�F

y j(z)V
max(τ̂ ,c)+ 1

2
j

∏
j∈E�F

y j(z)

�
∏

j∈F∩Q

nj
(
V

1−ϑ
2

j , z
)

V
1
2 − ϑ

2
j

∏
j∈F∩E

nj
(
Y

− 1
2

E , z
)

Y
− 1

2
E

·
( ∏

j∈Q�F

Vj

)max(τ̂ ,c)+ 1
2 ∏

j �∈F

y j(z).

(68)

Since we have already n(z) in the error term in Lemma 5.1, it seems sensible to replace

nj(∗, z) by nj(1, z) in these estimates:

TF �� n(z) Y− #(F∩E)/2
E

∏
j∈Q∩F

V
1−ϑ

2
j

∏
j∈Q�F

V
max(τ̂ ,c)+ 1

2
j . (69)

The next step is to determine which non-empty F ⊂ {1, . . . , d} has the maximal

contribution. The factors for j ∈ E are maximal if j ∈ F . So we consider F ⊃ E . The

factors for j ∈ Q are maximal for j �∈ F if ϑ ≥ 1 − 2 max(c, τ̂ ), and maximal for j ∈ F
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New Lattice Point Asymptotics 1539

otherwise. If E = ∅, we have to put one place in F anyhow, which gives the maximal

contribution if Vj = Vmin. We find the following maximal value:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

n(z) Y
− 1

2 #E
E

∏
j∈Q V

max(c,τ̂ )+ 1
2

j if ϑ ≥ 1 − 2 max(c, τ̂ ) and E �= ∅,

n(z)V
1
2 −max(c,τ̂ )− 1

2 ϑ

min

∏
j∈Q V

max(c,τ̂ )+ 1
2

j if ϑ ≥ 1 − 2 max(c, τ̂ ) and #Q = d,

n(z) Y
− 1

2 #E
E

∏
j∈Q∩F V

1− 1
2 ϑ

j if ϑ ≤ 1 − 2 max(c, τ̂ ).

(70)

In the latter case, the maximum is attained for F = {1, . . . , d}, and in the former case for

F = E , if E �= ∅. If E = ∅, one place has to be in F , and j such that Vj = Vmin gives the

maximal value.

Finally, we have to consider the term with m= 1 on the right in (63). It is

estimated by

S
(
Y(1); z, z) M(1) � n(z) ·

⎧⎨
⎩

∏
j∈Q V

max(c,τ̂ )+ 1
2

j if E �= ∅,

Vc−max(c,τ̂ )

min

∏
j∈Q V

max(c,τ̂ )+ 1
2

j if E = ∅.
(71)

If E �= ∅ or if ϑ ≤ 1 − 2 max(c, τ̂ ), this is absorbed in the term that we have already

obtained. In the case E = ∅ and ϑ ≥ 1 − 2 max(c, τ̂ ), we have to compare the factors

V (1/2)−max(c,τ̂ )−(1/2)ϑ

min and Vc−max(c,τ̂ )

min . If τ̂ = 0, we have max(c, τ̂ ) = c, in which case the

latter factor, V0
min = 1, is the largest. In the remaining case, there is another transition

point at ϑ = 1 − 2c.

This leads to the statements in the lemma. We resist the temptation to simplify

the lemma by choosing c < (1 − ϑ)/2. That would cause a dependence of the implicit

constant in the estimates on the auxiliary parameter ϑ . �

5.6 Difference between sums with sharp and smooth bounds

We have obtained K(z, z) = E(U, V; z) + Err1 + Err2 for the sum K(z, z) in (44), the ex-

plicit term E(U, V; z) in (46), with error terms Err1 estimated in Lemma 5.1 and Err2 in

Lemma 5.3. The sum K(z, z) depends on the choice of the local test functions kj as indi-

cated in (42). In particular, the estimate is valid for the sum K+(z, z) based on test func-

tions with k+
j = 1 on [U j, Vj] for all j, and also for the sum K−(z, z) built with Supp(k−

j ) ⊂
[U j, Vj]. Since the characteristic function χ of

∏
j[U j, Vj) satisfies

∏
j k−

j ≤ χ ≤ ∏
j k+

j , we

have K−(z, z) ≤ N(U, V; z) ≤ K+(z, z). Thus, we have also

N(U, V; z) = E(U, V; z) + Err1 + Err2, (72)

with error terms satisfying the estimates in Lemmas 5.1 and 5.3.
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1540 R. W. Bruggeman et al.

5.7 Asymptotic estimate, case E = ∅

First we choose the auxiliary parameters in the case E = ∅. This leads to the asymptotic

result in Theorem 5.4, of which Theorem 1.2 is a special case.

The auxiliary parameter ϑ ∈ (0, 1) has to be adapted to the Vj to get the minimal

value of the bound

N(U , V; z) − E(U, V; z) ��,c,α n(z)Vϑ−1
min

∏
j

Vj

+ n(z) ·

⎧
⎪⎨
⎪⎩

∏
j V

1− 1
2 ϑ

j if ϑ ≤ 1 − 2 max(c, τ̂ ),

V
max

(
1−ϑ

2 ,c
)
−τ̂

min

∏
j V

1
2 +max(c,τ̂ )

j if ϑ ≥ 1 − 2 max(c, τ̂ ).

(73)

The parameter c ∈ (
0, 1/2

)
is allowed to depend on �, but not on the Vj. We have assumed

that 0 < c < τ̂ if τ̂ > 0. The Vj influence the estimate by their product
∏

j Vj, which tends

to ∞. We have prescribed that the minimal Vj is coupled to the product by Vq̂
min = ∏

j Vj,

with q̂ ≥ d. (See (41).) Expressing the logarithm of the quantity to consider in terms of

log Vmin, we arrive at the following quantity to minimize:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max
(
ϑ − 1 + q̂, q̂ − 1

2 q̂ϑ
)

if ϑ ≤ 1 − 2 max(c, τ̂ ),

max
(
ϑ − 1 + q̂,

q̂
2 + (q̂ − 1)τ̂ + max

( 1−ϑ
2 , c

))
if ϑ ≥ 1 − 2τ̂ , τ̂ > 0,

max
(
ϑ − 1 + q̂, q̂

( 1
2 + c

) + max
( 1−ϑ

2 , c
))

if ϑ ≥ 1 − 2c , τ̂ = 0.

