
Ramanujan J (2014) 33:55–82
DOI 10.1007/s11139-013-9469-z

Harmonic lifts of modular forms

Roelof Bruggeman

Received: 22 June 2012 / Accepted: 28 January 2013 / Published online: 3 July 2013
© Springer Science+Business Media New York 2013

Abstract It is shown that each complex conjugate of a meromorphic modular form
for SL2(Z) of any complex weight p occurs as the image of a harmonic modular form
under the operator 2iyp∂z̄. These harmonic lifts occur in holomorphic families with
the weight as the parameter.
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1 Introduction

In the theory of mock modular forms, see Sect. 3 of [3] and also Sect. 5 of [13], one
meets the exact sequence

0 −→ M !
p −→ H !

p

ξp−→ M̄ !
2−p, (1.1)

and gives conditions under which the last map is surjective. Here M !
p denotes the

space of holomorphic modular forms of weight p with at most exponential growth
at the cusps (also called the space of weakly holomorphic modular forms), and H !

p

denotes the corresponding space of p-harmonic modular forms, defined by replacing
the condition of holomorphy by the condition of p-harmonicity, which means being
in the kernel of the operator

Δp = −4 (Im z)2 ∂z∂z̄ + 2ip (Im z) ∂z̄. (1.2)
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The operator ξp = 2i (Im z)p ∂z̄ maps H !
p into the space M̄ !

2−p of antiholomorphic
modular forms of weight 2 − p with at most exponential growth at the cusps. (Ac-
tually, the operator ξp in [3] also conjugates the function, and ends up in a space
of holomorphic modular forms.) The elements of M̄ !

2−p are complex conjugates of

elements of an appropriate space M !
2−p . (In Sect. 2 we will give a more precise dis-

cussion of these spaces of modular forms.)
A p-harmonic lift of an element F in M̄ !

2−p is an element H of H !
p such that

ξpH = F . The concept stems from the study of mock modular forms. Zwegers started
in [14] with mock theta functions M , which are holomorphic functions on the upper
half-plane given by a q-series, and added a simpler but non-holomorphic function C

to it such that M + C has modular transformation behavior. The function M + C is
no longer holomorphic, but p-harmonic for some weight p. Applying the operator
ξp to C, or to M + C, gives an antiholomorphic cusp form of weight 2 − p, from
which C can be reconstructed. Conversely, we may ask for a given antiholomorphic
automorphic form F of weight 2 − p whether it occurs as the image under ξp of a
p-harmonic form H .

Poincaré series form a convenient tool to construct harmonic lifts. See Theo-
rem 1.1 in the paper [1] of Bringmann and Ono, or Sect. 6 in [4] by Bruinier, Ono
and Rhoades. If the parameters of the Poincaré series are in the domain of absolute
convergence this gives a description of harmonic lifts by absolutely convergent se-
ries. For other values of the parameters one has to use the meromorphic continuation
of the Poincaré series. An alternative approach is the use of Hodge theory. See Corol-
lary 3.8 in [3] of Bruinier and Funke. The method of holomorphic projection can be
used to construct harmonic lifts. See Sects. 3 and 5 in the preprint [2] of Bringmann,
Kane and Zwegers.

My purpose in this paper is to show that the approach with Poincaré series can be
modified to work for arbitrary complex weights. I will use results from perturbation
theory of automorphic forms as investigated in [5]. To avoid complications I consider
only the full modular group.

Theorem 1.1 Let F be an antiholomorphic modular form on SL2(Z) of weight 2 −
p ∈ C with multiplier system v on SL2(Z) suitable for the weight p, and assume
that F has at most exponential growth at the cusps. Then there exists a p-harmonic
modular form H on SL2(Z) of weight p with the same multiplier system v and at
most exponential growth at the cusps, such that ξpH = F .

This is a mere existence result. The construction of H is based on the resolvents of
self-adjoint families of operators in Hilbert spaces, and does not give the p-harmonic
lift H explicitly.

Let us denote by, respectively, M !
p(v), M̄ !

p(v) and H !
p(v) the spaces of respectively

holomorphic, antiholomorphic and harmonic modular forms, with at most exponen-
tial growth, weight p, and multiplier system v.

Holomorphic and antiholomorphic modular forms occur in families, for instance
the powers of the Dedekind eta-function r �→ η2r form a family holomorphic in the
weight r ∈ C, with a multiplier system that we denote by vr . We have η2r ∈ M !

r (vr ),
and η̄2r ∈ M̄ !

r (v−r ). All antiholomorphic modular forms with at most exponential
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growth are of the form F η̄−2r , where r ∈ C, and F ∈ M̄ !
2−�(1) for some � ∈ 2Z.

Such a family r �→ F η̄−2r is a holomorphic family on C. It turns out that harmonic
lifts also occur in families, which, however, are not defined on all of C, due to a
branching phenomenon. We work with domains of the form

UM = C \ [12M,∞) (1.3)

with M ∈ Z.

Theorem 1.2 Let F ∈ M̄ !
2−�(1) with � ∈ 2Z. There is μF ∈ Z such that for all

integers M ≥ μF there are holomorphic families r �→ HM,r on UM for which
HM,r ∈ H !

�+r (vr ) and ξ�+rHM,r = F η̄−2r for all r ∈ UM .

This result implies Theorem 1.1.
Meromorphic modular forms may have singularities in points of the upper half-

plane H. The space M !!
p(vr) of meromorphic modular forms of weight p with the

multiplier system vr is contained in the space H !!
p (vr) of harmonic functions F on

H \ S that are invariant under the action of SL2(Z) of weight p with the multiplier
system vr , where S ⊂ H consists of finitely many Γ -orbits and where F satisfies
near each ζ ∈ S an estimate F(z) = O((

z−ζ

z−ζ̄
)−a) as z → ζ for some a > 0. The space

M̄ !!
p(vr) consists of the complex conjugates of the functions in M !!̄

p(v−r̄ ).

Theorem 1.3 Let p, r ∈ C with p ≡ r mod 2. For each F ∈ M̄ !!
2−p(vr) there exists a

harmonic lift H ∈ H !!
p (vr) such that ξpH = F .

This lifting can also be done in holomorphic families. Theorems 1.2 and 1.3 follow
from the more general Theorem 4.5 in Sect. 4.4.

To obtain these results we start in Sect. 2 with a more precise discussion of the
spaces of holomorphic, antiholomorphic and harmonic modular forms. Section 3 re-
formulates the equation ξ�+rH = η̄−2rF in terms of the more general class of real-
analytic modular forms. In this way we can embed the family r �→ η̄−2rF in a family
with two parameters, the weight and a “spectral parameter”. This makes it possible to
use analytic perturbation theory to arrive at meromorphic families r �→ HN,r of mod-
ular solutions of the equation ξ�+rHN,r = η̄−2rF . Section 4 removes the singularities
of these families, and leads to Theorem 4.5, from which Theorems 1.1–1.3 follow.

Section 4.3 gives a normalization that determines the families of harmonic lifts
uniquely. That does not mean that we obtain them explicitly. The theorems in this
paper are existence results only. It is far from obvious how to write hN,r as the sum
of a “mock modular form” and a “harmonic correction”, especially if hN,r has singu-
larities in the upper half-plane. See Sect. 4.6.

Section 4.5.4 discusses the possibilities and difficulties of extension to other dis-
crete groups. Finally, Sect. 5 discusses, as an example, a lift of r �→ η̄−2r , and states
an explicit formula for the first derivative of this lift at r = 0.
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2 Modular forms

This section serves to define the concepts more precisely than in the introduction.
The discrete group is Γ := SL2(Z).

2.1 Holomorphic modular forms

The Dedekind eta-function

η(z) = eπiz/12
∏

n≥1

(
1 − e2πinz

)

has no zeros in the upper half-plane H = {z = x + iy ∈ C : y > 0}. One chooses a
branch of its logarithm

logη(z) = πiz

12
−

∑

n≥1

σ−1(n) qn, (2.1)

with q = e2πiz and σu(n) = ∑
d|n du, and then defines η2r (z) = e2r logη(z). The trans-

formation behavior of logη is studied by R. Dedekind in the appendix [8] to the col-
lected works of B. Riemann. One may also consult Chap. IX in [11]. This leads to the
modular transformation behavior

η2r (γ z) = vr(γ ) (cz + d)r η(z) for all γ =
(

a b

c d

)
∈ Γ, (2.2)

with the multiplier system vr . A multiplier system suitable for the weight p ∈ C is a
map v : Γ → C

∗ such that

(
F |v,r

(
a b

c d

))
(z) = v

(
a b

c d

)−1

(cz + d)−p F

(
az + b

cz + d

)
(2.3)

defines a representation of Γ/{±I } = PSL2(Z) in the functions on H. We use the
convention of computing complex powers of cz + d with arg(cz + d) ∈ (−π,π].