(74)

We choose 0 < c < 1/18 in addition to the requirement that c < τ̂ if τ̂ > 0.

If τ̂ = 0, the value ϑ1 for which ϑ1 − 1 + q̂ = q̂ − (1/2)q̂ϑ1 is ϑ1 = 2/(q̂ + 2). Since

q̂ ≥ d ≥ 1, we have ϑ1 ≤ 2/3 < 1 − 2c. Hence, this is the optimal choice.

For τ̂ > 0, we have ϑ1 = 2/(q̂ + 2) and ϑ2 = 1 − (1/3)q̂ + (2/3)(q̂ − 1)τ̂ , for the

intersections of the graph of ϑ → ϑ − 1 + q̂ with, respectively, ϑ → q̂ − (1/2)q̂ϑ and

ϑ → (1/2)q̂ + (q̂ − 1)τ̂ + ((1 − ϑ)/2). If τ̂ ≤ q̂/(2(q̂ + 2)), then ϑ1 ≤ 1 − 2τ̂ gives the opti-

mal choice. Otherwise, ϑ2 ≥ 1 − 2τ̂ is optimal, since it is between 1 − 2τ̂ and 1 − 2c.

This leads to the following optimal bound of the quantity in (74):

q̂
q̂ + 1

q̂ + 2
if 0 ≤ τ̂ ≤ q̂

2(q̂ + 2)
, q̂

2(τ̂ + 1)

3
− 2τ̂

3
if τ̂ ≥ q̂

2(q̂ + 2)
. (75)
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New Lattice Point Asymptotics 1541

Now we have chosen c depending only on quantities determined by �, and we have ar-

rived at the following estimate:

N(U, V; z) − E(U, V; z) �� n(z) ·

⎧
⎪⎨
⎪⎩

∏
j V

q̂+1
q̂+2
j if τ̂ ≤ q̂

2(q̂+2)
,

∏
j V

2
3 (τ̂+1)− 2τ̂

3q̂
j if τ̂ ≥ q̂

2(q̂+2)
.

(76)

If there are totally exceptional eigenvalues, the explicit sum E(U, V; z) in (46) contains

the corresponding terms, which are of size O
(
n(z)

∏
j V (1/2)+τ̂

j

)
. Since τ�, j ≤ τ̂ for all ex-

ceptional coordinates, these terms are swallowed by the error term obtained for the case

τ̂ ≤ q̂/(2(q̂ + 2)).

We have thus obtained the following asymptotic result for the counting function:

Theorem 5.4. Let � be an irreducible lattice in PSL2(R)d with d ∈ N. Let τ̂ be the

quantity in (3), measuring the spectral gap. For each j ∈ {1, . . . , d}, we fix α j ∈ [0, 1),

and denote by Vj a large quantity going to ∞. The Vj are subject to the condition

min j Vq̂
j = ∏

j Vj for a fixed number q̂ ≥ d. Choose U j = α jVj for each j = 1, . . . , d.

Let z ∈ Hd. The number N(U, V; z) of γ ∈ � such that U j ≤ u
(
(γ z) j, zj) ≤ Vj for

all j, with u(·, ·) as in (12), satisfies

N(U, V; z) = (4π)d

vol(�\Hd)

d∏
j=1

(Vj − U j) + O�,α

(
n(z)

d∏
j=1

V (q̂+1)/(q̂+2)
j

)
(77)

if τ̂ ≤ q̂
2(q̂+2)

, and

N(U, V; z) = (4π)d

vol(�\Hd)

d∏
j=1

(Vj − U j) +
∑

�≥1 , ∀ j τ�, j∈(0, 1
2 )

∣∣ψ�(z)
∣∣2

·
d∏

j=1

√
π 21+2τ�, j �(τ�, j)

�
( 3

2 + τ�, j
) (

V
1
2 +τ�, j
j − U

1
2 +τ�, j
j

)

+ O�,α

(
n(z)

d∏
j=1

V
2
3 (τ̂+1)−2τ̂ /3q̂
j

)

(78)

if τ̂ ≥ q̂/(2(q̂ + 2)). The factor n(z) is as in (19). �

By O�,α, we indicate that the implicit constant depends on the group and on the

choice of the constants α j.
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1542 R. W. Bruggeman et al.

Note that even if there is no spectral gap (τ̂ = 1/2) the error term is still smaller

than the main term.

In the special case when all Vj are equal to the same quantity V , we have

q̂ = d. The relation (12) implies that the condition dist
(
(γ z) j, zj

) ≤ T is equivalent to

u
(
(γ z) j, zj

) ≤ (1/4)eT
(
1 + O(e−T )

)
. Thus, we obtain Theorem 1.2.

5.8 Asymptotic estimate, case E �= ∅

We turn to the case when both parts of the partition {1, . . . , d} = Q � E are non-empty.

This implies d ≥ 2; in this situation it is known that τ̂ < 1/2, as discussed in the

introduction.

We have obtained the following estimate for the error terms:

��,c,E,α n(z)
(
Vϑ−1

min + YE
) ∏

j∈Q

Vj + n(z)Y
− 1

2 #E
E

∏
j∈Q

V
max(1− 1

2 ϑ, 1
2 +τ̂ , 1

2 +c)
j . (79)

We try to choose ϑ and YE optimally, depending on the Vj, j ∈ Q. The parameter c ∈(
0, 1/2

)
satisfies c < τ̂ if τ̂ > 0, and can be further adapted to the situation, but is not

allowed to depend on the Vj with j ∈ Q.