For the modular group all multiplier systems occur in one family r �→ vr with
parameter r ∈ C mod 12Z. The multiplier system vr is suitable for weights p ≡
r mod 2. It is determined on the two standard generators of SL2(Z) by

vr

(
1 1

1

)
= eπir/12, vr

( −1
1

)
= e−πir/2. (2.4)

Definition 2.1 Let p, r ∈ C, p ≡ r mod 2. The space M !
p(r) = M !

p(Γ, vr) consists
of the holomorphic functions F on H that satisfy F |vr ,pγ = F for all γ ∈ Γ and

F(z) = O
(
eay

)
as y → ∞ for some A > 0, (2.5)

uniformly for x in compact sets. By M !!
p(r) we denote the space of meromorphic

modular forms of weight p with multiplier system vr .
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Here and in the sequel we use the standard convention x = Re z and y = Im z for
z ∈ H. If p and r are not real we cannot impose in (2.5) uniformity in x ∈ R. The
condition (2.5) is the condition of exponential growth.

Since η has no zeros in H, multiplication by η2r1 gives a bijection between M !
p(r)

and M !
p+r1

(r + r1). This implies that all spaces in Definition 2.1 can be uniquely

described as M !
�+r (r) with r ∈ C and � ∈ L := {0,4,6,8,10,14}. The general form

of an element of M !
�+r (r) is p(J )E� η2r , where p(J ) is a polynomial in the elliptic

invariant J ∈ M !
0(0), and E� is the holomorphic Eisenstein series in weight � ∈ L \

{0}, and where we put E0 = 1. The general form of an element of M !!
�+r (r) is also

p(J )E� η2r , where now p(J ) is a rational function in J . (See, e.g., Sect. 4.1 of [12].)
We can formulate the meromorphy of F at ζ ∈ H by holomorphy in z on a pointed

neighborhood of ζ in H and the growth condition

F(z) = O
((

(z − ζ )/(z − ζ̄ )
)−a) as z → ζ , for some a > 0. (2.6)

2.2 Harmonic modular forms and antiholomorphic modular forms

Definition 2.2 We say that a function F is p-harmonic on some subset of H if
ΔpF = 0 on that subset, where Δp is the operator given in (1.2).

The holomorphic action |vr ,p of Γ in (2.3) preserves p-harmonicity and commutes
with Δp . Holomorphic functions are p-harmonic for each p ∈ C.

Antiholomorphy is not preserved by the action |vr ,q of Γ , but by the following
action:

Definition 2.3 For p ≡ −r mod 2 the antiholomorphic action |avr ,p
of Γ in the func-

tions on H is given by

(
F |avr ,p

(
a b

c d

))
(z) = vr

(
a b

c d

)−1

(cz̄+d)−p F

(
az + b

cz + d

)
for

(
a b

c d

)
∈ Γ,

(2.7)
where powers of cz̄ + d are computed with −π ≤ arg(cz̄ + d) < π .

The operator

ξp = 2iyp ∂z̄ (2.8)

vanishes precisely on the holomorphic functions, and a function F is p-harmonic if
and only if ξpF is antiholomorphic. This operator ξp intertwines holomorphic and
antiholomorphic actions:

ξp(F |vr ,pγ ) = (ξpF )|avr ,2−pγ. (2.9)

Let us define MS
p(r) as the space of F ∈ M !!

p(r) with singularities contained in the

set S. Then M !
p(r) = M∅

p(r) and M !!
p(r) = ⋃

S MS
p(r) where S runs over the collec-

tion of unions of finitely many Γ -orbits in H. This suggests the following definition.



60 R. Bruggeman

Definition 2.4 Let S ⊂ H consist of finitely many (possibly zero) Γ -orbits in H. Let
p ≡ r mod 2. We define HS

p (r) as the space of r-harmonic functions on H\S that are
invariant under the action |p,r of Γ , satisfy the condition (2.5) of exponential growth
at the cusp and the growth condition (2.6) at the points ζ ∈ S.

The space M̄S−p(r) consists of the antiholomorphic functions on H \ S that are
invariant under the action |a−p,vr

of Γ and satisfy (2.5), and condition (2.6) for all
ζ ∈ S.

We put H !
p(r) = H ∅

p (r), M̄ !−p(r) = M̄∅−p(r), H !!
p (r) = ⋃

S HS
p (r), and M̄ !!−p(r) =⋃

S M̄S−p(r), where S runs over the collection of unions of finitely many Γ -orbits
in H.

MS
p(r) HS

p (r) M̄S−p(r)

Growth at ∞ Condition (2.5) is satisfied
Near ζ ∈ S Condition (2.6) is satisfied
For all γ ∈ Γ Invariant under |vr ,pγ Invariant under |vr ,−pγ

On H \ S Holomorphic p-harmonic Antiholomorphic

For each S consisting of finitely many Γ -orbits in H we have an exact sequence

0 → MS
p(r) → HS

p (r)
ξp→ M̄S

2−p(r). (2.10)

This is not immediately clear. The question is whether the operator ξp preserves the
growth conditions (2.5) and (2.6). This can be shown by looking at the growth of the
terms in the expansions in the next subsection, and the effect of the operator ξp . It
is a special case of an analogous result for Maass forms, which we will mention in
the next section. Near the end of Sect. 3.2 we will derive the statement from Proposi-
tion 4.5.3 in [5].

The central question in this paper is whether ξpHS
p (r) → M̄S

2−p(r) is surjective.

2.3 Expansions

We fix a union S of finitely many Γ -orbits in H. Let P be the set consisting of ∞ and
of representatives of the Γ -orbits in S, for instance representatives in the standard
fundamental domain.

A meromorphic modular form F ∈ MS
p(r) has a Fourier expansion at ∞ of the

form

F(z) =
∑

ν≥μ

aμ qν+r/12, (2.11)

with qα = e2πiαz. The integer μ may be negative. If F has singularities at points of S

then this expansion converges only on a region y > A not intersecting S.
Near each ζ ∈ P ∩ H the function has an expansion of the form

F(z) = (z − ζ̄ )−p
∑

ν≥μ

aν wν, (2.12)
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with w = z−ζ

z−ζ̄
. If F has a singularity at ζ then μ < 0. If ζ ∈ Γ i then aν = 0 if ν ≡

p−r
2 mod 2, and for ζ ∈ Γ eπi/3 there is a similar condition modulo 3. The expansion

at ζ will represent F only on some open hyperbolic disk around ζ that does not
contain other singularities.

An antiholomorphic modular form F ∈ M̄S−p(r) has similar expansions:

near ∞: F(z) =
∑

ν≥μ

aνq̄
ν+r/12,

near ζ : F(z) = (z̄ − ζ )p
∑

ν≥μ

aν w̄ν.

(2.13)

A p-harmonic modular form F ∈ HS
p (r) has also expansions at points of P , the

terms of which inherit the p-parabolicity:

near ∞: F(z) =
∑

ν∈Z

f∞,ν(y) e2πi(ν+r/12)x,

near ζ : F(z) = (z − ζ̄ )−p
∑

ν∈Z

fζ,ν

(|w|)
(

w

|w|
)ν

.

The harmonicity induces second order differential equations for the coefficients,
which then are elements of a two-dimensional space, with a one-dimensional sub-
space corresponding to holomorphic terms. We note that the operator ξp sends the
term with (w/|w|)ν to the term with (w/|w|)ν+1 = w̄−ν−1 |w|ν+1 in the expan-
sion (2.13), with p replaced by p − 2.

3 Real-analytic modular forms

The task to find a p-harmonic modular form H such that ξpH = F for a given an-
tiholomorphic modular form becomes easier if we embed F in a family of modular
forms of a more general type. For this purpose one may use Poincaré series. Here we
modify that approach in such a way that it works for complex weights.

We recall the definition of Maass forms, which are real-analytic modular forms
that satisfy more general conditions than just (anti)holomorphy or harmonicity. The
surjectivity of ξp : HS

p (r) → M̄S
2−p(r) can be reformulated in terms of Maass forms.

To this reformulated problem we will apply results in [5] that lead to meromorphic
families of lifts.

3.1 Maass forms

We define a third action of Γ/{±I } = PSL2(Z) on the functions on H:

Definition 3.1 For p, r ∈ C, p ≡ r mod 2 and γ = (
a b
c d

) ∈ Γ :

(
f |an

vr ,p
γ
)
(z) = vr(γ )−1 e−ip arg(cz+d) f (γ z).

As before, arg(cz + d) ∈ (−π,π].
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This action is intermediate between the actions |vr ,p and |avr ,p
, and does not favor

either holomorphy or antiholomorphy. The relation between these actions is given by
the following simple multiplication operators:

(
Rh

pF
)
(z) = yp/2 F(z),

(
Ra

pF
)
(z) = y−p/2 F(z). (3.1)

The operator Rh
p intertwines the holomorphic action and the analytic action:

(
Rh

pF
)∣∣an

vr ,p
γ = Rh

p(F |vr ,pγ ) (γ ∈ Γ ), (3.2)

and Ra
p intertwines the antiholomorphic and the analytic action:

(
Ra

pF
)∣∣an

vr ,p
γ = Ra

p

(
F

∣∣a
vr ,−p

γ
)

(γ ∈ Γ ). (3.3)

The action |an
vr ,p

of Γ commutes with the Casimir operator in weight p:

ωp = −y2∂2
y − y2∂2

x + ipy∂x. (3.4)

We define Maass forms with singularities in a fixed set S, which is a union of
finitely many Γ -orbits in H. We choose a system of representatives PY of Γ \S.

Definition 3.2 Let p, r ∈ C with p ≡ r mod 2. A modular Maass form of weight p

for the multiplier system vr with spectral parameter s is a twice differentiable func-
tion on H \ S, such that

(1) f |an
vr ,p

γ = f for all γ ∈ Γ ,

(2) ωpf = ( 1
4 − s2) f .

By MS
p(r, s) = MS

p(r,−s) we denote the space of such Maass forms.

This is a very large space. The definition does not impose growth conditions. The
definition is invariant under s �→ −s, and we could work with the eigenvalue 1

4 − s2.
However, in practice the spectral parameter s is more convenient. As parametrizations
both s �→ 1

4 − s2 and s �→ s(1 − s) are in use. Here I choose s �→ 1
4 − s2 for easy

reference to [5]. In [5] Maass forms are considered as functions on the universal
covering group of SL2(R). Here we stay on the upper half-plane, and mention only
that to f ∈ MS

p(r, s) corresponds the function p(z)k(ϑ) �→ f (z) eipϑ in the notations
of Sect. 2.2 of [5].

The operators

E+
p = 2iy ∂x + 2y ∂y + p, E−

p = −2iy ∂x + 2y ∂y − p, (3.5)

satisfy the relations

E±
p ◦ ωp = ωp±2 ◦ E±

p , E±
p

(
F

∣∣an
vr ,p

γ
) = (

E±
p F

)∣∣an
vr ,p±2γ,

E±
p∓2 ◦ E∓

p = −4ωp − p2 ± 2p,
(3.6)
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and give linear maps

E±
p : MS

p(r, s) −→ M
S
p±2(r, s). (3.7)

For general combinations of the weight p and the spectral parameter s these
weight shifting operators are bijections between spaces of Maass forms. Those val-
ues of (p, s) where this is not the case are related to the spaces of modular forms
discussed in Sect. 2. The operators in (3.1) lead to the following commuting diagram:

MS
p(r)

Rh
p

MS
p(r,

p−1
2 )

HS
p (r)

ξp

Rh
p

MS
p(r,

p−1
2 )

− 1
2 E−

p

M̄S
2−p(r)

Ra
p−2

MS
p−2(r,

p−1
2 )

(3.8)

The spaces on the right are much larger than those on the left, since we imposed
growth conditions in Definition 2.4 and did not in Definition 3.1.

3.2 Expansions and growth conditions

Any f ∈ MS
p(r, s) has a Fourier expansion on a neighborhood y > A∞ of ∞ for

a suitable A∞ > 0, and at each ζ ∈ PY a polar expansion on 0 < | z−ζ

z−ζ̄
| < Aζ for

suitable Aζ . The individual terms of these expansions are also eigenfunctions of ωq

with eigenvalue 1
4 −s2. This leads to second order differential equations, the solutions

of which can be described in special functions. Here we mention the results needed
for this paper. Section 4.2 in [5] gives more information.

In the Fourier expansion at ∞

F(z) =
∑

n≡r/12 mod 1

(F∞,nf )(z), (F∞,nf )(z) = e2πinx (F∞,nf )(y), (3.9)

the Fourier coefficients F∞,nf satisfy a second order differential equation, defining
a two-dimensional space of solutions. If Ren = 0 this space has a one-dimensional
subspace of elements with rapid decay as y → ∞. As a basis vector of this subspace
we use

ωp(∞;n, s; z) = e2πinx WpSign(Ren)/2,s

(
4πnSign(Ren)y

)
. (3.10)
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It satisfies

ωp

(
∞;n,±p − 1

2
; z

)
= (4πn)p/2 yp/2 qn if Ren > 0,

ωp

(
∞;n;±p + 1

2
; z

)
= (−4πn)−p/2y−p/2q̄−n if Ren < 0.

(3.11)

The other elements in the space are asymptotic to a multiple of z �→ e2πinx

y−p Sign(Ren)/2 e2πnSign(Ren)y as y → ∞. So these terms have exponential growth,
of larger order if Ren gets larger. If Ren = 0 all element of the solution space have
less than exponential growth.

Near ζ ∈ PY we have an analogous situation. We have an expansion

F(z) =
∑

ν∈Z

(Fζ,νf )(z),

(Fζ,νf )(z) = eip arg(1−w) eiν argw (Fζ,νf )(u),

(3.12)

with w = (z − ζ )/(z − ζ̄ ) and u = |w|2
1−|w|2 = |z−ζ |2

4y Im ζ
.

To see that this is the right type of expansion, we may compare it with (2.12) and
(2.13), and use the operators in (3.1) to obtain

Rh
p

(
(z − ζ̄ )−p

(
w/|w|)ν) = eip arg(1−w) eiν argw e−πip/2 2−p

× (Im ζ )−p/2 (
1 − |w|2)p/2

,

Ra
p

(
(z̄ − ζ )p

(
w̄/|w|)ν) = eip arg(1−w) e−iν argw e−πip/2 2p

× (Im ζ )p/2 (
1 − |w|2)−p/2

.

Thus, we obtain Fourier terms of the form eip arg(1−w)±iν argw times a function of u.
The Fourier coefficients Fζ,n are elements of a two-dimensional space, with a one-

dimensional subspace corresponding to functions without a singularity at ζ . This
subspace is spanned by

ωp(ζ ;p + 2ν, s; z) = eip arg(1−w) eiν argw

(
u

u + 1

)εν/2

(u + 1)−s−1/2

· 2F1

(
1

2
+ s + εp

2
+ εν,

1

2
+ s − εp

2
;1 + εν; u

u + 1

)
,

(3.13)

with ε ∈ {1,−1} chosen such that εν ≥ 0. (I use the notations of Sect. 4.2 in [5].
A confusing point is that in [5] it made good sense to parametrize the order of the
Fourier terms at ζ ∈ PY by p + 2ν, while here parametrization by ν itself is more
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convenient.) We have

ωp

(
ζ ;p + 2ν,±p − 1

2
; z

)

= 2p eπip/2 (Im ζ )p/2 yp/2 (z − ζ̄ )−p wν if ν ≥ 0,

ωp

(
ζ ;p + 2ν,±p + 1

2
; z

)

= 2−p eπip/2 (Im ζ )−p/2 y−p/2(z̄ − ζ )p w̄−ν if ν ≤ 0.

(3.14)

The other elements that can occur in the term of order n in the expansion have a
singularity at ζ . This singularity is logarithmic if n = p and behaves near w = 0 like
w(p−n)/2 if n − p > 0 and like w̄(n−p)/2 if n − p < 0.

These results show that the growth of Maass forms can be controlled by the Fourier
expansion. Suppose that f ∈ MS

p(r, s) satisfies f (z) = O(eay) as y → ∞ for a given
a > 0. The Fourier terms F∞,nf can be given by a Fourier integral, and hence
satisfy the same estimate. So if |Ren| > a/2π then F∞,n has to be a multiple of
ωp(∞;n, s). Similarly, if F satisfies near ζ the estimate in (2.6) for a certain a > 0,
then all but finitely many terms in the expansion at ζ are multiples of ωp(ζ ;n, s).
Conversely, the contribution of the terms in the expansion at ξ ∈ P = {∞} ∪ PY that
are a multiple of ωp(ξ ;n, s) cannot give a large growth.

Definition 3.3 A growth condition c for MS
p(r, s) is a finite set of pairs (ξ, n) with

ξ ∈ P and n ≡ r
12 mod 1 if ξ = ∞, and n ∈ Z if ξ ∈ PY . If Re r ∈ 12Z we require

that c contains (∞, it) for t = −i r−Re r
12 .

Notation: c(ξ) = {n : (ξ, n) ∈ c}.

A growth condition singles out finitely many terms from the expansions of Maass
forms at points of P . The additional condition can be understood from the fact that
for Ren = 0 there are no quickly decreasing non-zero Fourier terms at ∞.

Definition 3.4 Let c be a growth condition. By Mc
p(r, s) we denote the space of

f ∈ MS
p(r, s) that satisfy

F∞,nf ∈ Cωp(∞;n, s) if n ≡ r

12
mod 1 and n ∈ c(∞),

Fζ,νf ∈ Cωp(ζ ;p + 2ν, s) if ν ∈ Z, ν ∈ c(ζ ) for ζ ∈ PY .