We take x = log Vmin as the large variable. Then
∏

j∈Q Vj = eq̂x, with q̂ ≥ q fixed.

We assume that YE = V−η

min with some η > 0 is a sensible choice. To simplify the formulas,

we work for the moment with the notations e = #E , m= max(c, τ̂ ). So 0 < m≤ 1/2. We try

to choose ϑ ∈ [0, 1] and η ≥ 0 such that the following quantity is minimal:

M(η, ϑ) = max
(

ϑ − 1 + q̂, q̂ − η,
e

2
η + q̂

(
−ϑ

2

)
,

e

2
η + q̂

(
1

2
+ m

))
. (80)

We allow for the moment ϑ and η to assume boundary values. If we end up with an

optimal choice on the boundary, we will see how to handle the problem of satisfying the

conditions in Section 5.2.
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New Lattice Point Asymptotics 1543

The lines ϑ + η = 1 and ϑ = 1 − 2mgive four subsets of the region in which (η, ϑ)

varies:

1

1 2m

0
10

A B

C
ϑ

D

η

We have

M(η, ϑ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
(
q̂ − η, e

2η + q̂(1
2 + m)

)
on A,

max
(
q̂ − 1 + ϑ, e

2η + q̂(1
2 + m)

)
on B

max
(
q̂ − η, e

2η + q̂(1 − ϑ
2 )

)
on C ,

max
(
q̂ − 1 + ϑ, e

2η + q̂(1 − ϑ
2 )

)
on D.

On B and D, these expressions for M(η, ϑ) contain η only once. So in the search for

optimal values, we can take η minimal in these cases. This brings them into the cases C

and D, respectively. In region C , the variable ϑ occurs only once. So it makes sense to

take it optimal, that is, ϑ = 1 − 2mif 0 ≤ η ≤ 2mand ϑ = 1 − η if 2m≤ η ≤ 1. This reduces

our search for the optimum to the lines E and F in the following figure.

1

21 m

0
2 10 m

E

Fϑ

η

Thus, we are left with a one-dimensional problem: find the minimum for 0 ≤ η ≤ 1 of the

maximum of the two functions α(η) = q̂ − η and

β(η) =
⎧⎨
⎩

e
2η + q̂

( 1
2 + m

)
for 0 ≤ η ≤ 2m,

1
2

(
e + q̂

) + 1
2 q̂ for 2m≤ η ≤ 1.
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1544 R. W. Bruggeman et al.

2m 10

e
2 +q̂

( 1
2 +m)q̂+em

( 1
2 +m)q̂

?

q̂

β

α

Since
(
(1/2) + m

)
q̂ ≤ q̂ ≤ q̂ + (e/2), the graphs of α and β intersect for some value of η in

[0, 1]. This gives the value of the optimum we look for. This leads to the optimal value

M
(

q̂

q̂ + e + 2
,

e + 2

q̂ + e + 2

)
= q̂ + e + 1

q̂ + e + 2
q̂ if m≤ q̂

2(q̂ + e + 2)
,

M
(

(1 − 2m)q̂

e + 2
, 1 − 2m

)
= e + 1 + 2m

e + 2
q̂ if m≥ q̂

2(q̂ + e + 2)
.

If τ̂ > 0, we can just replace m by τ̂ in the results. If τ = 0, we take 0 < c <

#Q/(2(d+ 2)). This depends on d, hence on �, and on the partition in Q and E . We now

have

q̂

2(q̂ + e + 2)
= 1

2
− 2 + e

2(q̂ + 2 + e)
≥ 1

2
− 2 + e

2(2 + e + #Q)
= #Q

2(d+ e)
> c = m.

So we can apply the estimate for m≤ q̂/(2(q̂ + e + 2)).

Thus, we obtain the following estimates for the error terms:

O�,E

(
n(z)

∏
j∈Q

V (q̂+1+#E)/(q̂+2+#E)
j

)
if τ̂ ≤ q̂

2(q̂ + 2 + #E)
,

O�,E

(
n(z)

∏
j∈Q

V (1+2τ̂+#E)/(2+#E)
j

)
if

q̂

2(q̂ + 2 + #E)
≤ τ̂ <

1

2
.

(81)

Each exceptional term in E(U, V; z) in (46) contributes at most
∏

j∈Q V (1/2)+τ̂
j and

is absorbed by the error term in (81). We are left with the term corresponding to the

constant function. See (92) in Lemma 6.1 for its simple form.

Thus, we have obtained the following asymptotic result:
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New Lattice Point Asymptotics 1545

Theorem 5.5. Let � be an irreducible lattice in PSL2(R)d with d ≥ 2. We partition the set

{1, . . . , d} into two disjoint non-empty subsets Q and E . For each j ∈ E , we fix a bounded

interval [U j, Vj] ⊂ [0,∞). For each j ∈ Q, we fix a constant α j ∈ [0, 1), we put U j = α jVj,

where Vj is a large quantity tending to infinity. We assume that min j∈Q Vq̂
j = ∏

j∈Q Vj for

some fixed real number q̂ ≥ #Q.

Let z ∈ H. The number N(U, V; z) in (13) satisfies

N(U, V; z) = (4π)d

vol(�\Hd)

d∏
j=1

(Vj − U j)

+

⎧⎪⎪⎨
⎪⎪⎩

O�,E,α

(
n(z)

∏
j∈Q V (q̂+1+#E)/(q̂+2+#E)

j

)
if τ̂ ≤ q̂

2(q̂+2+#E)
,

O�,E,α

(
n(z)

∏
j∈Q V (1+2τ̂+#E)/(2+#E)

j

)
if q̂

2(q̂+2+#E)
≤ τ̂ < 1

2 .