The weight shifting operators E±
p in (3.5) behave nicely with respect to the Fourier

expansion at ∞:

E±
p F∞,nf = F∞,nE±

p f. (3.15)

For ζ ∈ PY we have the more complicated relation

E±
p Fζ,νf = Fζ,ν∓1E±

p f. (3.16)
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We define for a given growth condition c the growth conditions c+ and c− by

c±(∞) = c(∞) and c±(ζ ) = {
ν ∓ 1 : ν ∈ c(ζ )

}
if ζ ∈ PY . (3.17)

The differentiation relations in Table 4.1 on p. 63 of [5] imply that E±
p sends

ωp(ξ ; ∗, s) to ωp±2(ξ ; ∗, s) for all ξ ∈ PY . Hence

E±
p : Mc

p(r, s) → M
c±
p±2(r, s). (3.18)

See Proposition 4.5.3 in [5]. (The change in the growth condition is absent in [5].
This is a consequence of the difference in the parametrization of the order of terms in
the expansions at points of PY .)

If F ∈ MS
p(r, s) satisfies (2.5) at ∞ and (2.6) at the points in PY , then it is

in Mc
p(r, s) for some growth condition c, and conversely each element of a given

Mc
p(r, s) satisfies those growth conditions at the points of P . Thus, the diagram (3.8)

can be replaced:

MS
p(r)

Rh
p ⋃

c Mc
p(r,

p−1
2 )

HS
p (r)

ξp

Rh
p

∼=
⋃

c Mc
p(r,

p−1
2 )

− 1
2 E−

p

M̄S
2−p(r)

Ra
p−2 ⋃

c Mc−
p−2(r,

p−1
2 )

(3.19)

Here c runs over all growth conditions for MS
p(r, s). Moreover,

Rh
pMS

p(r) = ker

(
E−

p :
⋃

c

M
c
p

(
r,

p − 1

2

)
→

⋃

c

M
c−
p−2

(
r,

p − 1

2

))
,

Ra
p−2M̄

S
2−p(r) = ker

(
E+

p−2 :
⋃

c

M
c
p−2

(
r,

p − 1

2

)
→

⋃

c

M
c+
p

(
r,

p − 1

2

))
.

(3.20)

Relation (3.18) shows that the differential operators E+
p and E−

p transform Maass
forms satisfying a given growth condition into Maass forms satisfying a slightly
changed growth condition. So indeed ξpHS

p (r) ⊂ M̄S
2−p(r).

In the next subsections we will not work with individual Maass forms, but with
families of Maass forms (r, s) �→ f (r, s) for (r, s) in some domain Ω ⊂ C

2, such
that f (r, s) ∈ MS

�+r (r, s) for a given � ∈ 2Z. Then we will use growth conditions
c = {(ξ, ν0)} in which the integers ν0 determine functions of r . All c(ξ) are finite
subsets of Z:

ν0 ∈ c(∞), corresponds to r �→ ν0 + r

12
,

ν0 ∈ c(ζ ), ζ ∈ PY , corresponds to r �→ ν0.

(3.21)
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The variable r should run over a set U ⊂ C such that ν + Re r
12 = 0 for all ν ∈ c(∞)

and r ∈ U . In this context we interpret Fξ,ν as Fζ,ν+r/12 if ξ = ∞ and as Fξ,ν if ξ ∈ PY .

3.3 Perturbation theory

The basis for our proof of Theorems 1.1–1.3 is Theorem 9.4.1 in [5]. It gives mero-
morphic families of Maass forms with a prescribed behavior of the terms in the ex-
pansions at points of P given by a growth condition. In [5] it is a step in obtaining
the meromorphic continuation of Poincaré series in (r, s) jointly. In this paper it is
convenient to use this intermediate result and not the continued Poincaré series.

For our given sets S and P we have expansions of Maass forms on regions y > A∞
near ∞ and on regions 0 < | z−ζ

z−ζ̄
| < Aζ near ζ ∈ PY . These regions may overlap. To

be able to apply the results in Chaps. 7–9 of [5] we shrink these regions such that
their images in the quotient Γ \H are pairwise disjoint.

We choose for each ξ ∈ P a truncation point aξ such that a∞ > A∞ and aζ ∈
(0,A2

ζ /(1 − A2
ζ )) for ζ ∈ PY . Hence (F∞,nf )(a∞) and (Fζ,νf )(aζ ) are well defined.

The precise choice of the truncation points does not matter.
We use a sequence (cN)N≥1 of growth conditions as in (3.21), with

cN(∞) = {
ν ∈ Z : |ν| < N

}
, (3.22)

and with finite sets c(ζ ) for ζ ∈ PY that do not depend on N . We formulate part of
the statement of Theorem 9.4.1 in [5]:

Theorem 3.5 There is an open disk V0,N = V0(cN) around 0 in C such that for each
collection of holomorphic functions ρ = (ρξ,ν)(ξ,ν)∈cN

on V0,N × C there is a unique
meromorphic family eρ of Maass forms on V0,N × C with values in M

cN

� satisfying

Fξ,νeρ(r, s;aξ ) = ρξ,ν(r, s) for all (ξ, n) ∈ cN. (3.23)

A family (r, s) �→ f (r, s) of Maass forms is holomorphic if it is pointwise holo-
morphic and also all terms Fξ,nf (r, s) in the expansions at ∞ and ζ are pointwise
holomorphic. It has values in Mc

� if its value at (r, s) is in Mc
�+r (r, s) for each (r, s)

in its domain.
A meromorphic family f on V0,N ×C with values in M

cN

� is not just a family that
is pointwise meromorphic on H \ S. We require that locally on its domain the family
can be written as 1

ψ
h, where h is a holomorphic family with values in M

cN

� and ψ is
a non-zero holomorphic function. The idea is that “denominators should not depend
on z”.

We call (r0, s0) a singularity of the family if the family is not a holomorphic family
on a neighborhood of (r0, s0). So ψ(r0, s0) should vanish for the representation f =
1
ψ

h that is valid on a neighborhood of (r0, s0).
It should be noted that although the functions ρξ,n are holomorphic, the families

(r, s) �→ Fξ,νeρ(r, s) are meromorphic. Their singularities are not visible in the func-
tions (r, s) �→ Fξ,νeρ(r, s;aξ ).

The theorem is based on the existence of a holomorphic family r �→ Aa(r) on
a disk in C centered at 0 of self-adjoint operators in a Hilbert space. The Hilbert
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space and the family depend on the growth condition cN and the truncation points
aξ for ξ ∈ P . After preparations in earlier chapters it is defined (in a more general
context) in Sect. 9.2 of [5]. It is a generalization of the pseudo Laplace operator of
Colin de Verdière in [7]. The family Aa can be studied with the methods of analytic
perturbation theory in Kato’s book [10]. Eigenvectors of Aa(r) with eigenvalue 1

4 −s2

correspond to Maass forms F ∈ M
cN

�+r (r, s) for which (Fξ,nf )(aξ ) = 0 for all (ξ, n) ∈
cN(r).

The resolvent gives a meromorphic family (r, s) �→ Ra(r, s) of bounded operators.
This resolvent is used in the construction of eρ in the theorem. We do not know much
about this resolvent, except that it is meromorphic, and we have some eigenvalue
estimates that give information on its singularities for r ∈ R ∩ V0. This gives the
following additional information:

Lemma 3.6 Let eρ be as in Theorem 3.5. For each r ∈ V0,N the set of s ∈ C such
that eρ has a singularity at (r, s) is discrete in C. If (r, s) is a singularity of eρ with
r ∈ V0 ∩ R then 1

4 − s2 ≥ − 1
4 (� + r)2.

Proof Theorem 9.4.1 in [5] states that each singularity of eρ is a singularity of the
resolvent Ra . This gives the first assertion. The eigenvalue estimate follows from
9.2.1 in [5]. �

Lemma 3.7 The V0,N := V0(cN) can be chosen to form an increasing collection of
open neighborhoods of 0 in C satisfying V0,N ⊂ {r ∈ C : |Re r| < 12N} and

⋃

N≥0

V0,N = C. (3.24)

Proof If r ∈ V0,N would not satisfy |Re r| < 12(N + 1) then cN would not be a
suitable growth condition. To see that the union of the sets V0,N equals C we have to
go into some details of the reasoning in [5].

We start at the proof of Lemma 9.1.6 in [5]. There it is indicated that the set V0
should consist of r ∈ C such that

b1,b db |r| + b1,c dc |r| + b2,c d2
c |r|2 < 1, (3.25)

with positive factors that we have to trace back through the lemmas in [5].
The linear form ϕ = ϕr in Lemma 9.1.6 is of the form rα, with α as explained

in 13.4.7. We define the factors db and dc as ‖α‖b = ‖ϕr‖b/|r| and ‖α‖c = ‖ϕ‖c/|r|.
From 8.4.10 we see that dc > 0 depends only on the group. For db we go from
Lemma 8.4.11 via the definition of b±

ϕ in 8.2.3 to the function tϕ in Lemma 8.2.1.
There we see that tϕ depends on the set P , but not on the actual growth condition.
Hence db > 0 is also O(1), independent of N and the finite sets cN(ζ ) ⊂ Z for ζ ∈ PY .

The constants b∗,∗ are given in Lemma 9.1.5, and expressed in a large quantity ξ ,
which depends on N , on an arbitrary small quantity ε, and on a positive quantity n1.
In the proof of Lemma 8.4.11 the quantity n1 is defined depending on the group only.
This means that Lemma 9.1.5 gives

b1,b = O
(
ε2), b1,c = O

(
ξ−1) + O(ε) + O

(
ε7/4ξ−1/4), b2,c = O

(
ξ−2).
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The dependence on N is via ξ , and possibly via our choice of ε.
The definition of ξ in Lemma 8.4.11 gives for the present situation

ξ = 2πN − �

2a∞
≥ 2πN.

(We used � ≤ 0.)
Taking ε = 1

N
we see that there is C > 0, not depending on N , such that

|r|
N

+
( |r|

N

)2

< C

implies that (3.25) is satisfied. Determining V0,N by

|r| < N min

(
12,

√
1 + 4C − 1

2

)
(3.26)

we satisfy all conditions. �

3.4 Family of antiholomorphic modular forms with singularities

In this subsection we consider families r �→ η̄−2rF of antiholomorphic forms, and
show that such a family is the restriction of a family of Maass forms depending mero-
morphically on r and the spectral parameter s jointly. This will allow us to construct
in the next subsection a meromorphic family of harmonic lifts of η̄−2rF .

Any element of M̄ !!
2−p1

(r1) with p1 ≡ r1 mod 2 can be written as η̄−2rF with

r ∈ C and F ∈ M̄ !!
2−�(0) with � ∈ 2Z≤0; so F is the conjugate of a meromorphic

automorphic form of even weight 2 − � for the trivial multiplier system. We consider
the holomorphic family r �→ η̄−2rF . For each r ∈ C we have η̄−2rF ∈ M̄ !!

2−�−r (r).
There is freedom in the choice of � and r ; we use it to take � ≤ 0.

Let PY be a set of representatives of the Γ -orbits of points in H where F , and
hence all η̄−2rF , have a singularity. Let μ∞ denote the order of F at ∞, and μζ the
order at ζ ∈ PY . For each N ∈ Z≥1 that satisfies N ≥ 1 − μ∞ we form the growth
condition cN given by

cN(∞) = {
ν ∈ Z : |ν| < N

}
,

cN(ζ ) = {ν ∈ Z : 1 ≤ ν ≤ −μζ } for ζ ∈ PY .
(3.27)

Lemma 3.8 With the notations and assumptions given above, let V0,N be the disk in
C in Theorem 3.5.

There exists a meromorphic family of Maass forms eρ on V0,N × C that satisfies
the growth condition cN , and for which the restriction to the complex line s = �+r−1

2
exists and satisfies

eρ

(
r,

� + r − 1

2

)
= Ra

2−�−r

(
η̄−2rF

)
, (3.28)

as an identity of meromorphic functions on V0,N .
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Proof Let S be the Γ -invariant set of points in H at which F has a singularity. Then
also η̄−2rF has its singularities in S. We have chosen PY as a set of representatives
of Γ \S.

In (2.13) we have seen that the function η̄−2rF has expansions of the following
form:

at ∞: (
η̄−2rF

)
(z) =

∑

ν≥μ∞
a∞
ν (r) q̄ν−r/12,

at ζ ∈ PY : (
η̄−2rF

)
(z) = (z̄ − ζ )�+r−2

∑

ν≥μζ

aζ
ν (r) w̄ν,

(3.29)

with q̄ = e−2πiz̄ and w̄ = z̄−ζ̄
z̄−ζ

. The coefficients a
ξ
ν are holomorphic functions on C.

(The a∞
ν are actually polynomials in r of degree at most ν −μ∞.) We have μζ ≤ −1

for all ζ ∈ PY .
We denote

fr = Ra
2−�−r

(
η̄−2rF

)
, fr(z) = y1−(�+r)/2 η(z)

−2r
F (z). (3.30)

This is a holomorphic family on C of Maass forms, with fr ∈ MS
�+r−2(r,

�+r−1
2 ). A

comparison with (3.11) and (3.14) shows that

(F∞,−ν+r/12fr)(z) = a∞
ν (r) y1−(�+r)/2q̄ν−r/12 for all ν ≥ μ∞,

= a∞
ν (r)

(
4π

(
ν − r

12

))(�+r)/2−1

× ω�+r−2

(
∞;−ν + r

12
,
� + r − 1

2

)

if − ν + Re r

12
< 0,

(Fζ,−νfr)(z) = aζ
ν (r) y1−(�+r)/2 (z̄ − ζ )�+r−2 w̄ν for all ν ≥ μζ ,

= −aζ
ν (r) e−πi(�+r)/2 (4 Im ζ )(�+r)/2−1

× ω�+r−2

(
ζ ;−ν; � + r − 1

2
; z

)

for ζ ∈ PY , if ν ≥ 0.

So fr ∈ M
cN

�+r−2(r,
�+r−1

2 ) for all r ∈ V0,N , for the disk V0,N in Theorem 3.5.
For (ξ, ν) ∈ cN(r) the families r �→ (Fξ,νfr )(aξ ) are holomorphic multiples of

a
ξ
−ν(r). This means that the functions

ρξ,ν(r, s) = (Fξ,νfr )(aξ ) (3.31)

are holomorphic on C for all (ξ, ν) ∈ cN . We apply Theorem 3.5 and obtain a mero-
morphic family eρ of Maass forms of V0,N × C with Fourier coefficients determined
by cN satisfying (3.23).
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Now we ask whether the restriction of eρ to the complex line s = �+r−1
2 has any-

thing to do with the family fr , apart from relation (3.23). The first worry is that eρ

might have a singularity along s = �+r−1
2 , which would mean that there is no mero-

morphic restriction to this line at all.
Suppose that there were such a singularity carried along the line s = �+r−1

2 . Take
the minimal integer k ≥ 1 such that

p(r) = lim
s→(�+r−1)/2

(
s − � + r − 1

2

)k

eρ(r, s)

exists for a dense set of r ∈ V0,N . Since k is minimal, p(r) is non-zero for some r ,
and hence the meromorphic family r �→ p(r) of Maass forms is non-zero. For each
(ξ, ν) ∈ cN we have (Fξ,νp(r))(aξ ) = 0. So p is a meromorphic family of eigenfunc-
tions of the family of operators Aa(·). Lemma 3.6 implies that for those r ∈ V0,N ∩R

at which it has no singularity we have

1

4
−

(
� + r − 1

2

)2

≥ −1

4
(� + r)2.

This cannot be true for r ∈ V0,N ∩ (−∞,0), since we have taken � ≤ 0. Hence k = 0
and eρ has a restriction to the line s = �+r−1

2 . This restriction may be meromorphic;
the good thing is that it exists at all.

Next, we check that the restriction is equal to fr . We consider the meromorphic
family p1 : r �→ eρ(r, �+r−1

2 )−fr . It might be a non-zero family. We know from The-
orem 3.5 that r �→ (Fξ,νp1(r))(aξ ) is the zero function for all (ξ, ν) ∈ cN . Again by
the eigenvalue estimate in Lemma 3.6 this is impossible. Hence fr = R1

2−�−r (η̄
−2rF )

is equal to the restriction of the family eρ to the line s = �+r−1
2 . �

3.5 Lift of the family

The advantage of describing r �→ fr as the restriction of a family of Maass forms in
two variables, is that it is easier to lift such a family.

In diagram (3.8) we see that we want to find hr such that − 1
2 E−

�+rhr = fr . The

differential operator 1
4 E−

�+rE+
�+r−2 acts on the space M

cN

�+r−2(r, s) as multiplication
by

(
s − � + r − 1

2

)(
s + � + r − 1

2

)
.