(82)

The implicit constants in the estimates depend on the discrete group �, on the

partition {1, . . . , d} = Q � E , on the constants α j with j ∈ Q, and on the choice of the

intervals [U j, Vj) for j ∈ E . �

As mentioned in the introduction, it is known that τ̂ < 1/2 if d ≥ 2. We note that

the presence of totally exceptional eigenvalues for � has no explicit influence on this

asymptotic formula. The size of he spectral gap does influence the quality of the error

term only if it is larger than q̂/(2(q̂ + 2 + #E)).

For Theorem 1.1 in the introduction, we take α j = 0, hence U j = 0 for all j ∈ Q,

and all Vj with j ∈ Q equal. With the relation in (12) between u
(
(γ z) j, zj

) ∈ [U j, Vj) and

the hyperbolic distance dist
(
(γ z) j, zj

) ∈ [Aj, Bj), the main term takes the form

4#Eπd

vol(�\Hd)
edT

∏
j∈E

eBj + e−Bj − eAj − e−Aj

4
,

in the notations of Theorem 1.1, which leads to the main term in the asymptotic formula

in that theorem. For the error terms, we use that for equal Vj for j ∈ Q, the parameter q̂

is equal to q = #Q.

6 Estimates of Selberg Transforms

Here we collect and prove the estimates of Selberg transforms that we have used. This

can be done factor by factor. So in this section, we work on H, we do not use an index j,

and we denote real numbers by U and V .
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1546 R. W. Bruggeman et al.

6.1 Integral representations

The results we need are given in Lemmas 6.1, 6.2, and 6.3. To derive these lemmas, we

start with an arbitrary measurable compactly supported function k on [0,∞) with values

in [0, 1]. By the definitions in Section 4.1, we have the following integral representation

for the Selberg transform h of k:

h(τ ) = 2
∫ ∞

r=−∞
erτ

∫ ∞

u=sinh2 r/2
k(u)

du√
u− sinh2 r/2

dr

= 4
∫ ∞

0
cosh rτ

∫ ∞

u=sinh2 r/2
k(u)

du√
u− sinh2 r/2

dr. (83)

The inner integral gives a non-negative compactly supported function. So h(0) ≥ |h(it)|
for t ∈ R, which gives

|h(it)| ≤ h(0) (t ∈ R) , τ → h(τ ) is increasing on
[
0, 1

2

]
. (84)

(For the latter, we use that τ → cosh rτ is increasing.)

We interchange the order in the double integration, and obtain

h(τ ) = 2
∫ ∞

u=0
k(u)

∫

r∈R , sinh2 r/2≤u
erτ

(
u− sinh2 r/2

)−1/2 dr du. (85)

Following the approach in [22], we define x = x(u) ≥ 1 by 2 + 4u = x + x−1, hence x(u) =
1 + 2u+ 2

√
u+ u2. The condition sinh2(r/2) ≤ u amounts to |r| ≤ log x. With the substi-

tution er = x−1
(
1 + y(x2 − 1)

)
the inner integral equals

=
∫ log x

− log x
erτ

(
(x + x−1 − er − e−r)/4

)−1/2 dr

= 2 x
1
2 −τ

∫ 1

0

(
1 + y(x2 − 1)

)τ− 1
2

(
y(1 − y)

)− 1
2 dy (86)

= 2π x
1
2 −τ

2F1
( 1

2 − τ, 1
2 ; 1; 1 − x2)

, (87)

by the standard integral representation of the hypergeometric series in [3], Section 2.1.3,

(10). Let us work under the standing assumption that 0 ≤ Re τ ≤ 1/2.
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New Lattice Point Asymptotics 1547

From (86), we obtain the bound O
(
xRe τ−(1/2)

)
for the inner integral in (85). Hence

if Supp(k) ⊂ [A, B], then

h(τ ) �
∫ x(B)

x(A)

x2 Re τ− 1
2 dx � x(B)Re τ+ 1

2 − x(A)Re τ+ 1
2

Re τ + 1
2

= (B − A)
(
1 + 2T + 2

√
T2 + T

)Re τ− 1
2 with A ≤ T ≤ B

�
⎧⎨
⎩

(B − A)
(
1 + ARe τ− 1

2
)

if A > 0,

1 + BRe τ+ 1
2 if A = 0 and B > 0.

(88)

Proceeding with (87), we get

h(τ ) = π

∫ ∞

1
k
(
(x + x−1 − 2)/4

)
x− 3

2 −τ (x2 − 1) (89)

· 2F1
( 1

2 − τ, 1
2 ; 1; 1 − x2)

dx

= π

∫ 2

1
k
(
(x + x−1 − 2)/4

)
x− 3

2 −τ (x2 − 1) (90)

· 2F1
( 1

2 − τ, 1
2 ; 1; 1 − x2)

dx

+ √
π

∫ ∞

2
k
(
(x + x−1 − 2)/4

)
x− 3

2 (x2 − 1)
1
2

·
∑
±

�(±τ)

�
( 1

2 ± τ
) x±τ

2F1
( 1

2 , 1
2 ; 1 ∓ τ ; 1

1−x2

)
dx.

(For (90), we have used a Kummer relation, [3], Section 2.9, (34), (10), and (13).)

Let us use (90) in the case when Supp(k) ⊂ [A, B]. For the part of [A, B] corre-

sponding to a subinterval x ∈ [1, 2], we have the estimates in (88). We now estimate the

integral over an interval [A, B] with x(A) ≥ 2 by

∑
±

∣∣∣∣
�(±τ)

�(1
2 ± τ)

∣∣∣∣
∫ x(B)

x(A)

x− 1
2 ±Re τ

∣∣2F1
( 1

2 , 1
2 ; 1 ∓ τ ; 1

1−x2

)∣∣ dx.