So let us consider

h(r, s) = −1

2

(
s − � + r − 1

2

)−1(
s + � + r − 1

2

)−1

E+
�+r−2 eρ(r, s). (3.32)

This is well defined as a meromorphic family on V0,N × C. Since the family
η̄−2r F that we started with is antiholomorphic, we have E+

�+r−2 fr = 0. Hence

E+
�+r−2eρ(r, s) has a zero along s = �+r−1

2 , which cancels the factor (s − �+r−1
2 )−1,

and hence hr has no singularity carried by the line s = �+r−1
2 . So the restriction
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hr = h(r, �+r−1
2 ) exists as a meromorphic family of Maass forms on V0,N and satis-

fies − 1
2 E−

�+rhr = fr . It is a family that satisfies hr ∈ M
c+
N

�+r (r,
�+r−1

2 ).
Going back by the operator Rh

�+r in diagram (3.19) we get a meromorphic family
Hr = (Rh

�+r )
−1hr of harmonic modular forms. We obtain the following intermediate

result:

Proposition 3.9 Let F be an antiholomorphic modular form of weight 2 − � ∈ 2Z≥1

with singularities in the set S ⊂ H. Then there is a collection {V0,N : N ≥ NF },
for some NF ≥ 1, of open neighborhoods of 0 in C with the properties in Lemma 3.7,
such that on each V0,N there is a meromorphic family HN,r of harmonic automorphic
forms such that

HN,r ∈ HS
�+r (r) and ξ�+rHN,r = η̄−2r F

for each r ∈ V0,N at which HN,r is defined.

The construction of HN,r is far from unique. It depends on the choice of the trun-
cation parameters aξ , and in (3.31) we could have taken other holomorphic functions
with the same restrictions to the line s = �+r−1

2 .
Let P = {∞} ∪ PY as before. The family Hr,N that we have constructed satisfies

the growth condition c+
N . The growth condition depends on the order −μζ of the

singularities of F at ζ ∈ PY . (Here the order is determined by the lowest power of
w̄ occurring in the expansion, even if ζ is in an elliptic orbit.) The order of the term
q̄μ∞ at which the expansion of F at ∞ starts determines the lower bound NF =
max(1,1 − μ∞) in the proposition.

We summarize the information that we now have. All terms in the Fourier expan-
sion

HN,r(z) =
∑

ν∈Z

H∞
N,ν(r; z), H∞

N,ν

(
r; z + x′) = e2πi(ν+r/12)x′

H∞
N,ν(r; z), (3.33)

are meromorphic in r ∈ V0,N and satisfy

ξ�+rH
∞
N,ν(r; z) = a∞−ν(r) q̄−ν−r/12,

H∞
N,ν(r; z) = b∞

N,ν(r) qν+r/12 if ν ≥ N,

= a∞−ν(r)

(
−4π

(
ν + r

12

))�+r−1

qν+r/12

· Γ
(

1 − � − r,−4π

(
ν + r

12

)
y

)
if ν ≤ −N,

(3.34)

with the convention that a∞
μ = 0 if μ < μ∞. The meromorphic functions b∞

N,ν are
unknown, the functions a∞−ν are holomorphic on C and occur in the Fourier expan-
sion (3.29) of η̄−2rF . The incomplete gamma-function Γ (p, t) = ∫ ∞

u=t
up−1 e−u du
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is obtained from specialization of the Whittaker function in (3.11). Anyhow, the ex-
pression for ν < −N gives the unique quickly decreasing function with the right
image under ξ�+r .

Now let ζ ∈ PY . The expansion at ζ has the form

HN,r(z) = (z − ζ̄ )−�−r
∑

ν∈Z

H
ζ
N,ν

(
r; z − ζ

z − ζ̄

)
,

H
ζ
N,ν(tw) = tν H

ζ
N,ν(w) for |t | = 1.

(3.35)

The H
ζ
ν,r are meromorphic families on V0,N with (�+r)-harmonic values, and satisfy

ξ�+r

(
(z − ζ̄ )−�−r H

ζ
N,ν

(
r; z − ζ

z − ζ̄

))
= (z̄ − ζ )�+r−2 a

ζ
−ν−1(r)

(
z̄ − ζ̄

z̄ − ζ

)−ν−1

,

H
ζ
N,ν(w) = b

ζ
N,ν(r)wν if ν ≥ −μζ ,

= a
ζ
−ν−1(r) (4 Im ζ )�+r−1 wν

× B
(|w|2,−ν,1 − � − r

)
if ν ≤ −1.

(3.36)

The meromorphic functions b
ζ
N,ν are unknown. The coefficients a

ζ
−ν−1 from the ex-

pansion of η̄−2rF are holomorphic on C. Here we meet the incomplete beta-function

B(t, a, b) =
∫ t

0
ua−1 (1 − u)b−1 du (0 ≤ t < 1, Rea > 0). (3.37)

It arises from specialization of the hypergeometric function in (3.13).
At this point the Maass forms have served their purpose. We have obtained a mero-

morphic family of harmonic lifts of η̄−2r F .

4 Holomorphic families of harmonic forms

In the previous section we have used the analytic perturbation theory of automorphic
forms to construct meromorphic families of harmonic lifts of families r �→ η̄−2rF .
In this section we modify these families to obtain holomorphic families of lifts, and
extend them to larger domains than the disks V0,N in Theorem 3.5. This will bring us
to the main result, Theorem 4.5.

4.1 Freedom in the choice of the lifts

The families r �→ HN,r may be far from unique. We have the freedom to add a mero-
morphic family of holomorphic modular forms.

Adding such a family r �→ Ar on V0,N should not change the description of the
Fourier terms of HN,r in (3.34) and (3.36). At ∞ the family r �→ Ar should have a
Fourier expansion of the form

∑
ν≥1−N cν(r) qν+r/12, and at each ζ ∈ PY an expan-

sion (z − ζ̄ )−�−r
∑

ν≥0 cν(r)wν .
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So Ar should not have singularities at points of S ⊂ H, and hence should be in
M !

�+r (r). Each such Ar has the form Ar = η2r−24m� Ek p(J ) where � = k − 12m�,
m� ∈ Z, k ∈ {0,4,6,8,10,14}, with E0 = 1 and Ek is the holomorphic Eisenstein
series in weight k otherwise, and where p(J ) is a polynomial in the modular invari-
ant J . The Fourier expansion of η2r−24m� Ek starts with qr/12−m� , so the polynomial
p should have degree at most N − 1 −m�. This determines the dimension N −m� of
the space of holomorphic modular forms that we can add.

It may happen that N −m� ≤ 0. Then r �→ HN,r is the unique meromorphic family
on V0,N of (�+ r)-harmonic lifts of r �→ η̄−2rF with expansions of the required type.

Let N − m� ≥ 1. We start with the holomorphic families r �→ η2r−24m� Ek J a−m�

on C of holomorphic modular forms, with a ≥ m�, and form successively linear com-
binations r �→ j�,a,r , such that j�,a,r has a Fourier expansion of the form

j�,a,r (z) = qr/12−a +
∑

ν≥1−m�

c�,a,ν(r) qν+r/12. (4.1)

These families and the coefficients c�,a,ν are holomorphic on C. We have the freedom
to add to the family r �→ HN,r a meromorphic linear combination of the j�,a,r with
m� ≤ a ≤ N − 1.

4.2 Removal of singularities

Proposition 4.1 For each family r �→ HN,r as in Proposition 3.9 with expansions
as described in (3.34) and (3.36) there is a meromorphic family r �→ Ar on V0,N of
meromorphic modular forms such that r �→ HN,r − Ar is a holomorphic family of
harmonic forms that has expansions of the form indicated in (3.34) and (3.36).

Proof We describe the Fourier terms H∞
N,ν with −N < ν < N in terms of explicit

special functions. Specializing the family of functions in 4.2.5 in [5], we arrive at the
following terms in the expansion at ∞:

for − N < ν < N :
H∞

N,ν(r; z) = a∞−ν(r)

� + r − 1
y1−�−r qν+r/12

1F1

(
1 − � − r;2 − � − r;4π

(
ν + r

12

)
y

)

+ b∞
N,ν(r) qν+r/12, (4.2)

with meromorphic functions b∞
N,ν on V0,N . The basis functions that we use may have

singularities at points of V0,N ∩ Z, and the identities for H∞
N,ν are understood as

identities of meromorphic functions of r .
Now we form the meromorphic family

H̃N,r (z) = HN,r(z) −
N−1∑

a=m�

b∞
N,−a(r) j�,a,r (z),

with j�,a,r as in (4.1). The new family H̃N,r has the same properties as HN,r , with
Fourier terms as in (4.2), but now with b∞

N,ν = 0 for 1 − N ≤ ν ≤ −m�. If m� ≥ N ,

then H̃N,r = HN,r .
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Suppose that H̃N,r has a singularity at r0 ∈ V0,N . Then there is an integer k ≥ 1
such that the meromorphic family

q(r) = (r − r0)
k H̃N,r (4.3)

is holomorphic on a neighborhood of r0 in V0,N , with non-zero value q(r0). The
(� + r0)-harmonic modular form q(r0) satisfies ξ�+r0q(r0) = (r0 − r0)

k η̄−2r0 F =
0. So q(r0) ∈ M !!

�+r0
(r0). In its Fourier expansion there are non-zero multiples of

qν+r0/12 with ν ≤ −m�. On the other hand, the Fourier expansion of H̃N,r shows that
q(r0) can have only multiples of qν+r0/12 with ν > −m�, unless the factor

a∞−ν(r)

� + r − 1
1F1

(
1 − � − r;2 − � − r;4π

(
ν + r

12

))

has a singularity at r = r0. So if r0 ∈ V0,N ∩ Z, then H̃N,r cannot have a singularity
at r0.

We have arrived at the knowledge that the family r �→ H̃N,r has at most finitely
many singularities in V0,N , which we can attack one by one. Suppose that HN,r has a
singularity of order k ≥ 1 at r0 ∈ V0,N . (It does not matter anymore that then r0 is an
integer.) Define q as in (4.3). Then q(r0) ∈ M !!

�+r0
(r0). Its Fourier expansion has no

terms qν+r0/12 with ν ≤ −N and at points ζ ∈ PY it has a pole of order at most −μζ .
We subtract from H̃N,r the family

pr0 : r �→ 1

(r − r0)k
η2(r−r0) q(r0).

This is a meromorphic family on C of meromorphic modular forms. The family r �→
H̃N,r − pr0(r) satisfies the properties as r �→ HN,r , and has at r0 a singularity of
order strictly less than k.

Proceeding in this way we remove all remaining singularities of the family r �→
H̃N,r in finitely many steps, thus completing the proof of the proposition. �

4.3 Normalization

Now we can suppose that the family r �→ HN,r is holomorphic. If m� ≤ N − 1 there
is still the freedom of adding holomorphic multiples of the families j�,a,r in (4.1). We
use this freedom to normalize the Fourier expansion further, in order to compare the
families for different values of N . To do this the confluent hypergeometric function
in (4.2) is inconvenient, since it has singularities as a function of � + r . Instead we
use the following function:

Mp(n;y) = y1−p

p − 1
1F1(1 − p;2 − p;ny) +

∞∑

k=0

nk

k! (1 + k − p)

=
∫ 1

t=y

t−p ent dt. (4.4)
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This is holomorphic as a function of p ∈ C. The sum on the first line converges
absolutely for all p ∈ C, defining a meromorphic function on C with the opposite
principal parts as the term with the confluent hypergeometric function.

With these slightly more complicated basis functions we write (4.2), with −N <

ν < N as

H∞
N,ν(r; z) =

(
a∞−ν(r)M�+r

(
4π

(
ν + r

12

)
;y

)
+ b̂∞

N,ν(r)

)
qν+r/12), (4.5)

with the convention that a∞
ν = 0 for ν < μ∞. Subtracting suitable multiples of j�,−ν,r

with 1 − N ≤ ν ≤ −m� we arrange that b̂∞
N,ν(r) = 0 for 1 − N ≤ ν ≤ −m�. Thus we

arrive at the following normalization:

Proposition 4.2 Let � ∈ 2Z≤0, and let F ∈ M !!
2−�(0), with singularities in the set S

of the form Γ PY . Let μ∞ ∈ Z and μζ ≤ −1 for ζ ∈ PY be as in (3.29). For each
N ≥ max(1,1 − μ∞) there is a neighborhood V0,N of 0 in C with the properties
in Lemma 3.7, and on V0,N a holomorphic family r �→ HN,r of (� + r)-harmonic
modular forms in H !!

�+r (r) such that ξ�+rHN,r = η̄−2rF , uniquely determined by
having near ∞ a Fourier expansion of the form

HN,r(z) =
∑

ν≤−max(N,μ∞)

a∞−ν(r)

(
−4π

(
ν + r

12

))�+r−1

qν+r/12

· Γ
(

1 − � − r,−4π

(
ν + r

12

)
y

)

+
−μ∞∑

ν=1−N

a∞−ν(r) qν+r/12 M�+r

(
4π

(
ν + r

12

)
;y

)

+
∑

ν≥1−m�

b∞
N,ν(r) qν+r/12. (4.6)

The functions bN,ν are holomorphic on V0,N .
The holomorphic functions aν on C depend on F by (3.29). The integer m� ≥ 0 is

defined in Sect. 4.1. See (4.4) for the functions M�+r .

We note that there may be an overlap in the ranges of the variable ν in the sums
in (4.6), and that the sum over 1 − N ≤ ν ≤ −μ∞ may be empty.

From this point on we use this normalization of HN,r and the functions b∞
N,ν . The

functions b∞
N,ν are not known explicitly. The choice of M�,ν is not canonical. So this

normalization is non-canonical as well.
Since we deal with real-analytic functions on H \ S, the expansion near ∞ de-

termines the family completely. At points ζ ∈ PY we have expansions like in (3.35),
with terms that are holomorphic on V0,N .
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4.4 Extension

The normalization in Proposition 4.2 is convenient for the comparison of HN,r and
HN+1,r . The difference HN+1,r −HN,r is a holomorphic family of holomorphic mod-
ular forms on V0,N :

Lemma 4.3 Let N ≥ max(1,1 − μ∞). If N < max(m�,μ∞) then HN+1,r = HN,r

for r ∈ V0,N . If N ≥ max(m�,μ∞), then we have for r ∈ V0,N :

HN+1,r = HN,r −a∞−N(r)

(
4π

(
N − r

12

))�+r−1

Γ

(
1−�−r,4π

(
N − r

12

))
j�,N,r .

(4.7)

Proof The difference

HN+1,r (z) − HN,r(z)

=
∑

ν≥1−m�

(
b∞
N+1,ν(r) − b∞

N,ν(r)
)
qν+r/12

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a∞−N(r) q−N+r/12 (M�+r (4π(−N + r
12 );y)

− (−4π(−N + r
12 ))�+r−1

×Γ (1 − � − r,−4π(−N + r
12 )y)) if N ≥ μ∞,

0 if N < μ∞

is a holomorphic family on V0,N of holomorphic modular forms. If N < m� or if
N < μ∞, then it has non-zero Fourier terms only of order ν ≥ 1 − m�, hence it
vanishes. If N ≥ m� and N ≥ μ∞, then a computation shows that the starting term in
the Fourier expansion is equal to

−
(

−4π

(
−N + r

12

))�+r−1

Γ

(
1 − � − r,−4π

(
−N + r

12

))
a∞−N(r) q−N+r/12,

and the other terms have order ν ≥ 1−m�. So HN+1,r −HN,r is equal to the multiple
of j�,N,r indicated in the lemma. �

Lemma 4.4 The family r �→ HN,r in Proposition 4.2 extends as a holomorphic fam-
ily on C \ [12M,∞), where M = max(N,m�,μ∞).

Proof All HN,r with N < max(m�,μ∞) have a holomorphic extension to V0,N1 , with
N1 = max(m�,μ∞). The function w �→ w�+r−1 Γ (1−�− r,w) can be extended as a
single-valued holomorphic function on C\(−∞,0], but not further for general values
of � + r . Lemma 4.3 implies that for N ≥ N1 the family HN,r has a holomorphic
extension to V0,N+1 \ [12N,∞). Applying this successively, we get for N ≥ N1 the
holomorphic extension of HN,r to C \ [12N,∞). �
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Theorem 4.5 Let F be an antiholomorphic form in M̄ !!
2−�(SL2(Z), v0) for the trivial

multiplier system v0 = 1, with weight � ∈ 2Z. Let M ∈ Z be such that M > −μ∞,
where F(z) = ∑

ν≥μ∞ aν q̄ν is the Fourier expansion of F near ∞. Then there is a
holomorphic family r �→ HM,r on C \ [12M,∞) of (� + r)-harmonic modular forms
satisfying ξ�+rHM,r = η̄−2r F for all r ∈ C \ [12M,∞).

The family HM,r can be chosen uniquely by prescribing a Fourier expansion of the
form

HM,r(z) =
∑

ν≤−max(M,μ∞)

a∞−ν(r)

(
−4π

(
ν + r

12

))�+r−1

qν+r/12

· Γ
(

1 − � − r,−4π

(
ν + r

12

)
y

)

+
−μ∞∑

ν=1−M

a∞−ν(r) qν+r/12 M�+r

(
4π

(
ν + r

12

)
;y

)

+
∑

ν≥1−m�

b∞
M,ν(r) qν+r/12. (4.8)

The function M�+r is defined in (4.4). The coefficients a∞−ν are holomorphic functions
on C occurring in the Fourier expansion (η̄−2r F )(z) = ∑

ν≥μ∞ a∞
ν (r) q̄ν−r/12. The

quantity m� ∈ Z is defined by � + 12m� ∈ {0,4,6,8,10,14}.

The holomorphic functions bM,ν on C \ [12M,∞) are not known explicitly. The
middle sum in (4.8) may be empty. We note that a∞

μ∞(r) = aμ∞ , which we can assume
to be non-zero.

Proof We denote by F̃ ∈ M̄ !!
2−�̃

(v0) the antiholomorphic modular form in the theo-
rem, and will apply the earlier result to

F = F̃ Δ̄−p ∈ M̄ !!
2−�(v0),

with p ∈ Z not yet fixed. Denoting the quantities related to F̃ by a tilde we have

� = �̃ + 12p, m� = m
�̃
− p,

μ∞ = μ̃∞ − p, aν(r) = ãν+p(r + 12p).