Uniformly for τ in a compact set T , we find an estimate by

∑
±

∣∣∣∣
�(±τ)

�(1
2 ± τ)

∣∣∣∣ (B − A) A± Re τ− 1
2 . (91)

Note that this estimate is bad if τ is near 0. To handle a neighborhood of τ = 0, we

consider the second integral in (90) as a holomorphic function of the complex variable τ .
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1548 R. W. Bruggeman et al.

Table 3 Bounds for h(τ ) under the assumption that Supp(k) ⊂ [A, B]. These bounds

depend implicitly on c ∈ (
0, 1/2

)

i)c ≤ τ ≤ 1/2 ii) |τ | ≤ c iii) τ = it

∈ iR� (−c, c)

a) 1 ≤ A < B (B − A)Aτ−(1/2) (B − A)Ac−(1/2) |t|−1/2(B − A)A−1/2

b) 0 < A < B ≤ 1 (B − A)A−1/2

c) 0 = A < B ≤ 1 B1/2

d) 0 < A < B (B − A) (B − A) (B − A)A−1/2

· max(Aτ−(1/2), A−1/2) · max(Ac−(1/2), A−1/2) · max(1, |t|−1/2 B)

e) 0 = A < B 1 + Bτ+(1/2) 1 + Bc+(1/2) 1 + |t|−1/2 B

It is holomorphic at τ = 0, since the contributions of �(τ) and �(−τ) cancel each other.

If Supp(k) is contained in [A, B] with x(A) ≥ 2, we find for |τ | = c with a small c > 0 by

the reasoning that led to the estimate in (91) a bound

Oc
(
(B − A)Ac− 1

2
)
.

By holomorphy, this bound extends to |τ | ≤ c. Thus, if Supp(k) ⊂ [A, B] with x(A) ≥ 2,

and if |τ | ≤ c, then

h(τ ) �c (B − A) Ac− 1
2 .

For τ = it ∈ iR with x ≥ 2, we use that

∣∣2F1
( 1

2 , 1
2 ; 1 ± it; 1

1−x2

)∣∣ ≤ 2F1
( 1

2 , 1
2 ; 1; 1

1−x2

)
.

By Stirling’s formula, we get a bound
(
1 + |t|)−1/2

(B − A) A−(1/2) uniformly on |t| ≥ c.

In Table 3, we have combined these results.

We will use these estimates repeatedly in the proofs of the following lemmas. In

some cases, we shall return to the integral representations.

6.2 Lemmas for Selberg transforms

First we consider the Selberg transform η(U, V; τ) in (47) of the characteristic function χ

of a bounded interval [U, V) ⊂ [0,∞).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2011/7/1510/686946 by R
U

 Inst Voor Aardw
etens Schappen/U

niversity Library U
trecht user on 26 February 2019



New Lattice Point Asymptotics 1549

Lemma 6.1. The map τ → η(U, V; τ) is positive and increasing on
[
0, 1/2

]
.

η
(
U, V; 1

2

) = 4π(V − U ), (92)
∣∣η(U, V; it)

∣∣ ≤ η(U, V; 0) (t ∈ R). (93)

Moreover, if c ∈ (
0, 1/2

)
is fixed, then we have uniformly for c ≤ τ ≤ 1/2 the estimate

η(U, V; τ) = √
π

22τ+1�(τ)

�(3
2 + τ)

(
Vτ+ 1

2 − U τ+ 1
2
) + Oc

(
V−τ+ 1

2
)

(V → ∞). (94)
�

If the difference V − U is small, then the O-term may be larger than the explicit

term in (94).

Proof. We apply the computations in Section 6.1 to the characteristic function χ of

[U, V). In (84), we find the first statement of the lemma, and (93). Taking τ = 1/2 in (86)

gives (92).

For (94), we need an asymptotic formula, not an estimate. We use (90). We sepa-

rate the cases x(U ) ≥ 2 and x(U ) ≤ 2, which correspond to U ≥ 1/8 and U ≤ 1/8, respec-

tively, since 2 + 4u = x(u) + 1/x(u).

If x(U ) ≥ 2, we need only the integral over [2,∞). Writing 2F1
(
(1/2) − τ, 1/2; 1; 1 −

x2
) = 1 + O(x−2) as x → ∞, we get, uniformly for τ ∈ [

c, 1/2
]
:

∑
±

π
�(±τ)

�(1
2 ± τ)

∫ x(V)

x(U )

x±τ− 1
2
(
1 + Oc(x

−2)
)

dx

=
∑
±

π
�(±τ)

�(3
2 ± τ)

(
x(V)

1
2 ±τ − x(U )

1
2 ±τ + Oc

(
x(U )±τ− 3

2
))

.

For T ≥ 1, we have x(T) = 4T + O(1). So the main term with ± = + gives the explicit term

in (94). The other terms give O(1) + O(U τ−(3/2)) + O(V (1/2)−τ ) = O
(
V (1/2)−τ

)
.

If x(U ) ≤ 2, we get from x ∈ [2,∞) the contribution

π
�(+τ)

�(3
2 + τ)

(
Vτ+ 1

2 − O(1)
) + O(V

1
2 −τ ).

We add to it the contribution

∫ 2

x(U )

x− 3
2 −τ (x2 − 1) 2F1

( 1
2 − τ, 1

2 ; 1; 1 − x2)
dx �

∫ 2

1
O(1) = O(1),

and obtain (94) in this case as well. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2011/7/1510/686946 by R
U

 Inst Voor Aardw
etens Schappen/U

niversity Library U
trecht user on 26 February 2019



1550 R. W. Bruggeman et al.

Next we consider functions approximating the characteristic function of [U, V),

satisfying the following conditions.

k ∈ C ∞
c [0,∞) , 0 ≤ k ≤ 1,

∃Y>0 such that 2Y ≤ U if U > 0, 2Y ≤ V − U , and

k = 1 on

⎧
⎨
⎩

[U + Y, V − Y] if U > 0,

[0, V − Y] if U = 0,

k = 0 on

⎧⎨
⎩

[0,U − Y] ∪ [V + Y,∞) if U > 0,

[V + Y,∞) if U = 0.

(95)

Lemma 6.2. The Selberg transform h in (4.1) of a function k ∈ C∞[0,∞) satisfying the

conditions in (95) has the following properties:

a) 4π(V − U − 2Y) ≤ h
(
1/2

) ≤ 4π(V − U + 2Y).

b) If V < 1, then

∣∣∣∣h(τ ) − h
(

1

2

)∣∣∣∣ � V3/2
∣∣∣∣ 1

2 − τ

∣∣∣∣

for all τ with 0 ≤ Re τ ≤ 1/2.

c) For each c ∈ (
0, 1/2

)
, the difference with the Selberg transform η(U, V; τ) of

the characteristic function of [U, V) satisfies the estimate

η(U, V; τ) − h(τ ) �c

⎧⎨
⎩

Y max
(
Vτ− 1

2 ,U− 1
2
)

if U > 0,

Y max
(
V− 1

2 , Vτ− 1
2
)

if U = 0,

uniformly in τ ∈ [
c, 1/2

]
. �

Proof. Part a) follows by a comparison of k with the characteristic functions of the

intervals [U + Y, V − Y) and [U, V), and an application of (92) in Lemma 6.1.
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New Lattice Point Asymptotics 1551

For b), we use (24), and note that ys − 1 = s(y − 1) (1 + ξ(y − 1))s−1 for some ξ =
ξs,y ∈ (0, 1) to obtain

∣∣h(τ ) − h
(1

2

)∣∣ ≤ ∣∣1

2
− τ

∣∣
∫

H

k
(
u(z, i)

) |y − 1| (
1 + ξ(y − 1)

)− 1
2 −Re τ dμ(z).

For small V , the values of y that occur in the integral are between 1 − O
(√

V
)

and 1 +
O

(√
V

)
. Thus, the integral is bounded by O

(√
V

) ∫
H

k
(
u(z, i)

)
dμ(z), which gives b).

For c), we apply the estimate i) d) in Table 3 to a function with support in the

union of the intervals [U − Y,U + Y] and [V − Y, V + Y]. For U > 0, we find:

Y max(U τ− 1
2 ,U− 1

2 ) + Y max
(
(V − Y)τ− 1

2 , (V − Y)−
1
2
) � Y max(Vτ− 1

2 ,U− 1
2 ).

If U = 0, we have only the contribution of [V − Y, V + Y]. �

Lemma 6.3. The Selberg transform h of a function k ∈ C ∞[0,∞) satisfying the condi-

tions in (95) has the following properties:

a) h(τ ) = η(U, V; τ) + O(Y) for τ ∈ [
0, 1/2

]
.

b) Let c ∈ (
0, 1/2

)
. Then we have, uniformly for τ ∈ i[−c, c] ∪ (0, c]:

h(τ ) �c

⎧⎨
⎩

(V − U )Uc− 1
2 if 1 ≤ U ≤ V,

Vc+ 1
2 if U = 0, V ≥ 1,

and, without dependence on c:

h(τ ) � V.

c) Let c ∈ (
0, 1/2

)
and take l ∈ N. Then we have for each δ > 0, uniformly for

t ∈ R� (−c, c):

h(it) �c,l

⎧⎨
⎩

Y ‖k(l)‖∞ max
(
Vl− 1

2 ,U− 1
2
) |t|−l− 1

2 if δ ≤ U < V,

Y ‖k(l)‖∞ max
(
V− 1

2 , Vl− 1
2
) |t|−l− 1

2 if U = 0, V > δ. �

We note that we have stated what we need, not the best estimate one might prove

by separating more cases. In the proof, we will see that in c) we have to avoid intervals

with U ∈ (0, δ), to be able to apply an asymptotic estimate for hypergeometric functions.
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1552 R. W. Bruggeman et al.

Proof. Equation (24) shows that at real values of τ the Selberg transform is monotonous

on real-valued functions. In the case U > 0, both the characteristic function of [U, V]
and the function k are between the characteristic functions χ1 of [U + Y, V − Y] and

[U − Y, V + Y]. The statement of part a) follows by applying Lemma 6.1 to the difference

χ2 − χ1, which is the sum of the characteristic functions of two disjoint intervals of

length O(Y). The case U = 0 is proved in a similar way.

The first estimate in b) can be read off from Table 3. The bound h(τ ) � V follows

from a) and (92) in Lemma 6.1.

For d), we modify the discussion in Section 6.1. By the smoothness of k, we find

in (4.1)

q(p) = (−1)l√π

�(l + 1
2 )

∫ ∞

p
k(l)(u) (u− p)l− 1

2 du (96)

for each l ∈ N. Proceeding as in (83), (85)–(87), and (89)–(90), we obtain

h(τ ) =
√

π(−1)l

22l�(l + 1
2 )

∫ ∞

x=1
k(l)((x + x−1 − 2)/4

) ∫ 1

y=0
x− 3

2 −τ−l

· (x2 − 1)2l+1 (
1 + y(x2 − 1)

)τ−l− 1
2

(
y(1 − y)

)l− 1
2 dydx (97)

= π(−1)l

24l l!
∫ ∞

1
k(l)((x + x−1 − 2)/4

)
x− 3

2 −τ−l (x2 − 1)2l+1

· 2F1
(
l + 1

2 − τ, l + 1
2 ; 2l + 1; 1 − x2)

dx

= π(−1)l

24l l!
∫ 2

1
k(l)((x + x−1 − 2)/4

)
x− 5

2 −3l−τ (98)

· (x2 − 1)2l+1
2F1

(
l + 1

2 + τ, l + 1
2 ; 2l + 1; 1 − x−2)

dx

+
√

π(−1)l

22l

∫ ∞

2
k(l)((x + x−1 − 2)/4

) ∑
±

�(±τ)

�(l + 1
2 ± τ)

x− 3
2 ±τ−l

· (x2 − 1)l+ 1
2 2F1

( 1
2 − l, 1

2 + l; 1 ∓ τ ; (1 − x2)−1)
dx.