We take N = M − p and choose

p ≤ min

(
− �̃

12
,M − 1,

M − 1 + μ̃∞
2

)
.

Then � ≤ 0 and N ≥ max(1,1 − μ∞). We apply Proposition 4.2 and Lemma 4.4 to
F , and take HM,r = HN,r−12p . Then ξ

�̃+r
HM,r = ξ�+r−12pHN,r−12p = η̄−2r F̃ for

r ∈ C \ [12M,∞). �
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4.5 Remarks

4.5.1 Comparison: use of Poincaré series and use of perturbation theory

The existence of a harmonic lift of a single antiholomorphic modular form can be
proved with Poincaré series in the case of a real weight and a unitary multiplier sys-
tem. If the weight is larger than 2 the Poincaré series converge absolutely, and the
construction gives an explicit expression for the lift (with Kloosterman sums and
Bessel functions). Outside the region of absolute convergence analytic extension is
needed anyhow, and requires a careful analysis of the properties of this continuation.
The approach in Sect. 3 uses a more general result, and works generally. I do not
know another method that allows the handling of complex weights.

4.5.2 Use of Hodge theory

The approach in Sect. 3 of [3] is not restricted to the case of M̄ !
2−p(SL2(Z), v1). Jan

Bruinier notes that singularities at points of H can be accommodated in the divisor D

used in the proof of Theorem 3.7 in [3], and that one may be able to handle multiplier
systems vr with rational values of r .

4.5.3 Existence only

Theorem 4.5 is an existence result. It gives an overview of harmonic lifts and orga-
nizes them in families. It does not give explicit knowledge of the lifts.

Sometimes we know explicitly a harmonic function by other means, and may be
able to identify it as a member of a family. See Sect. 5 for some examples.

4.5.4 Generalization

Theorem 4.5 is stated only for the discrete group SL2(Z), since for that case I have
checked the details. I expect that a similar theorem can be proved for any cofinite
discrete subgroup of SL2(R) with cusps. For cocompact groups generalization seems
much harder.

For cofinite groups Γ with cusps the group of multiplier systems is a commuta-
tive complex Lie group, with finite dimension; its dimension is 1 for SL2(Z). The
parameter r in this paper is essentially an element of the Lie algebra of the group of
multiplier systems. The parameter ϕ used in [5] can be viewed as running through
the Lie algebra of the group of multiplier systems. The results in Sect. 3 probably
go through with open sets V0,N in that Lie algebra as parameter space. To transform
meromorphic families into holomorphic families with the method of Sect. 4 is proba-
bly very hard if the dimension of the parameter space is larger than 1. For that purpose
I think it might be wise to work with one-dimensional subvarieties of the parameter
space.
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4.6 Mock modular forms

In the Fourier expansion (4.6) of the normalized family HM,r it seems natural to put

CM,r(z) =
∑

ν≤−max(M,μ∞)

a∞−ν(r)

(
−4π

(
ν + r

12

))�+r−1

qν+r/12

· Γ
(

1 − � − r,−4π

(
ν + r

12

)
y

)

+
−μ∞∑

ν=1−M

a∞−ν(r)M�+r

(
4π

(
ν + r

12

)
;y

)
qν+r/12 (4.9)

as the part of the expansion arising from η̄−2r F , and the remaining part

MM,r(z) =
∑

ν≥1−m�

b∞
N,ν(r) qν+r/12 (4.10)

as the corresponding family of mock modular forms. This splitting depends on the
choice of the basis vector M�+r (· ; ·) in the (� + r)-harmonic terms with ν ≥ 1 − m�.
Another choice leads to another splitting.

If the set S of singularities in H of F is non-empty, the series in (4.10) for MM,r(z)

defines a holomorphic function only on the region Im z > yS where yS is the maxi-
mum value om Im ζ as ζ runs through S. It seems to be unknown whether the func-
tions MN,r and CN,r have an analytic extension to a larger region in H.

The expansion of HM,r at ζ in the system of representatives PY of Γ \S gives rise
to a splitting HM,r = M + C on a pointed neighborhood of ζ , and seems not to have
a relation to the splitting HM,r = MM,r + CM,r .

My conclusion is that the concept of mock modular forms is still unclear in the
generality of families of modular forms considered in this note.

5 Harmonic lift of eta-powers

As an example we look at η̄−2r for r close to 0 in C. Theorem 4.5, with the choice
1 ∈ M̄2−2(SL2(Z), v0) provides us with the family r �→ Hr := H1,r on C \ [12,∞) of
(r + 2)-harmonic lifts of η̄−2r . We identify it with known harmonic lifts for certain
values of r .

We note that

η̄−2r =
∑

ν≥0

pν(−r) q̄ν−r/12, (5.1)

with polynomials pν of degree ν with rational coefficients. A first order expansion of
e2r logη at r = 0 shows, with use of (2.1)

p0 = 1, and for ν ≥ 1: pν(0) = 0 and p′
ν(0) = −2σ−1(ν). (5.2)
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Theorem 4.5 gives the following Fourier expansion:

Hr (z) =
∑

ν≤−1

p−ν(−r)

(
−4π

(
ν + r

12

))r+1

qν+r/12 Γ

(
−1 − r,−4π

(
ν + r

12

)
y

)

+
(

M2+r

(
πr

3
;y

)
+ b0(r)

)
qr/12 +

∑

ν≥1

bν(r) qν+r/12. (5.3)

The holomorphic functions bν on C \ [12,∞) are unknown.
For three values of r we mention constructions of (r + 2)-harmonic modular lifts

of η̄−2r . If r ∈ (−12,12) the sole term of Hr that q is not exponentially decreasing
at ∞ is the term of order r

12 . If the other lift also has this term as the only non-
decreasing one, that lift coincides with Hr .

Lift of 1 A well known 2-harmonic lift of 1 = η̄0 is the non-holomorphic Eisenstein
series

Enh
2 (z) = y−1 − π

3
+ 8π

∑

ν≥1

σ1(ν) qν. (5.4)

We have M2(0;y) = y−1 − 1. The terms with qν , ν ≥ 1 are quickly decreasing.
We conclude that H0 = Enh

2 (z), and find

b0(0) = 1 − π

3
, bν(0) = 8π σ1(ν) for ν ≥ 1. (5.5)

So we have identified the value of the family at r = 0 with a known 2-harmonic
modular form.

In this case we can proceed a bit further. The computation used in Sect. 6.4 of [6]
to produce an explicit example of a second order Maass form can be modified to get
information on the derivative d

dr
Hr |r=0. In this way one can arrive at the following

result:

b′
ν(0) =

⎧
⎪⎨

⎪⎩

−16π
∑ν−1

μ=1 σ−1(μ)σ1(ν − μ) − 8π
∑

d|ν ν
d

log d2

ν

− 8π (1 + γ − log 4π)σ1(ν) + 2π
3 σ−1(ν), if ν ≥ 1,

−1 + π
3 (2γ − log 4) − 4

π
ζ ′(2) if ν = 0,

(5.6)

where γ denotes Euler’s constant.

Lift of η3 This case can be related to an example of a mock modular form in [14].
The unary theta function ga,b in Proposition 1.15 in [14] with a = b = 1

2 gives
g1/2,1/2 = η3. (This follows from the transformation behavior of ga,b and inspec-
tion of its Fourier expansion.) The completed Lerch sum μ̃ in Theorem 1.11 in [14]
gives a 1

2 -harmonic lift

z �→
√

2

3i

(
μ̃

(
1

2
,

1

2
; z

)
+ μ̃

(
z

2
,
z

2
; z

)
+ μ̃

(
z + 1

2
,
z + 1

2
; z

))
(5.7)
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of η̄3. Since the term with q−1/8 is the sole increasing term (as y → ∞), this lift is
equal to H−3/2(z).

Lift of η4 The fourth power η4 spans the space of holomorphic cusp forms for the
commutator subgroup Γcom = [SL2(Z),SL2(Z)].

The holomorphic function H on H given by

H(τ) = −2πi

∫ z

∞
η4(τ ) dτ (5.8)

has the transformation behavior H(γ τ) = H(τ) + λ(γ ) for some group homomor-
phism λ : Γcom → C. The function C(z) = −1

4π
H̄ satisfies ξ0 C = η̄4. In Sect. 4.3.1

in [6] we see that there can be found a linear combination M of the holomorphic
functions H and z �→ ζ(H(z)), where ζ is the Weierstrass zeta-function for an ap-
propriate lattice, such that M +C is a Γcom-invariant harmonic lift of η̄4. The average∑

n mod 6 eπin/3 (M +C)|0T n has the desired transformation behavior under SL2(Z).
Inspection of the growth of the Fourier terms of M(z) + C(z) as Im z → ∞ shows
that M + C is equal to H−4.
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