We apply this for τ = it ∈ iR with |t| ≥ c. Consider first an interval [U1, V1] with

1 < x(U1) < x(V1) ≤ 2. Then we use the first integral in (98) to get a bound

�l ‖k(l)‖∞
∫ x(V1)

x(U1)

∣∣2F1
(
l + 1

2 + it, l + 1
2 ; 2l + 1; 1 − x−2)∣∣ dx.
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New Lattice Point Asymptotics 1553

For x ≥ 1 + δ > 1, we have by formulas (14) and (15) in Section 2.3.2 of [3]

2F1
(
l + 1

2 , l + 1
2 + it; 2l + 1; 1 − x−2) �l,δ |t|− 1

2 −l .

This gives a bound

Ol,δ
(‖k(l)||∞

(
x(V1) − x(U1)

))

� ‖k(l)||∞ (V1 − U1)
(
1 + 1√

V1 + V2
1 +

√
U1 + U2

1

)

� ‖k(l)||∞ (V1 − U1)V
− 1

2
1 .

We stress that the use of δ is critical for the application of the asymptotic behavior from

loc. cit. If we allow x to get down to 1, the implicit constant blows up.

For an interval [U2, V2] with x(U2) ≥ 2, we can use the second integral in (98). The

hypergeometric series shows that

∣∣2F1
( 1

2 − l, 1
2 + l; 1 ∓ it; (1 − x2)−1)∣∣ ≤ 2F1

( 1
2 + l, 1

2 + l; 1; (1 − x2)−1)
,

which is Ol(1) for x ≥ 2. By Stirling’s formula, we get an estimate by

Ol

(
‖k(l)‖∞ |t|−l− 1

2

∫ x(V2)

x(U2

x− 1
2 +l dx

)
� ‖k(l)‖∞ |t|− 1

2 −l(V2 − U2)V
l− 1

2
2 .

If U = 0, we have only to estimate the integral over [V − Y, V + Y]. This gives

the bound Y‖k(l)‖∞ max(V−1/2, Vl−(1/2)). If U ≥ δ, we get from the interval [U − Y,U + Y]
the bound Y ‖k(l)‖∞ max(Ul+(1/2),U−1/2). Together with the bound for the interval

[V − Y, V + Y] we get the other bound in c) of the lemma. �

7 Spectral Theory

7.1 Spectral expansion

The pointwise convergence of the spectral expansion of sufficiently differentiable ele-

ments of L2(�\Hd) in Theorem 4.1 is similar to well-known facts for the case d = 1 (e.g.,

Theorems 4.7 and 7.4 in [13]), and for rank-one Lie groups (Lemma 2.2 in [21]). We sketch

how to obtain the pointwise convergence in Theorem 4.1 in the present context.
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1554 R. W. Bruggeman et al.

We consider first the mechanism of the Selberg transform on H, given in Section

4.1. We replace k ∈ C ∞
c [0,∞) by

rs(u) = �(2s)

4π�(s)
u−s

2F1(s, s; 2s;−1/u), (99)

with Re s > 1. It has a logarithmic singularity at u = 0 and its support is not compact.

Nevertheless, it determines a kernel function (z, w) → rs(u(z, w)) on H such that the cor-

responding convolution operator Rs : f → Rs f is well defined for bounded f ∈ C ∞(H). It

is in fact the free space resolvent on H, and satisfies

Rs
(
� − s + s2)

f = f. (100)

See Section 1.9 of [13]. If a, s ∈ C both have real part larger than 1, the difference rs,a =
rs − ra has no singularity at u = 0, and has the Selberg transform

hs,a(t) = s − s2 − a + a2

(
t2 + (s − 1

2 )2
)(

t2 + (a − 1
2 )2

) (101)

for | Im t| < Re s − (1/2). Moreover, the resolvent equation gives on bounded functions in

C ∞(H) such that � f and �2 f are also bounded:

Lrs,a(� − s + s2)(� − a + a2) f = (Rs − Ra)(� − s + s2)(� − a + a2) f (102)

= (s − s2 − a + a2) f.

Taking s, a ∈ Cd with Re sj > 1, Re aj > 1, sj �= aj for all j, we form

ks,a
(
u(z, w)

) =
∏

j

rsj ,aj

(
u(zj, w j)

) =
∏

j

(
rsj

(
u(zj, w j)

) − raj

(
u(zj, w j)

))
,

and obtain a kernel operator Ks,a on �\Hd given by the kernel function

Rs,a(z, w) =
∑
γ∈�

ks,a(u(γ z, w)).
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New Lattice Point Asymptotics 1555

We apply this operator to differentiable bounded functions f on �\Hd for which

the derivatives �
b1
1 · · · �bd

d f are bounded for all choices bj ∈ {0, 1, 2}.

f =
∏

j

1

(s1 − s2
1 − a1 + a2

1) · · · (sd − s2
d − ad + a2

d)
Ks,a f1,

f1 = (�1 − s1 + s2
1) · · · (�d − sd + s2

d)(�1 − a1 + a2
1) · · · (�d − ad + a2

d) f.

Now we note that the values Ks,a f(z) are given by a scalar product in L2(�\Hd):

Ks,a f1(z) = 〈
f1, Rs,a(z, ·)

〉 = 〈
f1, Rs̄,ā(z, ·)

〉
.

Taking the scalar product is a continuous operation L2(�\Hd) −→ C. Thus, using (38) and

(101) we conclude that the L2-expansion of f1 is transformed in a pointwise expansion:

K f1(z) =
∑

�

hs,a(t�) ψ�(z) a(1)
� (103)

+
∑
κ

2cκ

∑
μ∈Lκ

∫ ∞

0
hs,a(t + μ) E(κ; it, iμ; z) b(1)

μ,κ (t) dt ;

hs,a(t) =
∏

j

sj − s2
j − aj + a2

j(
t2
j + (sj − 1

2 )2
)(

t2
j + (aj − 1

2 )2
) ,

where a(1)
� = 〈 f1, ψ�〉 and b(1)

κ,μ(t) = ∫
�\Hd f1(z)E(κ; it, iμ; z) dμ(z). Since Rs,a(z, w) is

bounded for z ∈ Hd uniformly in z in compact sets, the convergence of the expansion

(103) is also uniform on compact sets.

For two times differentiable functions in L2(�\Hd), application of � j changes a�

in the spectral expansion into
(
(1/4) − μ2

�, j

)
a�, and bκ,μ(t) into

(
(1/4) + (t + μ j)

2
)

bκ,μ(t).

Taking this into account, the pointwise spectral expansion of f takes the form

f(z) =
∑

�

ψ�(z) a� +
∑
κ

2cκ

∑
μ∈Lκ

∫ ∞

0
E(κ; it, iμ; z) bμ,κ (t) dt. (104)

Now we turn to the sum in (30) defining K(z, w). The sum is locally finite in w, uni-

form for z in a fixed compact set, and defines a smooth bounded differentiable function
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1556 R. W. Bruggeman et al.

f : w → K(z, w) with compact support modulo �. Its derivatives are bounded, uniform

for z in compact sets, hence its spectral expansion in w converges pointwise.

7.2 Spectral measure

To prove Theorem 4.2, we use the estimate of the counting function in Lemma 3.2, and

apply the mechanism of the Selberg transform.

We take kj ∈ C ∞
c [0,∞) that satisfy 0 ≤ kj ≤ 1, kj = 1 on [0, η j], and kj = 0 on

[δ j,∞) for quantities η = (η j) j and δ = (δ j) j with 0 < η j < δ j < 1/2 to be chosen later.

We form k and K as in (27) and (30). We have seen in (31) that K(z, ·) ∈ L2(�\Hd). We shall

give two inequalities in which the norm ‖K(z, ·)‖2 occurs.

We have

‖K(z, ·)‖2
2 =

∫

�\Hd
|K(z, w)|2 dμ(w)

=
∑

γ,δ∈�

∫

F

k(γ z, w) k(δz, w) dμ(w)

=
∑

γ,δ∈�

∫

F

k(δ−1γ z, δ−1w) k(z, δ−1w) dμ(w)

=
∑
γ

∫

Hd
k(γ z, w) k(z, w) dμ(w).

The second factor restricts the domain of integration to w with u(zj, w j) ≤ δ j for all j,

and the first factor to w with u
(
(γ z) j, w j

) ≤ δ j for all j. For the hyperbolic distances, this

means that dist
(
(γ z) j, zj) ≤ 2υ j, where υ j corresponds to δ j according to the relation (12).

For small values, we have δ j ∼ (1/4)υ2
j . Hence, u(γ jzj, zj) ≤ δ̃ j with δ̃ j ∼ 4δ j as δ j ↓ 0.

Hence, with δ̃ = (δ̃ j) j:

‖K(z, ·)‖2
2 ≤ N(z; 0, δ̃)

∫

Hd
k(z, w) dμ(w) = N(z; 0, δ̃)

∏
j

h
( 1

2

)
. (105)

Note that Lemma 6.2 a) implies that
∏

j h
(
1/2

)
is a positive quantity between (4π)d

∏
j(δ j − η j) and (4π)d ∏

j δ j.
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Let X ∈ [1,∞)d. We recall that in (40) we have given a bounded subset of the

spectral set depending on X. Theorem 4.1 implies that

‖K(z, ·)‖2
2 =

∑
�

|h(τ�)|2 |ψ�(z)|2

+
∑
κ

2cκ

∑
μ∈Lκ

∫ ∞

0
|h(it + iμ)|2 |E(κ; it, iμ; z)|2 dt

≥ min{|h(it)|2 : t ∈ Y(X)}
( ∑

� , t�∈Y(X)

|ψ�(z)|2

+
∑
κ

2cκ

∑
μ∈Lκ

∫

t≥0 , (t+μ j) j∈Y(X)

|E(κ; it, iμ; z)|2 dt
)

. (106)

To get a hold on a lower bound of h on Y(X), we use Lemma 6.2 b). For τ ∈ Y(X),

it gives

∣∣hj(τ j) − hj
(1

2

)∣∣ � δ
3/2
j X j,

|hj(τ j)| ≥ hj
(1

2

) − O
(
δ

3/2
j X j

) = 4π(δ j − η j) − O
(
δ

3/2
j X j

)
.

We take η j = (1/2)δ j, and δ j = εX−2
j with ε > 0 sufficiently small to have |hj(τ j)| ≥ δ j.

This gives

min
{|h(τ )|2 : τ ∈ Y(X)

} ≥ 1

(4π)d

∏
j

hj
( 1

2

)2
.

Thus, we obtain from (106) the inequality

∥∥K(z, ·)∥∥2
2 ≥ c1 S(X; z, z)

∏
j

hj
( 1

2

)2
, (107)

for some positive constant c1, which does not depend on �. If the X j are sufficiently

large, the δ j and the δ̃ j are sufficiently small to apply Lemma 3.2. By (107) and (105), we

get

S(X; z, z) ≤ 1

c1
∏

j hj
( 1

2

)2 N(z; 0, δ̃)
∏

j

hj
( 1

2

)

��

1∏
j(δ j/2)

n(δ̃−1/2, z) � n(X, z)
∏

j

X2
j .
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